Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация деталей и исследование процесса

ДЕФОРМАЦИЯ ДЕТАЛЕЙ И ИССЛЕДОВАНИЕ ПРОЦЕССА  [c.65]

Обработка холодом шлифованных деталей. При исследовании процесса шлифования поверхностей стальных каленых деталей установлено, что в тонких поверхностных слоях шлифуемых изделий вследствие пластических деформаций и процессов трения, сопутствующих работе абразивного инструмента, образуется большое количество тепла и протекает своеобразный термический процесс, приводящий к изменению фазового и структурного состояния поверхностных слоев. Тонкие поверхностные слои при шлифовании как бы вторично отпускаются с образованием аустенита из мартенсита. Толщина поверхностного слоя и процентное содержание аустенита в нем зависят от технологических свойств обрабатываемой стали, глубины и скорости шлифования.  [c.93]


Для успешного осуществления низкотемпературного металлографического исследования процесса деформации металлических материалов наиболее подходящим следует считать способ прямого микроструктурного изучения твердых тел при деформировании в среде сжиженных газов. Этот способ основан на прозрачности хладагента. Испытываемый образец с приготовленным на нем металлографическим шлифом укрепляют шлифом вниз в горизонтально расположенных захватах нагружающего устройства и помещают в низкотемпературную рабочую камеру типа сосуда Дьюара, содержащую хладагент (жидкий азот, аргон, воздух и др.). После прекращения интенсивного кипения сжиженного газа (при выравнивании температур образца, деталей механизма нагружения и хладагента) производят механическое нагружение и через прозрачный слой жидкого газа и герметически вмонтированное во внутреннее днище рабочей камеры смотровое плоскопараллельное стекло одновременно наблюдают, фотографируют или снимают на кинопленку поверхность образца с помощью металлографического микроскопа, объектив которого введен в вакуумируемое пространство между стенками рабочей камеры и уплотнен в ее наружном днище.  [c.196]

Подробные исследования влияния критической степени деформации на механические свойства и величину зерна пластически деформированной стали рекристаллизационного отжига при температуре 500° С показывают, что для нее критической степенью деформации является предварительное обжатие до 10—20%. Нагрев деформированного металла не только сказывается на изменении статических характеристик металла, но и заметно влияет на изменение предела выносливости. Это имеет большое значение применительно к тем деталям, которые в процессе изготовления или в условиях эксплуатации подвергаются кратковременному воздействию повышенной температуры.  [c.356]

Испытания на ползучесть при изгибе с определением скорости деформации в процессе испытания дают более существенные результаты и могут быть использованы для определения условного предела ползучести [43,81], пределов релаксации [12, 14] и для расчётов деталей и конструкций, работающих в условиях изгиба при повышенных температурах [24, 38]. Исследования соотношений между характеристиками ползучести стали при изгибе и при растяжении [24, 43] показали, что при температурах 400—500° С предел ползучести при изгибе (определённый как на цилиндрических, так и на прямоугольных образцах) приблизительно на 40—500 выше, чем при растяжении.  [c.63]


Использование уравнений состояния для оценки прочности и ресурса циклически нагруженных элементов конструкций и деталей машин позволяет проанализировать кинетику деформаций в наиболее напряженных зонах и рассмотреть процесс накопления циклических повреждений по мере Приближения к преде.льным состояниям. К числу наиболее исследованных в теоретическом и экспери.ментальном плане относятся особенности протекания циклических упругопластических деформаций и параметры соответствующих уравнений состояния при изотермическом нагружении для двух основных режимов нагружения — с заданными амплитудами напряжений и с заданными амплитудами деформаций. В результате этих исследований сформулированы свойства и виды уравнений обобщенных диаграмм циклического деформирования, получившие применение в расчетах прочности.  [c.3]

В связи с этим для деталей гидравлических машин, имеющих сложную геометрическую форму и испытывающих в процессе работы пластические деформации, на основании исследований МИСИ могут быть рекомендованы защитные покрытия без стеклоткани, обладающие большой упругостью и эластичностью.  [c.176]

Практика производства и эксплуатации покрышек выдвигает две основные проблемы, подлежащие исследованию и решению. Это, во-первых, проблема обеспечения оптимальной прочности связи между деталями покрышки при ее изготовлении. Прочность связи при этом обеспечивается клейкостью деталей и режимом их дублирования. Во-вторых, это проблема прочности связи между элементами готового изделия, поскольку в процессе эксплуатации покрышка подвергается многократным и сложным деформациям. В этом случае прочность связи обеспечивается сцеплением между деталями покрышки, возникающим как при дублировании, так и при вулканизации и меняющимся при эксплуатации вследствие неизбежно развивающихся процессов утомления и старения.  [c.112]

Никаких данных по способам получения и свойствам хрупких тензочувствительных оксидных покрытий в литературе до настоящего времени нет, а промышленные способы оксидирования алюминиевой фольги служат для создания на ней очень тонких эластичных электроизоляционных пленок и для получения наклеиваемых хрупких тензочувствительных покрытий со стабильными характеристиками непригодны. Поэтому путем экспериментальной отработки были решены следующие основные вопросы выбор материала фольги, способ монтажа анода, оптимальные толщины фольги и оксидной пленки, состав электролита и его температура, электрический режим и длительность процесса оксидирования, марка клея, величина удельного давления на фольгу и температура при наклеивании, диапазон тензочувствительности и способы регулирования тензо-чувствительности, диапазоны рабочих температур и относительной влажности, стабильность характеристик и применимость для исследования упругих и упруго-пластических деформаций в различных условиях испытания деталей и узлов конструкций. Ниже приведены результаты проведенной отработки технологии получения и применения наклеиваемых хрупких тензочувствительных покрытий со стабильными характеристиками.  [c.11]

Анализ экспериментальных исследований формоизменения металлов показывает, что локализация деформаций является одной из причин образования внутренних разрывов в материале в процессах его деформирования и часто непосредственно предшествует разрушению. Поэтому обеспечение отсутствия локализации в процессе формоизменения является важной задачей теории обработки металлов давлением. Решение этой задачи позволяет предупредить разрушения в процессах изготовления деталей и оценить степень поврежденности заготовок на различных этапах деформирования их.  [c.79]

Расчеты показывают, что температурные деформации деталей соизмеримы в ряде случаев с допусками на их обработку. Например, температурная деформация чугунной станины высотой 600 мм при длине 2000 мм доходит до 0,01 мм на 1м при разности температур по высоте станины в 2,4° С. Эта величина соизмерима с допуском на отклонение от прямолинейности станин точных станков [3]. Если бы условия обработки деталей оставались неизменными для каждой из них, то их температурные деформации можно было бы относительно легко рассчитать или установить влияние деформаций в результате относительно несложных экспериментальных исследований. Однако в процессе обработки действует совокупность факторов, нарушающих предписанный тепловой режим, не только от детали к детали, но и в процессе обработки каждой. К ним относятся колебание припуска, твердости, затупление режущего инструмента и др.  [c.271]


Практика машиностроения и исследования показали, что интенсивность процесса перераспределения внутренних напряжений, а следовательно, и деформаций отливок значительно возрастает при удалении в процессе обработки поверхностных слоев металла. Поэтому после черновой обработки следует освободить деталь от зажимов, крепящих ее к столу станка или приспособления, чтобы дать ей возможность свободно деформироваться под влиянием происходящего перераспределения внутренних напряжений в противном случае при дальнейшей обработке деталь будет находиться в упруго-напряженном состоянии и после освобождения от зажимов неизбежно будет деформироваться, чем и объясняется необходимость выделять черновую обработку в отдельную операцию.  [c.235]

Устройства с автоматической компенсацией температурных деформаций деталей в процессе обработки. Как показали исследования, проведенные в МАМИ , одной из существенных погрешностей систем автоматического активного контроля является случайная составляющая тепловых деформаций детали в процессе шлифования. При интенсивных режимах шлифования и значительных колебаниях припусков величины погрешности от тепловых деформаций соизмеримы с допусками 2-го класса точности.  [c.179]

При создании уплотнения необходимо задать тот уровень деформаций резиновой детали, при котором напряжения будут достаточными, и то вр мя, в течение которого можно гарантировать, что напряжение будет оставаться в необходимых пределах. Первую задачу позволяет решить упругий расчет, вторую — исследование процесса релаксации напряжений. Создать деталь, которая вечно будет служить хорошим уплотнителем, невозможно. Зная кривую релаксации напряжений, можно определить время, после достижения которого напряжение будет меньше допускаемого, т. е., зная первоначальные напряжения, можно определить гарантийное время службы конструкции. Это время и есть критерий выбора параметров уплотнения. О прочности в том значении, как при расчете других конструкций, здесь говорить не приходится.  [c.223]

При исследовании предельных состояний деталей по сопротивлению деформации и разрушению используется другое определение толщины поверхностного слоя. В этом случае используется критерий разницы сопротивления пластической деформации зерен поверхностного слоя и зерен в толще металла. Толщина поверхностного слоя, определенная по этому признаку, естественно, зависит от абсолютных размеров зерна и технологического процесса обработки образца.  [c.185]

Экспериментальные исследования динамики рабочего процесса механизмов предполагают определение реальных кинематических характеристик (перемещений, скоростей, ускорений), давлений, деформаций и напряжений в наиболее ответственных деталях и являются важным этапом в процессе создания новых конструкций. При этом проведение экспериментальных исследований преследует получение, во-первых, данных, необходимых для проверки правильности теоретических решений, и, во-вторых, единственной информации о происходящих в механизмах или машинах процессах, когда теоретическое решение затруднительно и связано с громоздкими математическими вычислениями.  [c.108]

Формообразующая обработка деталей всегда сопровождается сложными сопутствующими явлениями. Вследствие этого реальная поверхность детали представляет собой результат интегрального воздействия на заготовку всех факторов, действующих одновременно как основного (собственно процесса формообразования), так и сопутствующих, которые в рассматриваемом в данной монографии аспекте являются второстепенными. К сопутствующим факторам относятся погрешности установки и относительных перемещений инструмента относительно детали в процессе обработки, деформации технологической системы, размерное изнашивание инструмента, образование нароста на режущей кромке и пр. Изучить процесс формообразующей обработки деталей с учетом влияния всех одновременно действующих факторов не представляется возможным. Поэтому в дальнейшем абстрагируемся от сопутствующих явлений, ограничимся упрощенным, схематическим представлением о процессе формообразующей обработки деталей и его исследование выполним на модели.  [c.21]

В реальных условиях эксплуатации могут возникать как внезапные (поломка), так и постепенные отказы. Постепенные отказы возникают в процессе изнашивания и появления остаточных деформаций деталей машин. Отказы являются следствием неверных конструкторских разработок (без элементов исследования), нарушения технологических процессов при изготовлении, а также неправильной эксплуатации.  [c.85]

Впервые искусственные радиоактивные изотопы ( меченые атомы) были применены во второй половине. ЯО-х годов при проведении экспериментальных физических и химических исследований. Метод меченых атомов теперь широко используется для изучения структуры молекул, прослеживания некоторых физических превращений (явлений самодиффузии при плавлении и застывании кристаллических веществ, деформации и рекристаллизации металлов, разупрочнения сплавов при высоких температурах), выявления внутреннего механизма химических реакций и т. д. Этот же метод успешно применяется в практике биологических и физиологических исследований, внося существенные коррективы во многие ранее сформировавшиеся представления о динамике процессов, протекающих в живых организмах. Несколько позднее он все более широко стал использоваться в прикладных научно-технических исследованиях при изучении процессов доменного и сталеплавильного производств, износа деталей машин, качества красителей в текстильном производстве и пр. Столь же широко проводятся различные агрохимические исследования с применением меченых атомов (определение усвоения растениями долей азота, фосфора и других питательных веществ из почвы и из вносимых в нее удобрений, выяснение действия ядохимикатов). Наконец, по величинам радиоактивного распада элементов горных пород — природных изотопных индикаторов — осуществляются геологические исследования.  [c.189]


Таким образом, раскрытие закономерностей любого вида изнашивания при ударе неизбежно связано с необходимостью учета сложных взаимосвязанных процессов, происходящих при ударе упругопластической деформации, высокоскоростного нагрева и охлаждения, фазовых и структурных превращений, упрочнения и разупрочнения, развития усталостных явлений и др. Ударные нагрузки нарастают и снижаются в очень короткий промежуток времени (тысячные доли секунды) и порождают волны напряжений, которые исходят из зоны контакта. При многократных соударениях деталей в процессе эксплуатации современных машин, различных аппаратов и приборов возможно возникновение в одной детали одновременно упругих и пластических волн растяжения и сжатия. По-видимому, сложность явлений, сопровождающих соударение поверхностей, и связанное с этим принятие различных упрощающих предположений, отклонение реальных механических свойств от их абстрактных механических моделей служат причиной несогласованности результатов теоретических и экспериментальных исследований удара. Структура и механические свойства одного и того же металла существенно различаются при динамическом и статическом нагружении [22].  [c.22]

Фактическая площадь касания сопряженных деталей не является постоянной величиной, а со временем увеличивается в результате процесса ползучести. Одновременно увеличиваются контактные деформации. Особенно интенсивно процесс ползучести протекает при повышенных температурах. Непостоянство во времени фактической площади касания сопряженных поверхностей, нагруженных высокими давлениями, приводит к изменению контактной жесткости, электрического сопротивления контакта и других свойств сопряжений. В ко- 1 нечном счете эти факторы могут оказывать существенное влияние на работоспособность приборов и точных механизмов,- Исследование изменения фактической площади касания во времени было проведено Н. Б. Демкиным [19]. Для оценки величины зависимости глубины внедрения жесткой сферы в пластическую среду от времени f им получено выражение  [c.93]

В институте электросварки с участием сотрудников института металлофизики НАНУ проведены сравнительные исследования процессов массопереноса при различных способах сварки давлением — ударом в вакууме (УСВ) и контактной сваркой сопротивлением (КСС), выполняемой без использования защитных газовых сред или вакуума. В обоих случаях торцы из низколегированной стали нагревались го температуры 1100 С, а деформация выполнялась с повышенной скоростью (0,15 м/с). Нагрев деталей сечением до 500 мм КСС выполнялся на универсальной стыковой машине импульсами тока до 20000 А и длительности нагрева до 20 с, а нагрев образцов такого же сечения при УСВ производился электронно-лучевым нагревателем за 180 с. Время про1 екания процесса пластической деформации при КСС и УСВ составляло порядке 10 с. В обоих случаях величина деформа-  [c.159]

Рассматривая результаты экапериментального исследования процессов неизотермическо го нагружения, можно заключить, что в областях упругого деформирования и малых упругопластических деформаций влияние процесса неиаотермического нагружения несущественно в этих условиях даже при достаточно высоких температурах (700—900° С) для расчетов деформированного и напряженного состояний можно использовать представление о единой поверхности деформирования. В то же время в области пластического деформирования продесс неизотермического нагружения может существенно изменить характер развития деформаций и предельные значения прочности и пластичности. Анализ возможного влияния изменения свойств на напряженное состояние деталей на примере расчета дисков турбин дан в работе [41].  [c.49]

В последние десятилетия получили распространение систематические исследования циклической прочности материалов в области малоцикловой усталости (деформации лежат в пластической области), что особенно характерно для зон концентрации напряжений. Однако недостаточно полно изученным остается вопрос о сопротивлении мапоцикповому разрушению при попигармониче-ском нагружении, в том числе при высоких температурах, когда проявление температурно-временных эффектов может инициироваться высокочастотной составляюш ей циклических напряжений. Режимы нагружения, при которых на основной процесс цикличе ского изменения напряжений накладывается переменная состав-ляюЕдая более высокой частоты, свойственны элементам тепловых и энергетических установок, лопастям гидротурбин, лопаткам газотурбинных двигателей и ряду других деталей и узлов. Исследования сопротивления малоцикловой усталости при двухчастотных режимах нагружения выполнялись в весьма ограниченном объеме и без привлечения методов, позволяющих достаточно полно охарактеризовать особенности циклического деформирования материала в упругопластической области.  [c.15]

Остаточная напряженность деталей машин, порождаемая условиями термической обработки, усадочными явлениями при сварке и отливанип, а также процессами унрочнеш Я поверхностного слоя и отделочных опера-ци , является существенным фактором их сопротивления усталостному и хрупкому разрушению. Усовершенствование методов измерения остаточных напряжений путем применения электрических методов измерения нолей плоской деформации, а также исследование их влияния на прочность при переменных напряжениях и в хрупких состояниях позволили обосновать  [c.40]

В курсе лекций, читаемых в МАТИ, большой раздел посвящается вопросам технологической надежности станков, зависящей от процессов, происходящих в самих станках во время их работы вибрации, изменений жесткости, температурных деформаций, износа и др. Для закрепления знаний по вопросу влияния изменений температурных полей станка на точность параметров изготавливаемых на этом станке деталей, сборник включает лабораторную работу Исследование влияния тепловых деформаций станка на его технологическую надежность . В работе студенты знакомятся с методикой исследования температурных полей и тепловых деформаций стенда на базе токарно-револьверного автомата 1Б118, изучают приборы и аппаратуру для измерения температуры и тепловых деформаций, производят настройку станка и необходимые измерения, а также оценивают во времени смещение уровня настройки станка и стенда. Смещение настройки станка из-за тепловых деформаций оценивается по изменению выбранных геометрических параметров типич ной детали, обрабатываемой на станке.  [c.307]

Амосов И. С., Архаров А. П, Компенсация температурных деформаций обрабатываемых деталей при шлифовании. — В кн. Исследование и оптимизация процессов механической обработки при автоматизации технологического проектирования. Владивосток ДВПИ, 1975, вып. с 54—61.  [c.219]

Трение титана в различных средах. При трении в поверхностных слоях трущихся деталей происходит развитие пластических деформаций, на интенсивность которых значительное влияние оказывает теплота трения. Одновременно с этим существенно возрастает роль диффузионных и окислительных процессов. Для титана, являющегося реактивным металлом, влияние диффузии газов из окружающей среды на характер трения и износа оказывается более существенным, чем у обычно применяемых в технике металлов. Это обстоятельство, а также влияние процесса наводорожи-вания поверхности титана при трении впервые было показано авторами [23] при исследованиях изменений в поверхностных слоях сплавов титана марок ВТБ и ВТ14 и их связи с антифрикционными характеристиками в зависимости от удельной нагрузки, скорости и пути трения в воздухе, в 3%-ном растворе Na l, трансформаторном масле и аргоне. Трение однородной пары из титанового сплава марки ВТБ во всех средах сопровождалось схватыванием трущихся поверхностей, которое при нагрузке 10 кгс/см обнаруживается уже в процессе приработки, и исходная шероховатость поверхности (классов 7—8) постепенно ухудшается до классов 2—Б в зависимости от удельной нагрузки. Процесс схватывания носит установившийся характер, что проявляется в прямолинейной зависимости износа контртела и образца от пути трения. Типичный для других сочетаний металлов (или других видов фрикционной связи) участок неустановившегося износа отсутствовал. Среднее значение суммарной интенсивности износа образцов и контртел во всех испытанных средах при скоростях трения 0,2 м/с оказалось линейной функцией удельной нагрузки q (рис. 87, а)  [c.183]


При наличии тупых углов (больших отрицательных углов у) у режущих элементов абразива имеют место значительные упругие и пластические деформации стружки и обработанной поверхности, царапание (диспергирование), внешнее трение. В зоне шлифования все это вызывает тепловые явления, характеризующиеся мгновенной скоростью нагревания (десятки тысяч градусов в секунду), высокими температурами (тысячи градусов) и быстрым охлаждением в глубь металла (сотни градусов в секунду). Исследования показали, что теплота, обргзующгяся при шлифовании, поглощается обрабатываемой деталью (69—84%), абразивным кругом (11—13%), стружкой (до 8%) и охлаждающей средой (до 13%). Тепловые явления и давление приводят к фазовым и структурным превращениям в тончайшем поверхностном слое обрабатываемого изделия как в процессе шлифования, так и после него [81].  [c.371]

Для этой школы характерно развитие новых путей в коллоидной химии — исследование процессов структурообразования в дисцорсных системах и физико-химическое исследование процессов деформации, предразрушения и диспергирования твердых тел в связи с дефектностью их структуры. Разработка этих двух проблем значительно расширила круг явлений, ставших предметом изучения коллоидной науки, привела к перестройке ее основных разделов и создала основу для возникновения новой пограничной области науки — физико-химической механики, ставящей своей задачей получение высококачествешп.тх строительных и конструкционных материалов (деталей машин и строительных деталей) с заданными структурой и механическими свойствами.  [c.37]

Деформации от внутренних напряжений. Внутренние напряжения возникают при изготовлении заготовок и в процессе их механической обработки. В литых заготовках, штамповках и поковках возникновение внутренних напряжений происходит из-за неравномерного охлаждения, а при термической обработке деталей — по причине неравномерного нагрева и охлаждения и структурных превращений. Для полного или частичного снятия внутренних напряжений в литых заготовках их подвергают естественному или искусственному старению. Естественное старение представляет собой весьма длительное выдерживание заготовки на воздухе. Искусственное старение осуществляется путем медленного нагрева заготовок до 500—600° С, выдержки при этой температуре в течение 1—6 ч и последующего медленного охлаждения. Старение литых заготовок корпусных деталей, как например блоков цилиндров, является весьма важным и, как показывают исследования, из-за отсутствия полного старения соосность постелей коренных подшипников нарушается ввиду остаточных внутренних напряжений. Для снятия внутренних напряжений в штамповках и поковках их подвергают нормализации. Внутренние напряжения в процессе механической обработки возникают в поверхностном слое и могут быть сжимающими или растягивающими. Сжимающие напряжения повышают усталостную прочность деталей, растягивающие снижак)т. Напряженное состояние приводит к деформированию детали. По мере последовательного проведения всех этапов механической обработки с использованием все более легких режимов резания внутренние напряжения постепенно снижаются и на последнем этапе обработки часто ими можно пренебречь.  [c.20]

Влияние пластической деформации на структуру коррозионно-стойкой стали в общих чертах сводится к тому, что в процессе деформации в структуре стали образуются многочисленные дефекты кристаллической решетки двойники, плоскости скольжения, скопления и дислокаций, а также происходит распад аустенита с образованием квазимартенсита и мелкодисперсных карбидов х,рома. Пластическая дефО рмация коррозионно-стойких сталей повышает запас свободной энергии металла. При этом существенно меняются коррозионные свойства стали. В результате пластической деформации повышается стойкость сварных соединений к межкристаллитной коррозии. Влияние же пластической деформации на ножевую коррозию в лите ратуре освещено недостаточно. Между тем, установление этого фактора необходимо в связи с тем, что на практике как сварные соединения отдельных узлов и деталей, так и листы и трубы перед сваркой часто подвергаются деформации. Опыты по исследованию влияния последующей деформации на ножевую коррозию проводили на пластинах стали 12Х18Н10Т размером 20X80X3 мм с продольным швом. Пластины деформировались с различной степенью растяжения (от 2,5 до 25%). Скорость деформации составляла 1,2— 1,3 мм/мин. Степень деформации (%) рассчитывали по формуле  [c.65]

Возможности различных процессов дробеударной обработки (ГДУ, ДУ, УЗУ, УМШ, ВУ) в управлении параметрами эпюры начальных напряжений (максимальными значениями напряжений, глубиной их залегания, подслойным максимумом) не зависят от способов сообщения щарикам уд )ной энергаи, а определяются (при одних и тех же диаметрах щариков) энергетическими возможностями конвфетного оборудования и условиями удара. Сопоставление энергетических возможностей исследованных вариантов ухфочнения с результатами исследования напряжений показывает, что ударная энергия щариков и интенсивность деформаций ПС прямо определяют основную интегральную характеристику эпюры начальных напряжений - ее площадь, которая в свою очередь характеризует влияние методов обработки на остаточные деформации деталей.  [c.229]

Экспериментальные исследования и опыт эксплуатации различных пар трения показа. и. что основными причинами изнашивания являются пластические деформации. разрушение шероховатостей и окисных пленок, адгезионное схватывание и перекос металла с одной детали на другую разрушение моьтиков схватывания наводороживание и окислительные процессы и др Установлено также, что механизм и характер разрушения рабочих поверхностей пар трен качения отличны от повреждений пар трения скольжения. В связи с этим рассмотрим основные виды изнашивания, присущие ука-заниым видам движения. Название вида изнашивания часто определяется доминирующей причиной, вызывающей разрушение поверхностей деталей,  [c.106]

Диффузионная сварка ниобиевых сплавов целесообразна при температурах ниже температуры рекристаллизации для предотвращения насыщения тугоплавких металлов газами (Og, Hj, N3) и роста зерна в процессе нагрева. Для этого необходимо. интенсифицировать диффузионные процессы за счет использования промежуточных металлов, наносимых на свариваемые поверхности напылением в вакууме. Толщина напыленного слоя — от нескольких десятков до нескольких тысяч ангстрем. Слой имеет очень мелкозернистую структуру. Такие прокладки растворяются в свариваемых металлах и поэтому не оказывают влияния на прочность сварного соединения. При сварке ниобиевого сплава ВН-3 (4—5,2% Мо 0,8—2,0 Zn 0,08—0,16 С 0,03 Оа <0,04 <0,005N2 остальное Nb) в качестве прокладки применяли никель, обладающий малой растворимостью в ниобии и имеющий при температуре 1373 К коэффициент диффузии на три порядка меньше коэффициента диффузии ниобия в никеле. Сварку выполняли при Т 1237 К, р = 9,6 МПа, I = 30 мин. Микроструктурные исследования деталей с напыленной поверхностью при нагреве без сварки показали, что во всех случаях происходит испарение никелевой пленки по всей поверхности, кроме зон, расположенных по границам кристаллитов. Это свидетельствует о преимущественном развитии диффузионных процессов между пленкой и границами зерен на свариваемой поверхности. Прочность сварных соединений, выполненных через никелевую пленку на оптимальном режиме Т — 1273 К, р = 19,6 МПа, = 30 мин, составляет 0,9 прочности основного металла (рис. 4). На деталях и образцах, сваренных на оптимальном режиме, остаточной деформации не наблюдали.  [c.154]

Задача второй области приложения триботехнологии - управление триботехническими характеристиками поверхностей трения - решается главным образом путем разработки специальных методов модифицирующей упрочняющей обработки. При этом модификация свойств поверхностных слоев трущихся деталей достигается модифицированием структуры или химического состава и структуры материала деталей. В этой области триботехнология тесно смыкается с трибоматериалове-дением как по решаемым задачам повышения триботехнических характеристик трибосопряжений, так и по используемым методам исследования. Современная триботехнология располагает большим числом технологических процессов, используемых в течение многих десятилетий или разработанных в последние 1()-15 лет. Основные из них следующие термическая обработка, диффузионно-термическая (химико-термиче-ская) обработка, поверхностно-пластическая деформация, ионно-плазменная модификация и нанесение покрытий, электронно лучевая обработка, ультразвуковая упрочняющая обработка, лазерное упрочнение, различные комбинированные методы модификации,  [c.10]


Убеднвинхь, что границы закаленного слоя, глубина и твердость у образна близки к заданным, можно перейти к изготовлению макро- н микрошлифов, исследованию микроструктуры, распределения твердости по глубине слоя в различных сечениях, наиболее ответственных местах (на участках с галтелью, пазами, отверстиями, вырезами и тому подобными осложнениями геометрии поверхности). Только на основе микроскопического анализа можно получить объективное заключение о величине зерна и однородности структуры закаленного слоя, глубине переходного слоя, дать правильные рекомендации ио корректировке режима закалки. Твердость закаленного слоя, особенно в пределах, задаваемых техническими условиями, является слишком грубым показателем качества закалки при отработке режима. Это показатель производственного иериодического контроля проведения процесса закалки по установленному режиму. При отработке режима кроме установленных пределов твердости необходимо оценивать микроструктуру закаленного слоя, хотя бы по какой-то факультативной шкале структур. При отработке режимов закалки крупногабаритных деталей их микроструктуру исследуют с помощью переносного микроскопа на микрошлифе лыски, отполированной вручную шлифовальной машинкой, т. е. без разрушения детали. Для деталей, подверженных деформации, производится обмер партии, определяется необходимость введения операции правки и поле допуска на последующую механическую обработку 62  [c.62]

Применительно к магниевым сплавам, из которых изготавливают несиловые элементы авиационных конструкций, усталостные разрушения на воздухе деталей в условиях эксплуатации сопровождаются сильным окислением излома. Исследования этих сплавов на воздухе и в вакз ме показали, что усталостные бороздки формируются в изломе магниевых сплавов в вакууме, тогда как на воздухе они не формируются [139-141]. Этот эффект обусловлен тем, что процесс окисления материала на воздухе даже без активного воздействия на материа.л в вершине трещины продуктов распада в виде кислорода, водорода и прочее вызывает резкое изменение механизма разрушения. Отсутствие окислительной среды позволяет реализовать процесс ротационной пластической деформации при развитии трещины, что приводит к формированию усталостных бороздок в вакууме.  [c.390]


Смотреть страницы где упоминается термин Деформация деталей и исследование процесса : [c.70]    [c.78]    [c.67]    [c.458]    [c.285]    [c.420]    [c.17]    [c.6]    [c.174]    [c.512]   
Смотреть главы в:

Термическая усталость металлов  -> Деформация деталей и исследование процесса



ПОИСК



Деформация детали



© 2025 Mash-xxl.info Реклама на сайте