Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы теории напряжений и деформаций

Элементы теории напряжений и деформаций  [c.314]

Глава 17. ЭЛЕМЕНТЫ ОБЩЕЙ ТЕОРИИ НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ  [c.167]

Пластические деформации зависят главным образом от тепловых характеристик процесса сварки, свойств металла и в значительно меньшей степени — от жесткости свариваемых элементов. Это обстоятельство позволяет разделить задачу определения сварочных напряжений и деформаций на две части. В первой части с помощью решения термодеформационной задачи МКЭ определяются пластические деформации, обусловливающие перераспределение объема металла в зоне упругопластического-деформирования при сварке (термодеформационная задача). Во второй части на основе решения задачи в рамках теории упругости определяются напряжения в сварном узле в целом (деформационная задача). Исходной информацией для решения деформационной задачи являются начальные деформации  [c.298]


В данной главе излагается теория упругости, в которой напряжения и деформации связаны линейными соотношениями. Дается общее представление о вариационных принципах и методах, нашедших свое наиболее плодотворное применение при практическом решении инженерных задач кручения и изгиба стержней, пластин и оболочек. В современных инженерных расчетах наиболее распространен численный метод решения задач, называемый методом конечных элементов (МК.Э). Подробное изложение метода и его применение к решению задач теории упругости на ЭВМ дано в работах [3, 8, 17].  [c.112]

В теории ползучести изучаются законы связи между напряжениями и деформациями и методы решения соответствующих задач. Ползучесть материалов — это свойство медленного и непрерывного роста упругопластической деформации твердого тела с течением времени под действием постоянной внешней нагрузки. Свойством ползучести в большей или меньшей мере обладают все твердые тела металлы, полимеры, керамика, бетон, битум, лед, снег, горные породы и т. д. При нормальной температуре некоторые материалы (металлы, полимеры, бетон) обладают свойством ограниченной ползучести. С ростом температуры ползучесть материалов увеличивается и их деформация становится неограниченной во времени. Особенно опасно для элементов конструкций и деталей машин проявление свойства ползучести при высоких температурах. Уже при небольших напряжениях материал перестает подчиняться закону Гука. Ползучесть наблюдается при любых напряжениях и указать какой-либо предел ползучести невозможно. В отличие от обычных расчетов на прочность, расчеты на ползучесть ставят своей целью не обеспечение абсолютной прочности, а обеспечение прочности изделия в течение определенного времени. Таким образом, при расчете изделия определяется его долговечность.  [c.289]

Открытые профили. Определяя при кручении напряжения и деформации в тонкостенных стержнях открытого профиля типа швеллера, двутавра (рис. 224) или уголка, можно воспользоваться теорией расчета на кручение стержней прямоугольного сечения. В этом случае незамкнутый профиль разбиваем на прямоугольные элементы, толщина которых значительно меньше их длины. Как видно из табл. 14, для таких прямоугольных элементов (при /г/й >10) коэффициенты аир равны 1/3. Тогда для составного профиля на основании выражений (9.33) и (9.37)  [c.246]


В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Эти соотношения можно назвать эффективными определяющими уравнениями слоистого композита, поскольку они определяют геометрические изменения, вызванные нагрузкой, приложенной к слоистому элементу, в отличие от общепринятого понятия определяющих уравнений теории упругости, связывающих напряжения и деформации в бесконечно малом материальном элементе. Располагая эффективными определяющими соотношениями, можно разработать теорию слоистого тела в целом, не прибегая к исследованию каждого слоя в отдельности методами теории упругости. Впрочем, решив конкретную краевую задачу, можно найти распределение напряжений по толщине слоистого тела во всех деталях.  [c.38]

Несмотря на то что элементы системы (конструкции в целом, ее частей или материала) делают все, чтобы выдержать нагрузку, их поведение не соответствует предсказаниям наиболее благоприятных экстремальных теорем, если наступает местная или общая неустойчивость. Явное предположение о неограниченной податливости прн достижении предела текучести, которое составляет сущность предельных теорем, Так же как и неограниченный диапазон упругой связи между возрастающими напряжениями и деформациями, который лежит в основе теорем минимума потенциальной энергии и минимума  [c.25]

Расчет конструктивных элементов за пределами упругости осуществляют на основании деформационной теории пластичности и ползучести с помощью метода переменных параметров упругости. При этом используют зависимость между напряжениями и деформациями в виде  [c.7]

При построении алгоритма определения полей циклических упругопластических деформаций в элементах конструкций на основании соотношений деформационной теории пластичности необходимо знать соответствующие зависимости между напряжениями и деформациями, отражающие поведение материала при циклическом упругопластическом деформировании.  [c.79]

Рассмотрим другой случай, когда напряжение и деформацию нельзя считать независимыми от времени, когда нужно учитывать и продолжительность действия нагрузки. При расчете напряженного и деформированного состояния в зависимости от времени действия нагрузки, как уже отмечалось, приемлемы методы теории вязко-упругости. При этом наряду с проявлением ползучести происходит значительное падение прочности в зависимости от возрастающей продолжительности действия нагрузки. Таким образом, необходимо рассчитывать размеры несущих элементов конструкций с учетом времени прочности материала.  [c.106]

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]

Книга задумана как учебное пособие, и, разумеется, автор дает необходимые сведения из механики деформируемого твердого тела, с тем чтобы сделать изложение ясным и завершенным. Он приводит теорию поля деформаций и напряжений в точке, описывает элементы теории упругости и пластичности, разбирает многочисленные гипотезы прочности бездефектного материала, дает сведения о коэффициентах концентрации в упругой и пластической областях деформирования.  [c.5]


Поскольку иногда детали машин и элементы конструкций работают за пределом текучести, необходимо исследовать зависимость между напряжениями и деформациями в пластической области, где соотношения линейной теории упругости уже неприменимы. Соотношения между деформациями и напряжениями в пластической области в общем случае нельзя считать не зависящими от времени. В любой точной теории пластического деформирования следовало бы учитывать влияние всего процесса изменения пластической деформации с момента начала пластического течения. Соотношения, учитывающие это, были бы очень сложными, они содержали бы в себе напряжения и скорость изменения деформации во времени. Уравнения были бы аналогичны уравнениям течения вязкой жидкости, а деформацию в каждый момент времени следовало бы определять, осуществляя пошаговое интегрирование по всему процессу изменения деформации. Такой подход привел бы к очень трудоемким расчетам даже при решении простейших задач о пластической деформации. Вследствие этого обычно делают некоторые упрощающие предположения, которые позволяют относительно просто исследовать процессы пластического деформирования и получать достаточно простые результаты, пока температура ниже температуры ползучести и в случае обычных скоростей деформации.  [c.118]

В ряде работ [64, 65] было установлено, что для монотонно нагружаемых тел со стационарными трещинами существует линейная зависимость между интегралом Jt и раскрытием трещины. В работах [66, 67] с применением метода конечных элементов было дано объяснение эффекта затупления вершины трещины при конечных деформациях и других эффектов (на основе теории пластического течения) для упругопластических тел со стационарными трещинами, нагружаемых на бесконечности монотонно растущей нагрузкой. В этих исследованиях было установлено [67], что HRR-поле [62,63], найденное с использованием деформационной теории при малых деформациях, хорошо аппроксимирует напряжения и деформации, построенные на основе теории течения только в точках, отстоящих от исходной вершины трещины (являющейся, грубо говоря, началом затупленной трещины в ее деформированном состоянии) на расстояния, более чем втрое превышающие раскрытие трещины (т. е. больших 36).  [c.72]

Теперь мы кратко рассмотрим основные положения методов граничных элементов, применяемых в линейной теории упругости, которые основаны на интегральных уравнениях. Рассмотрим глобальную пробную функцию Uk (т. е. функцию, заданную для всего твердого тела) и глобальную весовую функцию о. Пусть уравнения совместности, а также зависимости между напряжениями и деформациями будут удовлетворяться априори, т. е.  [c.203]

Принимая во внимание, что особенности моделирования элементов машин за пределом пропорциональности непосредственно связаны с характером соотношений между напряжениями и деформациями материала конструкции, ограничимся рассмотрением масштабных преобразований физических уравнений теории пластичности.  [c.91]

Приведенные в предыдущих главах многочисленные случаи исследования напряжений и деформаций при помощи оптического метода иллюстрируют успехи развития теории упругости, причем во многих случаях опытным путем достигнуто больше, чем путем анализа. В данной главе приведены сведения о некоторых исследованиях оптическим методом распределения напряжений в конструкциях и мащинах, где точное вычисление их или затруднительно или просто невозможно. За несколько последних лет инженерами были проделаны большие и подробные исследования оптическим методом характера распределения напряжений в конструкциях и машинах и их элементах целью этих изысканий было получение данных для дальнейшего проектирования, в особенности же в тех случах, в которых проектирование до сих пор за недостатком точных данных зависело только от собственных соображений и опытности инженера.  [c.540]

Для построения необходимых соотношений воспользуемся указанными гипотезами структурной модели и будем считать, что субструктурные элементы подчиняются соотношениям линейной наследственной теории упругости [168, 169, 172]. Тогда связь между напряжениями и деформациями при отсутствии температурного воздействия в случае плоского напряженного состояния будет иметь вид [116, 142]  [c.17]

С точки зрения анализа напряжений влияние температурных эффектов на пластичность может быть изучено на двух уровнях в зависимости от того, какая применяется теория термомеханического поведения — связанная или несвязанная. Большинство важных для техники проблем, касающихся разрыхления, напряжений при сварке, остаточных напряжений после закалки, расчета топливных элементов реакторов и т. д., могут быть достаточно точно изучены в рамках несвязанной теории. При таком подходе температура входит в соотношения между напряжениями и деформациями только благодаря члену, определяющему тепловое расширение кроме того, учитывается влияние температуры на константы материала.  [c.203]

Предельные состояния, виды и критерии разрушения. Традиционные инженерные расчеты на прочность деталей машин и элементов конструкций при однократном нагружении основаны, с одной стороны, на номинальных напряжениях, определяемых по формулам сопротивления материалов, теории упругости и пластичности, теории пластин и оболочек и, с другой стороны, на характеристиках прочности материалов при однократном нагружении,, определяемых при стандартизированных или унифицированных испытаниях лабораторных образцов из применяемых конструкционных материалов [16]. В зависимости от большого числа конструктивных (вид нагружения, размеры и форма сечений, наличие концентрации напряжений), технологических (.механические свойства применяемых материалов, вид и режимы сварки, термообработки, упрочнения) и эксплуатационных (скорость нагружения, уровень нагрузок, температура, среда) факторов при однократном нагружении возможно возникновение трех основных видов разрушения — хрупкого, квазихрупкого и вязкого 16]. Каждый из этих видов разрушения существенно отличается по уровню номинальных и местных разрушающих напряжений и деформаций, скоростям развития трещин и времени живучести деталей с трещинами, внешнему виду поверхностей разрушения. Применительно к этим видам разрушения выбирают те или иные критерии разрушения из трех основных групп — силовых, деформационных и энергетических.  [c.9]


Рассмотрим эту теорию. На рис. 4 показан элемент заготовки. Криволинейные координатные линии ы и и выбраны так, чтобы они совпадали с траекториями главных нормальных напряжений. Считается, что нагружение листа является простым. Тогда между напряжениями и логарифмическими деформациями в силу подобия девиаторов напряжений и деформаций имеют место соотношения  [c.30]

Деформационная теория термопластичности. Среди разнообразных задач механики деформируемого твердого тела, связанных с определением напряженно-деформированного состояния элементов конструкций из упругопластических материалов, встречаются такие задачи, общим условием в которых является изменение в процессе нагружения всех компонентов девиатора напряжений в окрестности каждой точки среды в одном и том же отношении. В этом случае нагружение называют пропорциональным и при анализе упругопластических напряжений и деформации можно уже исследовать не процессы, а конечные состояния, когда между собой связаны компоненты тензоров напряжений и деформации и температура, т.е воспользоваться соотношениями деформационной теории термопластичности. Для однородной изотропной среды уравнения этой теории, в принципе, можно получить как частный случай теории пластического течения для изотропно упрочняющихся материалов с условием текучести Мизеса.  [c.156]

Для определения напряженного и деформированного состояния твердого тела, нагруженного за пределами упругости, необходимы уравнения пластического состояния, связывающие напряжения и деформации. Полностью задача о построении таких уравнений в общем случае не решена из-за сложности процесса пластического деформирования, хотя предложено много различных теорий [66—69, 132, 141, 142, 155, 224]. Рассмотрим основные уравнения пластического состояния, широко применяемые в расчетах элементов конструкций о учетом пластических деформаций.  [c.87]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Классическим примером в этом отношении может служить теория напряжений и деформаций в идеальном однородном теле, когда в точке тела выделяется бесконечно малый элемент в виде параллелепипеда и рассматривается его напряженное состояние. Связь между деформациями и напряжениями описывает закон Гука. Развитие этого подхода с учетом возникновения пластических деформаций позволяет найти зависимости между напряжениями и деформациями и за пределами упругости [111]. Необходимость учитывать реальные особенности строения материалов привела к созданию таких наук, как металловедение, которая изучает и устанавливает связь между составом, строением и свойствами металлов и сплавов. Для материаловедения как раз характерно рассмотрение явлений, происходящих в пределах данного участка (зерна, участка с типичной структурой), обладающего основными признаками всего материала. Изучение микроструктур сплавов и их формирования явлений, происходящих по границам зерен, термических превращений и других процессов, проводится в первую очередь на уровне, который описывает микрокартину явлений.  [c.60]

В работах Л. Н. Воробьева (1956), Н. А. Кильчевского (1963, 1964), Д. И. Кутилина (1947), В. В. Новожилова (1958) рассмотрены общие теоремы нелинейной теории упругости. Расширенные вариационные начала (типа предложенных в линейной теории Э. Рейсснером) сформулированы К. 3. Галимовым (1952) и И. Г. Терегуловым (1962). Предложенные вариационные принципы содержат в качестве независимо варьируемых функциональных элементов перемещения, напряжения и деформации, свободные от каких-либо связей внутри и на границе тела. Вариационные начала  [c.74]

Однако существенно больший интерес представляют такие задачи, для решения которых элементарные гипотезы не могут привести к цели. Типичный пример — задача о кручении призматического стержня. Если принять для кручения такую же гипотезу плоских сечений, которая была принята для изгиба, окажется, что верный результат получится только для того случая, когда сечение представляет собою круг или круговое кольцо для других форм сечения эта гипотеза приведет к очень грубой ошибке. Точно так же никакие элементарные нредно-ложения не позволяют найти напряжения в толстостенной трубе, подверженной действию внутреннего давления. Можно привести много примеров других элементов конструкций, для которых напряжения и деформации нельзя определить с помощью элементарных приемов, а нужно использовать уравнения теории упругости.  [c.266]

На основании деформационной теории повторного нагружения Мос-квитина последовательно решают задачи о нагружении и разгрузке конструктивного элемента, причем для мембранной зоны считают, что разгрузка (начало в точке А на рис. 1.5, а) происходит по линейному закону. В связи с отсутствием в условиях однородного напряженного состояния, остаточных напряжений в мембранной зоне началу повторного нагружения соответствует точка. 4 (рис. 1.5, б) конца разгрузки предыдущего цикла, причем зависимость между напряжениями и деформациями является линейной для мгновенного нагружения и нелинейной для нагружения, при котором проявляются временные эффекты и ползучесть.  [c.8]

При расчетах напряжений и деформаций в конструк1щях ВВЭР широкое применение находят методы теории оболочек и пластин, аналитические методы решения краевых задач в зонах концентрации напряжений, а также численные методы решения с применением ЭВМ (методы конечных элементов, конечных разностей, вариационно-разностные и граничных интегральных уравнений). Эффективность применения численных методов резко увеличивается, когда решаются задачи анализа термомеханической на-груженности сложных по конструкции узлов ВВЭР (плакированные корпуса и патрубки, элементы разъема, контактные задачи с переменными граничными условиями, элементы главного циркуляционного контура при сейсмических воздействиях).  [c.8]


Задача механической теории ползучести состоит в установлении определяющих уравнений, связывающих механические параметры состояния — напряжения и деформации. Эти соотношения должны содержать некоторые вре.менные операторы дифференциальные или интегральные.. Процесс ползучести часто заканчивается разрушением тела, поэтому в идеале механическая теория ползучести должна содержать в себе элементы, позволяющ Ие предсказывать момент разрушения.  [c.247]

Вместе с тем обоснование прочности и надежности деталей машин и элементов конструкций при кратковременном, длительном и циклическом эксплуатационном нагружении остается трудно решаемой в теоретическом и экспериментальном плане задачей. Это в значительной степени связано со сложностью детерминированного и стохастического анализа напряженного состояния в элементах конструкций при возникновении упругих и упругопластических деформаций и ограниченностью критериев разрушения в указанных условиях при использовании конструкционных материалов с различными механическими свойствами. Трудности, возникающие при исследовании напряжений и деформаций в наиболее нагруженных зонах в упругой и неупругой области объясняются отсутствием аналитического решения соответствующих задач в теориях упругости, пластичности, ползучести и, тем более, в теории длительной циютической пластичности. К числу решенных таким способо.м задач мог т бьггь отнесены те, в которых определяются номинальные напряжения и деформации при растяжении-сжатии, изгибе и кручении стержней симметричного профиля, нагружении осевыми уси-  [c.68]

Рост рабочих параметров машин и конструкций и связанное с ним повышение требований к их надежности при одновременном снижении материалоемкости вызвали развитие методов изучения напряженного и деформированного состояния элементов конструкций (машин) от силовых и тецловых нагрузок. В исследовании напряженного и, в частности, термо-напряженного состояния элементов конструкций параллельно развиваются два направления экспериментальное и расчетное. Среди экснеримеН тальных исследований весьма результативными являются исследования напряжений и деформаций на моделях и натурных конструкциях [1—4]. Привлечение для модельных исследований методов трехмерной фотоупругости дало возможность находить температурные напряжения как на поверхности модели, так и по ее сечениям [1, 5, 6]. Что касается расчетных исследований, то численные методы с применением ЭВМ вошли в практику решения задач теории упругости как наиболее универсальные, позволяю-ш ие решать многие задачи теории упругости и термоупругости в принципе с любой желаемой степенью детализации. Наибольшее распространение в настоящее время получили два метода метод конечных элементов (МКЭ) и вариационно-разностный метод (ВРМ).  [c.102]

Обратимся теперь к уравнениям теории пластического течения. Для элементов, лежащих на со стороны пластической зоны, приращения компонентов деформации определяются соотношениями (14.8) при Х = 0 следовательно, в силу непрерывности перехода упругого состояния в пластическое компонейты деформации по обе стороны S определяются уравнениями Гука. Но тогда рассуждения, относящиеся к предыдущему случаю, полностью сохраняются вместе с заключением о непрерывности всех компонентов напряжения и деформации на .  [c.60]

При определении напряжений и деформаций в элементах конструкций с учетом полаучести наиболее простая расчетная xeva получается по теории старения,  [c.27]

Создание методов расчета действительного напряженно-деформированного состояния образцов и конструктивных элементов, в том числе с концентраторами напряжений, в условиях неоднородного напряженного состояния. Имеющиеся весьма противоречивые литературные данные [72, 170, 213] показывают, что для некоторых сплавов в области многоцикловой усталости, в первую очередь при напряжениях выше предела выносливости, имеют место значительные неупругие деформации, что приводит к несоответствию действительных и номинальных, подсчитанных с использованием формул теории упругости, напряжений в неодно-родно-напряженных конструктивных элементах. Без учета этого фактора невозможно сформулировать достаточно достоверные критерии усталостного разрушения металлов в условиях неоднороднг-го напряженного состояния. При этом следует также учитывать, что зависимости между напряжениями и деформациями, необходимые для таких расчетов, в условиях циклического нагружения суш,ественно отличны от зависимостей при монотонном увеличении нагрузки [191, 231].  [c.98]

Даже беглого взгляда на оглавление достаточно, чтобы увидеть, какие темы освещаются в этой книге. Сюда входят и методы расчета элементов конструкций при продольном нагружении, кручении и изгибе, и основные понятия механики материалов (энергия преобразование напряжений и деформаций, неупругое деформирование и т. д.). К частным вопросам, интересующим инженеров, относятся влияние изменения температуры, поведение непризматических балок, большие прогибы балок, изгиб несимметричных балок, определение центра сдвига и многое другое. Наконец, последняя глава представляет собой введение в теорию расчета конструкций и энергетические методы, включая метод единичной нагрузки, теоремы взаимности, методы податливостей и жесткостей, теоремы об энергии деформации й потенциальной энергии, метод Рэлея — Ритца, теоремы о дополнительной энергии. Она может служить основой для дальнейшего изучения современной теории расчета конструкций.  [c.9]

Расчет концентрации напряжений производят часто методами теории упругости (с использованием теории аналитических функций и аппарата конформного отображения). В последние годы получили развитие и широкое применение численные методы теории упругости , позволяющие эффективно решать задачи расчета концентрации напряжений и деформаций в элементах конструкц ш в условиях упругости, пластичности и ползучести.  [c.549]

К осени 1822 г. Когци ) открыл большинство основных элементов чистой теории упругости. Он ввел понятие о напряжении и деформациях в дапной точке. Показал, что они могут быть определены шестью соответствуюш,ими компонентами. Исходя из гипотезы о сплошном и однородном строении твердого тела, Коши получил уравнения движения (или равновесия). Он впервые ввел в уравнения теории упругости две упругие постоянные, в то время как уравнения Павье содержали лишь одну. Соотношения, связываюш,ие малые деформации и перемегцения, названы его именем.  [c.11]

На фиг. 217 представлено напряженное состояние в центре г=0 минимального поперечного сечения шейки, а на фиг. 218 показаны кругп Мора для элемента на контуре шейки г=а, соответствуюш ие моменту разрушения. Вследствие значительного наклепа металла, который имеет место в сравнительно очень небольшой зоне вблизи минимального поперечного сечения в шейке образцов, ввиду резких изменений напряжений и в осевом п радиальном направлениях, а также остаточных деформаций а в осевом направлении (в тех образцах, в которых шейка при наивысших значениях давления р превращалась почти в точку), представляют сомнительную ценность попытки разработать углубленную теорию разрушения, основанную лишь на сравнительно немногих данных о величинах напряжений и деформаций, которые могут быть получены из опытов. Сошлемся здесь на замечания, приведенные в пп. 5, 6 и 9 гл. XV, в которых подчеркивается сложность факторов, оказывающих влияние на условия разрушения ).  [c.308]

Для расчета элементов конструкций, работающих в упругопластической области при переменных нагружениях и температуре, применяются законы и уравнения циклической пластичности, изложенные в монографиях В. В. Москвитина, Ю. Н,Шевченко, Г. С. Писаренко, Н. С. Можаровского, Е. А. Антипова, С. В. Се-ренсена, Р. М. Шнейдеров и ча, А. П. Гусенкова и др. Уравнения получены в предположении, что при данных нагрузке и температуре напряженное и деформированное состояния твердого тела не претерпевают изменений с течением времени. В действительности напряжения и деформации деформируемого тела при данных нагрузке и температуре с течением времени изменяются. Задачи с такими условиями решаются при помощи теории ползучести. Основные законы и уравнения, описывающие явления ползучести материала твердого деформируемого тела, приведены в монографиях и учебниках Ю. Н. Работнова, С. Т. Милейко, Н. X. Арутюняна, И. И. Гольденблатта, Н. Н, Малинина, И. А. Одинга и др.  [c.11]

В первом разделе рассмотрены основные законы и общие уравнения механики твердого деформируемого тела, применяемые в теории пластичности и ползучести. Особое внимание уделено теориям полей напряжений и деформаций, а также векторному представлению процесса нагружения в точке упругопластически деформируемого тела как в пространстве напряжений, так и в пространстве деформаций. Приведены основные законы и уравнения теории пластичности, показано их применение при решении краевых задач. Обобщены методики приложения теории пластичности к расчету на прочность стержней и стержневых систем, цилиндров, оболочек дисков и пластин. Рассмотрено предельное состояние элементов конструкций.  [c.12]



Смотреть страницы где упоминается термин Элементы теории напряжений и деформаций : [c.494]    [c.254]    [c.13]    [c.8]    [c.22]    [c.398]    [c.149]   
Смотреть главы в:

Техническая механика Изд2  -> Элементы теории напряжений и деформаций



ПОИСК



597 — Деформации и напряжения

НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ Теория напряжений

Сложные деформации Элементы общей теории напряжений и деформаций Основные уравнения теории напряжений и деформаций

Теория деформаций

Теория напряжений

Теория напряжений и деформаций



© 2025 Mash-xxl.info Реклама на сайте