Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталость многоцикловая

Переходная область от малоцикловой до многоцикловой усталости находится в районе долговечностей примерно 10 — 10 циклов. Здесь разрушение обусловлено как знакопеременной так и упругой пластической деформацией. Обычно, как и в данной работе, переходную область включают в область малоцикловой усталости многие исследователи считают, что причиной разрушения тех или иных конструкций является малоцикловая усталость, если оно происходит через 5-40 циклов или меньше.  [c.128]


В работе [233] показано, что разрушение в области многоцикловой усталости можно описать следующими уравнениями  [c.132]

При высоких нагрузках, когда имеет место пластическая деформация в течение каждого цикла нагружения, усталость конструкции называют малоцикловой усталостью. При более низких циклических нагрузках, когда число циклов нагружения N > 10 , усталость называется многоцикловой. Различают две методики испытания малоцикловой усталости  [c.386]

Имеются экспериментальные данные, что это уравнение в ряде случаев справедливо и для области многоцикловой усталости.  [c.12]

Ниже порогового циклического напряжения начинается область многоцикловой усталости. Между отдельными участками или областями полной кривой усталости можно наблюдать переходные области, в которых меняется наклон кривой усталости или даже появляются разрывы между отдельными участками (области около точек Б и В на рис. 4). В области перехода от малоцикловой к многоцикловой усталости меняется механизм деформирования и изменяются параметры связи между статическими и циклическими энергетическими характеристиками.  [c.12]

ГЛАВА 2. ПЕРИОДЫ И СТАДИИ МНОГОЦИКЛОВОЙ УСТАЛОСТИ  [c.14]

В чем различие между малоцикловой усталостью и многоцикловой усталостью  [c.99]

Метод испытания на многоцикловую и малоцикловую усталость. ГОСТ 23026 - 78.- М. Изд-во стандартов, 1978.  [c.104]

Вторая группа включает параметры, оценивающие сопротивление материалов переменным и длительным статическим нагрузкам. При повторном нагружении в области многоцикловой усталости определяется предел выносливости на базе 10 -н2-10 циклов. Малоцикловая усталость отделяется от многоцикловой условно выбранной базой испытания (Л >5-10 циклов) и отличается пониженной частотой нагружения ( = 0,1-н5 Гц). Сопротивление малоцикловой усталости оценивается по долговечности при заданном уровне повторных напряжений или пределом малоцикловой усталости на выбранной базе испытаний. Сопротивление длительным статическим нагрузкам определяют, как правило, при температуре выше 20°С. Критериями сопротивления материалов длительному действию постоянных напряжений и температуры являются пределы ползучести (То,2/-с и длительной прочности Сх. Предел длительной прочности определяют при заданной базе испытаний, обычно 100 и 1000 ч, предел ползучести — по заданному допуску на остаточную (обычно 0,2%) или общую деформацию при установленной базе испытаний.  [c.46]


Полученные данные показывают, что энергия активации процесса повреждаемости на 1-й (малоцикловой) стадии практически не зависит от режима нагружения, а активационный объём является слабой функцией ширины спектра вибрационного нагружения. На 2-й стадии кривых усталости (многоцикловой) термоактивационные параметры обнаруживают сильную зависимость от этого фактора воздействия. Наиболее неблагоприятными для работы в условиях вибронагружения, согласно данным термоактивационного анализа, являются режимы поли-гармонического нагружения с максимальными амплитудами напряжений на первой собственной частоте объекта испытаний. Остаётся невыясненной причина нарушения монотонного хода зависимостей Уоз = f(A й) и урз = f(A o) на обоих концах использованного диапазона Асо. Аналогичный характер имеет зависимость параметров аппроксимации в формуле (4) от ширины спектра. Ввиду этого, возможность прогнозирования кривых усталости на основе данных термоактивационных параметров, полученных для базовых кривых усталости в исследованном диапазоне изменения ширины спектра, целесообразно проверить именно в областях, где монотонность изменения этих параметров нарушена, т.е. для А(о=10 Гц и Асо=100 Гц. Полагая базовыми кривые усталости, полученные при испытаниях на режимах  [c.94]

Разрушение при N 10 циклов происходит при напряжениях ниже предела текучести материала. Данную область называют областью многоцикловой усталости. Учитывая линейную связь между деформациями и напряжениями при многоцук-довой усталости, представление кривых усталости может быть  [c.127]

Более поздние работы многих исследователей, применявших зависимость Мэнсона—Коффина, показали, что более адекватные прогнозы долговечности получаются при установлении соответствия между амплитудой полной деформации Ae=AeJ + Ae и количеством циклов до разрушения. В области многоцикловой усталости долговечность связана с упругой деформацией соотношением  [c.129]

Рассмотренные зависимости относятся к симметричному циклу нагружения. При несимметричном цикле нагружения возникает вопрос о влиянии средних (или максимальных) напряжений и средних деформаций цикла на долговечность. Экспериментально влияние средних напряжений на долговечность изучалось в основном только в области многоцикловой усталости. Показано [99], что с увеличением среднего напрял ения долговечность при заданной амплитуде напряжений снижается. Количественно влияние средних напряжений рассчитывается на основании экспериментально построенных диаграмм Смита [99] или в аналитическом выражении указанных диаграмм соотно-ношениями Гудмена [64] или Р. Е. Петерсона [391]  [c.129]

До сих пор нами обсуждались закономерности мало- и многоцикловой усталости при одноосном нагружении. В работе [388] исследованы крестообразные образцы из ферритной и аус-тенитной сталей при двухосном напряженном состоянии. Авторы работ [317, 437] подвергали тонкостенные трубы из алюминиевого сплава внутреннему и внешнему давлению, а также осевому нагружению. Наилучшее соответствие экспериментальным данным было получено при использовании в качестве критериальной величины интенсивности размаха пластической деформации ДеР. В этом случае зависимость Мэнсона—Коффина представлялась в виде  [c.130]

Многие элементы сварных аппаратов испытыв,ают при эксплуатащ1и циклические нагрузки, приводящие к явлению многоцикловой и малоцикловой усталости.  [c.120]

В настоящее время различают мпогоцикловую и малоцикловую усталость. Согласно ГОСТ 23207 - 78 (Сопротивление усталости. Основные термины, определения и обозначения) многоцикловая усталость - это усталость материала, при которой усталостное повреждение или разрушение проштходит в основном при упругом деформировании, а малоцикловая усталость - усталость материала, при которой усталостное повреждение или разрушение происходит при упруго-пластическом деформировании (по ГОС Т 25.502 - 79 "Методы испытаний па усталость" при малоцикловой усталости максимальная долговечность до разрушения составляет условное число 5Т0 циклов).  [c.7]


Вся полная кривая усталости в первую очередь разделяется на две основные области малоцикловой и многоцикловой усталости. Ряд исследований показывает, что условной границей между этими областями является напряжение, равное динамическому предез)у текучести (при скоростях соозвет-ствующез О циклического нафужения). Есть мнение, что эта фаница связана со сменой напряженного состояния. Область малоцикловой усталости охва-  [c.10]

Методы определения характеристик выносливости при многоцикловой и малоцикловой усталости регламентируются в ГОСТ 25.502—79. Малоцикловая усталость характеризуется базой испытаний Л <5-10 циклов и пониженной частотой нагружения f = 0J- 5 Гц, а многоцикловая усталость — V>10 f = 20- 50 Гц. Повреждение или разрушение в многоцикловой области происходит в основном при упругом, а в малоцпкловой — при упруго-пластичсском деформировании.  [c.77]


Смотреть страницы где упоминается термин Усталость многоцикловая : [c.30]    [c.132]    [c.359]    [c.385]    [c.255]    [c.17]   
Исследование структуры и физико-механических свойств покрытий (1986) -- [ c.29 ]

Теплофикационные паровые турбины и турбоустановки (2002) -- [ c.436 ]

Машиностроение Энциклопедия Т IV-3 (1998) -- [ c.71 ]

Повреждение материалов в конструкциях (1984) -- [ c.15 , c.17 , c.166 , c.234 , c.377 ]

Количественная фрактография (1988) -- [ c.293 ]



ПОИСК



Диаграмма многоцикловой усталости - Испытания

Закономерности накопления повреждаемости при многоцикловой усталости

Испытания на усталость при многоцикловом

Классическая (многоцикловая) усталость

Многоцикловая усталость конструкционных материаРазрушение металлов в условиях высокотемпературной ползучести

ОБЩИЕ ВОПРОСЫ УСТАЛОСТИ Трощенко В. Т. Зарождение и развитие усталостных трещин в металлах при многоцикловом нагружении

Обработка результатов испытаний на многоцикловую усталость

Общие сведения о малоцикловой и многоцикловой усталости металлических материалов

ПЕРИОДЫ И СТАДИИ МНОГОЦИКЛОВОЙ УСТАЛОСТИ

Периодичность и стадийность процессов пластической деформации и разрушения при статическом деформироваПериодичность и стадийность процессов пластической деформации и разрушения при многоцикловой усталости

Распространение трещины при многоцикловой усталости

Расчет характеристик сопротивления усталости при многоцикловом нагружении (В. П. Когаев)

Силовые уравнения наследственного типа и расчет конструкционных элементов из полимерных материаПрименение силовых уравнений к расчетам на многоцикловую усталость

Ускоренный метод определения коэффициента поверхностного упрочнения К и параметра шр уравнения наклонного участка кривой многоцикловой усталости

Усталость

Усталость высокотемпературная многоцикловая

Усталость малоиикловая 153, 280 - многоцикловая

Характеристики сопротивления усталости материала в многоцикловой области



© 2025 Mash-xxl.info Реклама на сайте