Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность циклическая

Обнаружено явление, заключающееся в различии у ряда конструкционных материалов параметров петель гистерезиса в четных и нечетных полуциклах нагружения и приводящее к накоплению односторонних деформаций. Указанное отражает новую закономерность циклической пластичности — циклическую анизотропию свойств материалов. Дано аналитическое описание явления, определены параметры, характеризующие степень циклической анизотропии свойств.  [c.274]


Следует отметить, что в сравнении с низколегированными сталями конструктивная прочность жаропрочных сталей и сплавов определяется более широким комплексом свойств. К ним относятся кратковременные прочностные свойства, сопротивление ползучести и релаксации, длительная прочность, кратковременная и длительная пластичность, циклическая прочность (выносливость).  [c.152]

Настоящая монография является одной из попыток среди такого рода работ подойти к проблеме разрушения, базируясь на системном подходе, лежащем на стыке механики деформируемого твердого тела, механики разрушения и физики прочности и пластичности. В книге изложены разработанные авторами физико-механические модели хрупкого, вязкого и усталостного разрушений, позволяющие анализировать повреждение материала при сложном нагружении в условиях объемного напряженного состояния. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Кроме того, в работе рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях.  [c.3]

Теории пластичности разделяются на группы. Теории одной группы, называемые деформационными, пренебрегают тем, что в общем случае нет однозначной связи между напряжениями и деформациями в пластической области, и используют конечные зависимости между компонентами напряжений и деформаций [94]. Они могут успешно применяться в пределах, ограниченных условиями простого нагружения, при котором внешние силы растут пропорционально одному параметру, например времени. Теории другой группы не пренебрегают неоднозначностью зависимости напряжений и деформаций, уравнения в них формируются в дифференциальном виде, позволяющем поэтапно прослеживать сложное (например, циклическое) деформирование материала. Эти теории называют теориями пластического течения [94, 124].  [c.13]

Отрицательно действуют на циклическую прочность гальванические покрытия твердыми и прочными металлами (Сг, N1). Покрытия пластичными металлами (Си, Zn, Сё, 8п, РЬ) на усталостную прочность влияют мало.  [c.306]

В качестве исходной величины для определения предельных напряжений выбирают одну из нормативных механических характеристик материала для пластичных материалов при статическом нагружении — предел текучести а, для хрупких материалов при статическом нагружении — временное сопротивление 0 для любых материалов при циклическом изменении нагрузки — предел выносливости (усталости) (см. 2 гл. XV).  [c.139]


В процессе эксплуатации аппарат подвергается воздействию циклических нагрузок. Для получения более достоверно- 0 расчета учитывают реальное число циклов. При этом его долговечность определяется характеристиками пластичности ари статическом разрушении материала и пластической деформацией в цикле нагружения  [c.344]

Степень влияния местных напряжений на прочность детали существенно зависит от характера нагружения и материала. При расчете конструкции из пластичных материалов, работающей в условиях статического нагружения, местными напряжениями пренебрегают. Это объясняется тем, что при росте нагрузки напряжения в зоне концентрации, достигнув предела текучести, не возрастают до тех пор, пока во всех соседних точках они не достигнут того же значения, т. е. пока распределение напряжений в рассматриваемом сечении не станет равномерным. Иначе обстоит дело при циклически изменяющихся напряжениях. Многократное изменение напряжений в зоне концентратора напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением детали. Для оценки снижения прочности вводят эффективный коэффициент концентрации, равный отношению предела выносливости о 1 гладкого полированного образца к пределу выносливости образца с концентратором напряжений, абсолютные размеры которого такие же, как и у гладкого образца  [c.248]

При напряжениях меньше предела выносливости в области IV (между напряжениями 0я и 0 на рис. 7) у пластичных материалов в поверхностных слоях наблюдаются локальные полосы скольжения и могут зарождаться микротрещины (нераспространяющиеся усталостные микро трещины), которые, однако, не достигают критической длины и с ростом числа циклов прекращают свое развитие, достигая линии БЕ. Ниже будут рассмотрены более детально процессы накопления усталостных повреждений в каждом из периодов и стадий в условиях циклического деформирования.  [c.20]

Далее возникает вопрос о влиянии концентрации напряжений на прочность деталей в условиях циклически изменяющихся во времени напряжений. Здесь надо сказать, что наличие местных напряжений снижает прочность деталей как из хрупких, так и из пластичных материалов (правда, не одинаково). Это снижение прочности можно установить только экспериментально, испытывая на сопротивление усталости образцы с различными концентраторами напряжений. При этом надо подчеркнуть, что экспериментальные данные относятся к симметричным циклам. Можно схематически показать две кривые усталости — для гладких образцов и для образцов с каким-либо концентратором напряжений (рис. 15,3). Отношение ординат горизонтальных участков этих кривых даст величину эффективного коэффициента  [c.179]

Существенную роль в образовании хрупкого разрушения играет исходное состояние металла, зависящее от металлургических процессов получения и технологии его дальнейшей обработки. Увеличение размера зерен и ослабление прочности их границ приводит к уменьшению 5к и, следовательно, к повышению критической температуры и снижению уровня критических напряжений при хрупком разрушении (см. рис. 1.5). Повышение сопротивления срезу и уменьшение сопротивления отрыву в результате повышения содержания углерода в стали, понижения температуры отпуска, а также легирования (повышающего отношение предела текучести 5т к сопротивлению разрыву Sk) увеличивают склонность к хрупкому разрушению. Этот эффект наблюдается также после деформационного старения при длительной службе металла в напряженном состоянии при повышенной температуре, наводороживания, радиационного воздействия, накопления циклического и коррозионного повреждений. Указанные эксплуатационные факторы понижают пластичность, прочность границ зерен и сопротивление разрыву.  [c.14]

Чем выше концентрация, тем устойчивее распределение деформации из-за малости зон пластичности по сравнению с упругими. Это иллюстрируется данными измерений на стальных образцах с тремя уровнями концентрации (а,= 1,8 2,5 3,6) из циклически упрочняющегося алюминиевого сплава и представленных на рис. 5.10 для первого и сотого циклов. Перераспределение мест-90  [c.90]


Сернистые соединения сильно снижают механические свойства стали при статическом и циклическом нагружении, особенно вязкость, пластичность, предел выносливости. Сера является вредной примесью в сталях.  [c.81]

Повышенное сопротивление хромированных труб к циклическим термическим напряжениям можно объяснить несколькими причинами. Так, коэффициент линейного расширения железохромистых сплавов уменьшается примерно в 1,3 раза при увеличении количества хрома от О до 40 % [206], что должно при одинаковых перепадах температур в циклах резких охлаждений во столько же раз уменьшить термические напряжения на наружной поверхности трубы. Существенное влияние может иметь также находившийся под хромовым покрытием обезуглероженный слой, который является более пластичным по сравнению с основным металлом.  [c.254]

На рис. 56 приведены типичные кривые малоцикловой усталости сплава ОТ4, полученные при пульсирующем растяжении с частотой 2 цикл/мин. На участке I образцы не разрушаются, т.е. разрушение происходит или при статическом нагружении, или после числа циклов, соответствующих участку II. На участке II разрушение происходит вследствие исчерпания пластичности в результате протекающей здесь циклической ползучести. Предельная пластичность при разрушении f на этом участке равна или превышает таковую при статическом растяжении 6,. . Повышение предельной пластичности при разрушении вследствие циклической ползучести связано, вероятно, с меньшей неоднородностью деформации при циклическом нагружении по сравнению со статическим. Для участка III характерно усталостное разрушение, которое может происходить на фоне развитых односторонних деформаций (а и Л/р, — напряжения и соответствующие им долговечности, при которых происходит переход от квазистатического к усталостному разрушению). По виду кривые циклической ползучести при квазистатическом разрушении аналогичны кривым ползучести при статическом нагружении. Как и при статической ползучести, кривые циклической ползучести имеют  [c.96]

Рис. 59. Кривые циклической прочности о и пластичности ф гладких образцов сплава ВТ5-1 при пульсирующем растяжении (/7 = 0) Рис. 59. <a href="/info/31953">Кривые циклической</a> прочности о и пластичности ф гладких образцов сплава ВТ5-1 при пульсирующем растяжении (/7 = 0)
Понижение температуры в климатической и криогенной областях приводит, как правило, к повышению статической и циклической прочности при сохранении достаточно высокого уровня пластичности в широком диапазоне долговечности до разрушения сплава.  [c.104]

Наиболее чувствительна к любым дефектам, возникающим в объеме металла, сосредоточенная часть относительного сужения или предельная пластичность надрезанных образцов. Указанные характеристики были использованы авторами совместно с А. В. Гурьевым и В. И. Водопьяновым при изучении процесса циклической повреждаемости титановых сплавов. Исследования выполняли на образцах сплавов ВТ5-1 и ВТ6. Образцы подвергали жесткому симметричному нагружению растяжением-сжатием при амплитуде пластической деформации 0,6 %. Последующее испытание образцов на растяжение производили в двух состояниях непосредственно после циклического нагружения разной длительности и  [c.188]

Таблица 37. Предельная пластичность а надрезе образцов сплава ВТ6 после циклического жесткого нагружения растяжением-сжатием (бд = 0,5%) и статического разрыва Таблица 37. Предельная пластичность а надрезе образцов сплава ВТ6 после <a href="/info/383038">циклического жесткого нагружения</a> <a href="/info/79322">растяжением-сжатием</a> (бд = 0,5%) и статического разрыва
В табл. 37 приведены также результаты определения предельной пластичности в надрезе образцов сплава ВТ6, которые после удаления поверхностного слоя на глубину 1 мм через каждые 0,8Л/р подвергали повторному циклическому деформированию при жестком симметричном нагружении растяжением-сжатием с амплитудой пластической деформации 0,5 % суммарной длительности [п= (1,0-ь1,6)Л/ ]. Надрез выполняли после указанного циклического нагружения. Статический разрыв надрезанных образцов показал, что предельная пластичность не изменилась и после повторного циклического деформирования. Не изменилась  [c.189]

Приведенные примеры демонстрируют отбраковочную роль проблемы устойчивости. Конструктивная же роль, показанная выше на примере использования принципа макро детерминизма, впервые проявилась на основе введения в пластичность циклического постулата [19  [c.89]

Вас — диаметры образца и ролика. Результаты испытаний приведены на рис. 57. Как видно из табл. 41, разрушение нетермообра-ботанного N1—Р слоя и отслаивание его от материала основы происходило уже при небольших напряжениях (10—20 кгс/мм ) после 10 —2-10 циклов нагружения, что, по-видимому, объясняется воздействием внутренних растягивающих напряжений и слабым сцеплением покрытий с основой. В случаях, когда подготовка поверхности образцов способствовала улучшению адгезии, а технология осаждения покрытий — повышению их пластичности, циклическая контактная прочность повышалась. Так, образцы с 5% Р, термообработанные в течение 1 ч при 200° С, смогли при напряжении около 50 кгс/мм выдержать 2,5 -10 циклов нагружения, тогда как покрытия с 10% Р выдерживали лишь  [c.95]


Рассмотрены процессы повреждения и разрушения материалов и элементов конструкций и формулировки критериев разрушения на основе подхода, включаюшего механику деформируемого твердого тела, механику разрушения и физику прочности и пластичности. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях. Основу книги составили результаты, полученные авторами.  [c.2]

Следует отметить, что накопление повреждений будет происходить и при условии, когда напряжения еще не достигают циклического предела текучести 5т, так как в этом случае идут процессы микротекучести. Тем не менее повреждаемость материала в условиях микротекучести будет достаточно малой и поэтому скоростью развития трещины при оценке AKth можно пренебречь (dL/dN Q). Строго говоря, при расчете НДС в окрестности вершины трещины нужно использовать параметр ат" < От, характеризующий сопротивление материала микро-пластическому деформированию. Однако известно, что в этом случае большинство положений теории пластичности не приемлемо [195, 206, 379]. Выходом из этого положения является анализ НДС в рамках теории пластичности (в расчет вводится параметр От), но и при анализе накопления повреждений учитывается повреждаемость от упругих (с макроскопических позиций) деформаций (см. раздел 2.3).  [c.214]

Снижение прочности невелико в изделиях из малоуглеродистых сталей (пластичность которых предотвращает появление внутреипих напря жений) и не имеет большого значения в конструкциях, работающих при статической нагрузке и умеренных напряжениях, но становится ощутимым в циклически нагруженных конструкциях, особенно выполненных из высокопрочных сталей, чувствительных к концентрации напряжений.  [c.160]

Леонардо да Винчи был одним из первых, кто изобрел простейшее устройство для определения механических свойств железных проволок при растяжении. Метод заключался в следующем один конец проволоки жестко закреплялся на перекладине, а ко второму концу прикреплялось ведерко, в которое засыпалась дробь. Метод квазистатического растяжения проволоки путем увеличения количества дроби позволил установить, что короткие проволоки прочнее длинных. Этот принцип испытания, введенный более 500 лет назад, был положен впоследствии для определения механический свойств металла при квазистатическом нагружении. Современные испытательные машины доведены до совершенства, так как оснащены компьютерами и позволяют не только задавать необходимый режим нагружения, но и рассчитывать прочность на разрыв, пластичность и другие свойства деформируемого образца. Для учета реакции металла на внешнее воздействие, зависящей от способа пршгожения нагрузки, были выделены кроме квазистатических испытаний на разрыв, также испытания на удар (ударная вязкость), циклическое нагружение (усталость), статические нагружение (ползучесть) и другие виды.  [c.229]

Исследования отклика системы на скорость движения усталостной трещины открыли возможность резкого повышения информативности опытов по механическим испытаниям при учете критических точек [3]. Процессу разрушения, как и другим неравновесным процессам, свойственны стадийность и многомасштабность. При циклическом нагружении легче всего изучать особенности разрушения на различных масштабных уровнях [32-35]. Путь к этому открыла линейная механика разрушения, так как позволила описать локальное (у края трещины) напряженное деформированное состояние. При матическом на1ружении образца с предварительно созданной трещиной трудно обеспечить ус]ювия плоской деформации на фронте трепщны. Напомним, что условия плоской деформации предполагают образование у края трещины зоны пластической деформации, пренебрежительно малой по сравнению с длиной трещины. Для этого требуется испытать крупно1абаритные образцы при пониженной температуре (в случае пластичных материалов).  [c.300]

Циклическое упрочнение обычно наблюдается у пластичных металлических материалов, а циклическое разупрочнение - у высокопрочных или предварительно деформированных материалов. У металлов и сплавов, имею-1ЦИХ физический предел текучести, вначале наблюдается циклическое разупрочнение, связанное с негомогенностью пластической деформации на площадке текучести (при циклических нагрузках Г1иже предела текучести), а затем упрочнение.  [c.35]

Анализ случаев поломок деталей машин свидетельствует о том, что большинство поломок связано с явлением так называемой усталости материалов. Явление усталости металлов заключается в разрушении деталей машин вследствие возникновения в них многократно изменяющихся переменных напряжений, значительно меньших, чем предел прочности или даже предел текучести материала. Опасность этого явления заключается в том, что деталь, выполненная из пластичного металла и нагруженная до напряжений, казалось бы, неопасных, внезапно разрушается без появления остаточных деформаций, которые сигнализировали бы о надвигающейся катастрофе. Долгое время существовало мнение, что при работе детали в условиях циклически меняющихся напряжений, происходит изменение в кристаллическом строении металла. Это мнение основывалось на том, что материал с достаточными пластическими свойствами при длительной работе в условиях переменных напря-  [c.327]

Известны многие попытки создания гипотез усталостного разрушения в сложном напряженном состоянии. Все они сводятся в основном к обобщению известных гипотез прочности и пластичности на случай циклических напряжений. Для наиболее часто встречающегося на практике расчета при двухосном напряженном состоянии (бг, г) общепринятой в настоящее время является эмпирическая формула Гафа и Полларда  [c.500]

В этой новой области вошли во взаимодействие методы решения краевых задач упругости и пластичности и анализа условий возникновения и распространения разрушения, позволившие количественно описать кинетику замедленного и быстро протекающего распространения трещин в связи с сопротивлением элемены конструкций хрупкому и циклическому разрушению. Разработка моделей сред, отражающих свойства деформаций и разрушения реальных материалов, их несовершенную упругость, структурную гетерогенность, исходную макро- и микродефектность, позволила описывать процессы деформации и разрушения на стадии континуаль-4  [c.4]

Эти стали применяются для изготовления ответственных деталей машин, станков, механизмов, металлоконструкций, которые испытывают высокие статические, динамические, циклические нагрузки, работают при высоких температурах или в к.оррозиониь. х. Они должны обладать требуемой прочностью, пластичностью, вязкостью, хорошо обрабатываться резанием, свариваться, иметь высокую прокаливаемость.  [c.91]

Достоинства чугуна с шаровидным графитом — это высокие предел прочности, отношение предела текучести к пределу прочности (ат/ав 0,8), предел усталости, однородность механических свойств, повышенная пластичность (удлинение и ударная вязкость), большая, чем у стали, циклическая вязкость. Все это позволяет получать из высокопрочного чугуна толстостенные отливки (коэффициент квазинзотропии составляет 0,04—0,17), прочность чугуна сохраняется до 500 °С. Благодаря своим ценным качествам высокопрочный чугун — полноценный заменитель стального литья, поковок, ковкого чугуна. Его используют при произ-  [c.30]


Опытом установлено, что при длительном действии циклических напряжений детали машин и сооружений (даже из пластичных материалов) разрушаются внезапно без заметных бста-Т0Ч1НЫХ деформаций при напряжениях, меньших предела прочности и даже предела текучести. Разрушения такого рода существенно отличаются от разрушений при действии статических или малое число раз повторяющихся нагрузок. Их особенность заключается в том, что задолго до разрушения в материале начинается процесс постепенного развития микроскопических трещин, возникающих в отдельных кристаллитах и вырастающих затем (В одну большую трещину, распростраияющую-ся на значительную часть сечения детали. Образовавшаяся тре-  [c.148]

В табл. 16 приведены обобщенные результаты циклических испытаний при жестком симметричном нагружении технически чистого титана и сплава ПТ-ЗВ при 20°С. Сравнение циклической долговечности обоих сплавов в области малых улругопластических деформаций показывает, что и при 20 С у сплава ВТ1-0 с более низким сопротивлением ползучести долговечность оказывается ниже, чем у сплава ПТ-ЗВ с большим сопротивлением ползучести, несмотря на значительно более высокую предельную пластичность первого. Таким образом, имеющиеся в настоящее время различные уравнения расчета циклической долговечности материалов носят ограниченный характер и применять их для титановых сплавов с низким сопротивлением ползучести нужно с большой осторожностью.  [c.107]

Как видно из табл. 17, у всех исследованных сплавов наблюдается существенное повышение статической и циклической прочности при понижении температуры испытания. Пластичность сплавов, особенно предельная, с понижением температуры снижается. Темп снижения предельной пластичности наиболее существен при температуре ниже— 196°С. По характеру деформирования o6лa tь криогенных температур можно условно разделить на две (—196) -5-20°С и ниже — 196°С.  [c.111]


Смотреть страницы где упоминается термин Пластичность циклическая : [c.45]    [c.51]    [c.11]    [c.19]    [c.35]    [c.37]    [c.98]    [c.105]    [c.105]    [c.186]    [c.188]    [c.188]    [c.189]    [c.190]   
Расчеты деталей машин и конструкций на прочность и долговечность (1985) -- [ c.96 , c.97 ]



ПОИСК



Влияние циклического растяжения на прочность и пластичность материалов

Модель циклической пластичности и ползучести при пропорциональном нагружении

Основные гипотезы, теоремы и уравнения циклической пластичности в условиях сложного напряженного состояния

Основные теоремы циклической пластичности

Пластичность при переменных (циклических)

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте