Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связи фрикционные — Виды

Комбинированными связующими являются различные виды смесей каучуков и смол. Фрикционные материалы на комбинированном связующем обладают качествами, присущими материалам на смоляном и каучуковом связующем. Соотношение между частями комбинированного связующего определяет характеристику асбофрикционного изделия — его физико-механические свойства, износостойкость, значение и стабильность коэффициента трения. Увеличение смолы ведет к увеличению твердости, хрупкости, термостойкости и износоустойчивости изделия. Увеличение количества каучука снижает твердость и увеличивает величину и стабильность коэффициента трения. Формованные фрикционные материалы на каучуковом связующем могут изготовляться как холодным, так и горячим формованием, а фрикционные материалы на смоляном и комбинированном связующем — только горячим формованием. Применение комбинированного связующего открывает широкие возможности создания теплостойких и износоустойчивых фрикционных материалов с высоким значением коэффициента трения.  [c.530]


Связи фрикционные — Виды 118, 119  [c.205]

Износ. Механизм износа эластомерных уплотнений весьма сложен и определяется комплексом физико-механических свойств и геометрическими характеристиками фрикционной пары. По И. В. Крагельскому [26, 52] характер и интенсивность износа зависят от вида нарушения фрикционных связей. В зависимости от прочности возникающей между эластомером и твердым телом связи различают пять видов нарушения единичных адгезионных связей, из которых вытекают три основных вида износа 1) адгезионный, приводящий к своеобразному скатыванию или намазыванию поверхностного слоя эластомера 2) абразивный, вызванный микрорезанием эластомера острыми выступами поверхности или частицами загрязнений 3) усталостный, вследствие многократного деформирования поверхностных слоев эластомера выступами неровностей контртела. При скольжении в эластомере перед выступом микронеровности возникает зона сжатия, а позади него — зона разрежения. Если относительное внедрение hir велико h — глубина внедрения г — радиус неровности), происходит микрорезание. Если hIr мало, происходит многократная деформация поверхностных слоев эластомера, приводящая к постепенному усталостному износу. Это основной вид износа уплотнений при трении по хорошо обработанным поверхностям и наличии смазки. Износ материалов оценивается следующими основными характеристиками удельным износом i и интенсивностью износа У, связанными  [c.79]

Ряд интересных особенностей фрикционного взаимодействия связан с характером поведения тонких поверхностных слоев полимерных материалов при фрикционном взаимодействии. По-видимому, наиболее явно роль фрикционного переноса проявляется при трении и изнашивании полимеров и материалов на их основе [25]. Вид и кинетика образования пленок переноса у полимеров определяют их коэффициент трения и интенсивность изнашивания, в особенности в контакте с металлами, когезионная энергия которых значительно выше, чем у полимеров. При исследовании трения и изнашивания полимерных материалов выявлена связь фрикционных характеристик с такими фундаментальными характеристиками материалов, как энергия связи, спектры поглощения электромагнитного излучения и т. д. В этой связи чрезвычайно интересно открытие у полимерных материалов явления аномально низкого трения (Е. А. Духовской, А. А. Силин и др.), возникающего при облучении их поверхностных слоев частицами высокой энергии. Это открытие в явном виде обнаруживает связь основных характеристик фрикционного взаимодействия с энергетическим состоянием поверхностного слоя твердого тела. Указанная связь прослеживается и при обработке по>гр-хностных слоев такими высокоэнергетическими методами, как ионная имплантация, лазерное, электронное и ионное облучение.  [c.30]


Комбинированными связующими являются различные виды смесей каучуков и смол. Фрикционные материалы на комбинированном связующем обладают качествами, присущими материалам на смоляном и каучуковом связующем. Соотношение между частями комбинированного связующего определяет характеристику асбофрикционного изделия — его физико-механические свойства, износостойкость, значение и стабильность коэффициента трения. Повышение доли смолы ведет к увеличению твердости, хрупкости, термо- и износостойкости изделия. Увеличение количества каучука снижает твердость и повышает величину и стабильность коэффициента трения. Применение комбинированного связующего открывает широкие возможности создания тепло- и износостойких фрикционных материалов с высоким значением коэффициента трения.  [c.329]

На фиг. 16 показаны пять основных видов нарушения фрикционных связей. Первые три вида имеют место при механическом взаимодействии, последние два — при молекулярном. В зависимости от  [c.28]

Во многих случаях возникновение высоких знакопеременных нагрузок связано с появлением резонансных колебаний в частях механизма. Этот опасный вид циклической нагрузки предотвращают с помощью демпферов (пружинных, маятниковых, гидравлических или фрикционных). Вибрации машин и агрегатов, являющиеся источниками знакопеременных нагрузок, устраняют или смягчают подвеской на виброизолирующих и виброгасящих амортизаторах.  [c.315]

Длительная практика построения механизмов привела к тому, что были созданы простейшие механизмы, которые можно подразделить на следующие виды рычажные и кулачковые механизмы, зубчатые и червячные передачи, механизмы прерывистого движения, фрикционные передачи, винтовые механизмы, передачи с гибкими связями, механизмы с электрическими, гидравлическими и пневматическими устройствами. Такое разделение может быть названо практической классификацией. Она учитывает функциональное назначение механизмов, их конструктивные особенности и кинематические свойства.  [c.5]

Несмотря на разницу в функциональном назначении механизмов отдельных видов, в их строении, кинематике и динамике много общего. Если главным признаком классификации считать кинематику механизмов, то их делят по характеру движения входящих в них деталей на механизмы с враш,ательным, поступательным, плоско-параллельным и пространственным движением. Если в классификации учитывают т /г механизма, то различают механизмы шарнирно-рычажные, кулачковые, зацепления, фрикционные, с гибкими связями и т. д. Более детальное деление в этой классификации строится на характерных частностях механизмов планетарные, зубчатые, червячные, кулисные и т. п.  [c.5]

Преобразование вращательных движений осуществляется разнообразными механизмами, которые называются передачами. Наиболее распространенные виды таких механизмов — зубчатые, фрикционные передачи и передачи гибкой связью (например, ременные, канатные, ленточные и цепные). С помощью этих механизмов осуществляется передача вращательного движения от источника движения (ведущего вала) к приемнику движения (ведомому валу).  [c.109]

Аналитические методы. Температура, развивающаяся на фрикционном контакте, зависит от режимов трения, теплофизических свойств контактирующих материалов и конструктивных параметров трибосопряжения. В связи с распределением и миграцией фактических пятен касания по контурной и номинальной поверхностям трения максимальную температуру на фактическом пятне касания можно определить в виде суммы [108]  [c.212]

Имея в виду, что коэффициент трения при металлических ободьях колес мал, порядка 0,1, сила нажатия получается значительной, вследствие чего контактные поверхности заметно деформируются, и теоретическое значение передаточного отношения изменяется из-за упругого скольжения ведомого колеса относительно ведущего. Во время движения вступающие в контакт поверхности ободьев сжимаются (сминаются), и затем при выходе из контакта они восстанавливают свое нормальное состояние. Такие колебания нормальных деформаций сопровождаются колебаниями деформаций тангенциальных, с чем и связано скольжение трущихся поверхностей. Так как деформации упругие, то и скольжение получило название упругого. Естественно, что чем больше момент М2, приложенный к ведомому колесу, тем больше и упругое скольжение. Таким образом, передаточное отношение фрикционной передачи является функцией нагрузки ведомого колеса.  [c.248]


Передача вращательного движения гибкой связью не может гарантировать точного соблюдения передаточного отношения. При переменных значениях моментов сопротивления всегда возможно, относительное проскальзывание двух тел, находящихся в соприкасании. Это большой недостаток данного вида фрикционной передачи, т. е. передачи, осуществляющей движение трением. Здесь сила трения играет положительную роль и увеличение ее полезно.  [c.329]

Основное влияние на процесс изнашивания оказывают постоянное возникновение и нарушение фрикционных связей, имеюш.их двойственную молекулярно-механическую природу. В работе [93] дана классификация этих связей, где выделено пять основных видов в зависимости от характера взаимодействия материалов, когда имеет место упругое или пластическое оттеснение материала, микрорезание, разрушение окисных пленок или разрушение основного материала в результате адгезии (молекулярного взаимодействия, табл. 16). Износ связан с многократным нарушением фрикционных связей. Таким образом, I—III виды фрикционных связей возникают при механическом взаимодействии материалов микровыступов, IV — при механическом (упругопластический контакт пленок) или молекулярном (схватывание пленок) и V вид—при молекулярном взаимодействиях  [c.231]

Виды фрикционных связей (по И. В. Крагельскому)  [c.231]

При различных видах фрикционных связей износ может возникать в результате следующих причин  [c.232]

Адгезионное изнашивание всегда связано с фрикционным переносом материала с одного тела на другое или с образованием прослоек. В некоторых случаях это может оказать благоприятное влияние на фрикционные характеристики пары, например при трении металлополимерной пары, когда полимер переносится на поверхность металла, образуя на ней мономолекулярный слой [2001. Однако при трении металлических пар адгезионное изнашивание приводит, как правило, к схватыванию контактирующих участков, глубинному вырыванию материала, переносу его с одной поверхности трения на другую и воздействию возникших неровностей на сопряженную поверхность. Этот вид износа относится к недопустимым видам повреждения, так как обладает высокой интенсивностью и приводит, как правило, к заеданию и отказу сопряжения.  [c.237]

По скорости процессов разрушения фрикционных связей все виды изнашивания можно разделить на три группы (табл. 17),  [c.238]

Влияние вида трения. Износ всегда связан с относительным перемещением и может иметь место при трении скольжения, качения и качения с проскальзыванием. Как было показано,, при анализе фрикционных связей для протекания процесса изнашивания необходимо их многократное возникновение и разрушение при относительном смещении микровыступов. Это условие выполняется при относительном скольжении поверхностей. Однако и при чистом качении упругих тел в зоне контакта возникают сложные явления, связанные с напряженным состоянием [80 140] и с проскальзыванием, которые могут привести к их изнашиванию, а не только к усталости поверхностных слоев.  [c.246]

Согласно [51] безразмерное отношение й/г в теории трения и изнашивания является одной из важнейших характеристик. Оно является основным критерием оценки концентрации напряжений и классификации видов фрикционной связи при трении [52].  [c.33]

При действии фрикционной передачи в зоне контакта катков возникают значительные циклически изменяющиеся напряжения смятия. Явления, происходящие в материале катков в зоне их контакта, усложняются в связи с износом и нагреванием поверхности при скольжении. Основным видом разрушения поверхности катков является выкрашивание наружных слоев их материала вследствие усталости. Поэтому расчет фрикционных пар производят по контактным напряжениям.  [c.268]

Это есть условие возможности образования трещины. Оценить величину нелегко, и, чтобы получить в замкнутом виде условие предотвращения процесса растрескивания, полагаем бц = О, что соответствует чисто фрикционным связям. Далее можно преобразовать уравнение (13) для получения такого радиуса волокна, ниже которого растрескивание матрицы для данного объемного содержания волокон будет невозможно  [c.451]

Из пяти видов нарушения фрикционных связей три 1) упругое оттеснение материала, 2) пластическое оттеснение материала и  [c.9]

Физико-механическая характеристика (t/ Ts) определяет два вида нарушения фрикционной связи 1) но поверхности раздела двух тел или но пленкам, покрывающим эти тела 2) по глубине основного материала (переход внешнего трения во внутреннее) [9].  [c.10]

При определении К учитывались упругость элементов рычажной системы и упругость фрикционного материала. Так, значение /( = 10 000 кГ/м соответствует применению прессованных тормозных накладок, а /(=4200 кГ/м—применению деревянных колодок. Из графика видно, что с понижением приведенной жесткости системы снижаются динамические усилия при замыкании тормоза. При высоких значениях приведенной жесткости равновесие в тормозной системе устанавливается после повторного хода поршня с тормозным грузом вниз, что связано с изменениями усилия нажатия колодок на шкив в пределах 1,9—0,77 его статического значения. Снижение приведенной жесткости К может быть достигнуто за счет включения в систему дополнительного упругого звена в виде пружины или за счет применения подпружиненных тормозных колодок.  [c.93]

И. В. Крагельский отметил пять основных видов нарушения фрикционных связей (взаимодействующих участков поверхностей или пятен контакта) (фиг. 2).  [c.11]

Приведенные пять видов нарушения фрикционных связей по условиям отделения материала И. В. Крагельский разделил на три группы  [c.12]


В механизмах силы сопротивления чаще всего представляют собой силы трения, возникающие в кинематических парах и неподвижных соединениях деталей. В последнем случае речь идет о так называемом конструкционном демпфировании, возникающем на площадках контакта деталей при колебаниях, например в стыках, в резьбе и т, п. [20, 47, 52, 63]. Иногда природа сил сопротивления связана с видом демпфирующего устройства, специально предназначенного для увеличения диссипативных свойств системы. Такие устройства могут быть фрикционными, гидравлическими, пневматическими.  [c.39]

В зависимости от вида нарушения фрикционной связи отделение частиц материала контактирующих поверхностей происходит при разном числе взаимодействия. Во всех случаях износ определяется объемом деформированного материала и отличается тем, что частицы материала отделяются в результате однократного или многократного силового воздействия на деформированный объем.  [c.195]

Рассмотрим теперь связь между двумя механизмами в виде фрикционной передачи (фиг. 87). Связь между колесами 1 и 2 осуществляется в данном случае силой трения F, которая создается силой нажатия Q. В результате действия силы Q на ободьях колес возникает контактное сжатие с появлением соответствующих упругих деформаций между колесами вместо линейного контакта образуется деформированная площадка, ширина которой зависит от упругих свойств ободьев и от силы нажатия Q. Поэтому во время работы фрикционной передачи качение сопровождается скольжением одного обода по другому. Такое скольжение, получающееся вследствие явлений упругости, называется упругим. Его не следует смешивать с буксованием, представляющим собой чистое скольжение.  [c.188]

Величины к, п, — ц могут быть рассчитаны по соответствующим формулам в зависимости от вида контакта [И]. Удельная интенсивность износа чувствительна к виду нарушения фрикционной связи при упругом контакте i = 10 — при пластическом контакте — Ю- — 10 S при микрорезании-— 10-2—10-1.  [c.86]

Связи фрикционные — Виды 188 Связующее — Основные виды 170, 171 Слой полимерный — Перемещения при повышении влагосодержаиия 92 — Температурные перемещения 87 Смеси полимерные — Способы изготовления 172 — 175  [c.327]

Классификация и основные характеристики передач. В самом общем виде передачи можно классифицировать по " способу передачи движения передачи трением (фрикционные, ременные) передачи зацеплением (зубчатые, червячные, цепные, винт — гайка) по способу соединения звешев передачи с непосредственным контактом (фрикционные, зубчатые, червячные, вш1т — гайка) передачи гибкой связью (ременные, цепные).  [c.63]

Чаще всего в задачах рассматривают механические системы, состоящие из отдельных твердых тел, соединенных между собой с помощью внутренних связей, которые могут реализоваться в виде шарниров, гибких нерастяжимых нитей и т. д. или осуществляться за счет относительного качения без ироскальзывания (например, фрикционные передачи). Поэтому при вычислении работы внутренних сил такой системы достаточно учесть работу реакций внутренних связей, соединяющих твердые тела.  [c.222]

При круглых центроидах отношение угловых скоростей двух звеньев, входящих в высшую пару, получается постоянным. Это происходит в том случае, когда звенья изготовляются в виде круглых колес, гладких или зубчатых. Гладкие колеса во время работы механизма должны быть прижаты одно к другому силой, в результате действия которой на поверхностях соприкасания возникает большое трение, устанавливающее связь между колесами. Механизм о гладкими колесами в теории механизмов получил название центроид-ного, а в практике его называют фрикционной передачей.  [c.28]

Исходным положением является представление о дискретном касании шероховатых тел и, как следствие этого, возникновение отдельных фрикционных связей, определяющих процесс изнаши вания. Эти положения, развитые проф. И. В. Крагельским, позволяют связать износ поверхности с процессами, происходящими в деформированном микрообъеме материала, напряженное состояние которого зависит от нагрузки, вида трения, геометрического очертания микронеровностей и физических свойств материала [93]. Дискретный характер касания и наличие большого числа пятен контакта и соответственно фрикционных связей является следствием того, что реальные поверхности имеют сложный рельеф, характеризующийся шероховатостью и волнистостью (см. гл. 2, п. 2).  [c.230]

Основными характеристикамиj определяющими вид фрикционной связи, являются отношение глубины внедрения (или величины сжатия) единичной неровности /i к ее радиусу 7 v а также градиент-  [c.232]

Структурная приспособляемость материалов. При оценке возможностей материала обеспечить необходимые антифрикционные и фрикционные свойства при высокой износостойкости следует в едином комплексе рассматривать все основные, процессы, -происходящие в зоне контакта поверхностей. С этих позиций интересен методический подход проф. Б. И. Костецкого и его сотрудников, которые рассматривают явление так называемой структурной приспособляемости материалов при трении, считая его универсальным и характерным для всех видов изнашивания [128, 1411. Это явление связано с закономерным изменением структуры и свойств поверхностных слоев в энергетически выгодном для данных условий направлении, что приводит к устойчивому динамическому состоянию износостойкости и антифрикционности (или фрикционности) материала.  [c.265]

Для связывания отдельных компонентов фрикционных материалов в одно целое во фрикционные материалы добавляют органические связующие вещества, к которым относятся естественные и синтетические каучуки, смолы, различного вида пеки, битуминозные вещества и т. п. По типу связующего асбофрикционные материалы делятся на материалы на каучуковом, смоляном и комбинированном связующем. Изделия на каучуковом связующем имеют относительно высокий и устойчивый коэффициент трения при нагреве до 220—250° С и отличаются невысокой твердостью. Для возможности вулканизации в эти фрикционные материалы добавляется сера. Путем изменения количества каучука и серы или путем добавления специальных мягчителей можно получить эластичные фрикционные материалы, применяемые в таких узлах, где происходит значительная деформация накладок (например, в ленточных тормозах). При температурах 250—300° С каучук начинает деструктировать, что приводит к снижению износостойкости фрикционного материала и уменьшению его механической прочности. Поэтому в ряде типов фрикционных материалов на каучуковом связующем применяют армирование накладок для увеличения их механической прочности.  [c.529]

Тканые фрикционные материалы также пропитываются связующим веществом для связывания асбестовых и хлопчатобумажных волокон и предохранения их от влияния окружающей среды. Тканые накладки по ГОСТ 1198-55 подразделяются по качеству пропитки на два типа тип А, имеющий пропитку битумно-масляного состава (руберакс и льняное масло), и тип Б — пропитка льняным, тутовым или перилловым маслом. Вид пропитки оказывает влияние на коэффициент трения, способность ленты переносить нагрев и впитывать влагу. Количество пропитки влияет на износоустойчивость и стабильность коэффициента трения. Так как пропитки термостойки лишь при нагреве до определенных температур, то наличие их делает коэффициент трения весьма чувствительным к изменению температуры.  [c.530]


Коэффициент трения накладок, уже обгоревших в процессе работы, значительно выше, чем у нового сырого материала. Поэтому, чтобы получить с первых же торможений высокое значение коэффициента трения, следует провести термообработку материала Ретинакс , заключающуюся в нагревании поверхности трения материала до 400—420° С (т. е. до начала выгорания легких составляющих фенолформальдегидной смолы) без свободного доступа окисляющей среды (например, в песке) до прекращения обильного дымовыделения [193]. Хотя Ретинакс при нагреве выше 450° С и не сгорает, но интенсивность его изнашивания резко возрастает. И все же в тормозных узлах с температурой 1000, 600 и 400° С износостойкость колодок из материала Ретинакс выше, чем износостойкость других видов фрикционных материалов, соответственно в 3, 6 и 10 раз. Прирабатываемость колодок из Ретинакса несколько затруднена вследствие его высокой износоустойчивости и изменения фрикционных свойств неработавшего материала под действием температуры (в связи с падением коэффициента трения). Поэтому в случаях применения указанного материала необходимо добиваться возможно более полного прилегания колодок к тормозному шкиву, протачивая для этого шкив и колодки. Для получения оптимальной прира-батываемости пары трения и получения максимальных начальных значений коэффициента трения рекомендуется [181] наносить на поверхность трения металлического элемента пары мягкий теплопроводный слой. В настоящее время исследовательские работы по изучению свойств Ретинакса широко ведутся в различных областях машиностроения и диапазон тормозных устройств с использованием этого материала непрерывно расширяется. Широкая экспериментальная проверка Ретинакса на тормозах шагающих экскаваторов, где температура нагрева достигает 360° С при давлении 7—12 кПсм и где за одно торможение выделяется до 660 ккал (работа торможения примерно равна 2,6-10 кГм), показала значительное преимущество его перед другими существующими типами фрикционных материалов как по износоустойчивости, так и по стабильности величины коэффициента трения. Поверхности трения шкивов тормозных устройств в процессе работы полировались без заметных царапин или задиров. Срок службы тормозных накладок из Ретинакса оказался в 10—13 раз выше, чем из других материалов. Хорошую работоспособность Ретинакс показал также в тормозах буровых лебедок [194], где температура достигает 600° С при давлении р = 6ч-10 кГ/см . В этих тормозах износостойкость материала Ретинакс оказалась в 6—7 раз выше, чем у асбокаучукового материала 6КХ-1. Срок службы материала Ретинакс в тормозах грузовых автомобилей оказался в 4—7 раз выше, чем у других асбофрикционных композиций. Проведенные лабораторные испытания Ретинакса в муфтах и тормозах кузнечно-прессового оборудования [192] (при р = 10ч-13 кГ/см 5.%  [c.536]

Фир. 2. xsiMa основных видов нарушения фрикционных связей.  [c.11]

Износ поверхности трения происходит при удалении материала на отдельных участках фактического контакта сопряженных пар в результате выцарапывания (микрорезания или среза внедрившейся микронеровности, если она недостаточно прочна), выкрашивания (пластического оттеснения материала), отслаивания (упругого оттеснения), микроразрушения (охватыва-ния пленок, покрывающих поверхности, и их разрушения — адгезионного отрыва), глубинного вырывания (схватывания поверхностей, сопровождаемого глубинным вырыванием — когезионным отрывом). Первые три вида нарушения фрикционных связей наблюдаются при механическом взаимодействии, последние два — при молекулярном.  [c.192]

Молекулярный (адгезионный) износ заключается в разрушении свяасй, возникающих в результате межатомных и межмолекулярпых взаимодс -ствий. Эти связи образуются мел ду пленками, покрывающими поверхност твердых тел. Износ происходит в тех случаях, когда фрикционная связь ма границе раздела оказывается прочнее, чем нижележащий материал. Этот вид износа является, по существу, микро-глубинным вырыванием, сосредоточенным в тончайших поверхностных слоях толщиной около 100 А.  [c.194]

В этой теории сформулирован механо-геометрический образ фрикционной связи и описаны пять видов нарушения фрикционных связей (упругое оттеснение, пластическое оттеснение, микрорезание, адгезионный отрыв, когезионный отрыв).  [c.86]


Смотреть страницы где упоминается термин Связи фрикционные — Виды : [c.67]    [c.128]    [c.105]    [c.254]    [c.107]    [c.548]   
Полимеры в узлах трения машин и приборов (1980) -- [ c.118 , c.119 ]

Полимеры в узлах трения машин и приборов (1988) -- [ c.188 ]



ПОИСК



Виды связей

К п фрикционных

Фрикцион



© 2025 Mash-xxl.info Реклама на сайте