Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкий азот

Стандартная теплота образования — это изменение энтальпии при образовании соединения при 25 °С и 1 ат.м из его элементов в свободном виде в их естественном состоянии при 25 °С и 1 атм. Стандартная теплота сгорания — это изменение энтальпии при реакции данного вещества с элементарным кислородом, взятыми каждый при 25 °С и 1 атм при условии образования определенных продуктов при тех же температуре и давлении. Продукты сгорания определяются элементами, составляющими исходное соединение. Углерод окисляется до двуокиси углерода, водород — до воды (жидкой), азот не окисляется, но образует газообразный азот, и сера обычно окисляется до двуокиси серы.  [c.62]


Весьма хорошие результаты дает закалка этих сплавов в жидком азоте, при котором охлаждение проис.ходит медленнее, чем в холодной воде (н связи с меньшей теплотой парообразования жидкого азота), но белее рав-ном( рно, чем в горячей воде  [c.588]

Если необходимо получить более низкие температуры (—200 — —220°С), охлаждение производится в жидком азоте или в жидком воздухе.  [c.476]

Во время мощных вспышек, а тем более во время непрерывной работы лазера, стержень активного вещества сильно нагревается и его приходится охлаждать. Для этого стержень заключают в кожух, через который циркулирует охлаждающая среда. Рубиновый лазер обычно охлаждается жидким азотом, температура которого равна —196 С.  [c.295]

Жидкий азот Нержавеющая сталь 70—110  [c.149]

Рис. 4.20. Криостат с герметичной ячейкой тройной точки. Герметичная ячейка 6 подвешена в криостате на нейлоновых нитях внутри золоченого радиационного экрана 5. Серебряная проволока 1 соединяет экран с наружной ванной жидкого азота. Рис. 4.20. Криостат с герметичной ячейкой <a href="/info/18391">тройной точки</a>. Герметичная ячейка 6 подвешена в криостате на нейлоновых нитях внутри золоченого радиационного экрана 5. Серебряная проволока 1 соединяет экран с наружной ванной жидкого азота.
Рис. 4.21. Герметичная ячейка тройной точки аргона, применяющаяся для градуировки стержневых термометров. / — термометр 2 — ячейка из нержавеющей стали 3— трубка для термометра 4 — пенопласт 5 — твердый аргон 6 — жидкий азот 7 — вход газообразного гелия 8 — манометр 9 — вентиль 10 — заливочная трубка II — сосуд Дьюара [14]. Рис. 4.21. Герметичная ячейка <a href="/info/18391">тройной точки</a> аргона, применяющаяся для градуировки <a href="/info/3972">стержневых термометров</a>. / — термометр 2 — ячейка из <a href="/info/51125">нержавеющей стали</a> 3— трубка для термометра 4 — пенопласт 5 — твердый аргон 6 — жидкий азот 7 — вход <a href="/info/401270">газообразного гелия</a> 8 — манометр 9 — вентиль 10 — заливочная трубка II — сосуд Дьюара [14].
Рис. 7.38. Общий вид калориметра излучения, использованного для определения термодинамической температуры между 0 С и 100 С, а также постоянной Стефана—Больцмана. 1—резервуар с жидким азотом (77 К) 2 — резервуар с жидким гелием (4,2 К) 3 — нагревательный виток из нержавеющей стали 4 — нагреватель калориметра 5 — резервуар для жидкого Не 4,2 К), 6 — резервуар для сверхтекучего гелия при 2 К 7 — ловушка для излучения (4,2 К) 8 — нижняя Рис. 7.38. Общий вид калориметра излучения, использованного для <a href="/info/3900">определения термодинамической температуры</a> между 0 С и 100 С, а также постоянной Стефана—Больцмана. 1—резервуар с жидким азотом (77 К) 2 — резервуар с <a href="/info/100324">жидким гелием</a> (4,2 К) 3 — нагревательный виток из <a href="/info/51125">нержавеющей стали</a> 4 — нагреватель калориметра 5 — резервуар для жидкого Не 4,2 К), 6 — резервуар для сверхтекучего гелия при 2 К 7 — ловушка для излучения (4,2 К) 8 — нижняя

У сталей с мартенситной точкой ниже 0 С при быстром охлаждении до температур жидкого азота превращение может быть полностью остановлено.  [c.103]

Дальнейшее превращение может происходить при нагреве до обычной температуры или при выдержках в интервале между обычной температурой и температурой жидкого азота.  [c.103]

Металлы, кристаллизующиеся в системе куба с центрированными гранями (медь, алюминий, никель, серебро, золото и др.), не обнаруживают хладноломкости ни при каком понижении температуры. Например, алюминий при температуре жидкого азота (—196 С) увеличивает прочность приблизительно в 2 раза, увеличивая одновременно относительное удлинение в 4 раза. Аналогично ведут себя медь и никель. Многие сплавы алюминия, меди, а также некоторые стали не обладают свойством хладноломкости.  [c.118]

В области температур жидкого азота их величина составляла 0,374 п 0,15° К, а ирп водородных температурах— 0,388 и 0,15° К.  [c.477]

В условиях единичного производства может найти применение формообразование днищ энергией испаряющегося сжиженного газа (например, рлота) ло схеме "штамповка газовым пуансоном по жесткой матрице". При мгновенном превращении жку кого азота в газо-образнай в замкнутом объеме в нем можно развить давление до 800 Ша. Скорость нарастания давления при этом зависит от интенсивности его преобразования. Если распыленный жидкий азот впрыснуть в воду, то происходит мгновенное испарение азота, сопровождающееся появлением ударной волны. Работа с жвдким азотом абсолютно безопасна, а в экономическом отношении не энергоемка энергия при испарении 3 л сжиженного азота эквивалента энергии, затрачиваемой на одш ход пресса усилием 1000 кН при полной его нагрузке.  [c.66]

Основной метод пробоотбора бенз(а)пирена — фильтрация. Отобранные на фильтры пробы, после предварительной обработки, анализируются на содержание бенз(а)пирена методом, основанным на измерении флоуресценции раствора пробы в бензоле, замороженном при температуре жидкого азота. Для анализа бенз(а)пирена используют спектрограф типа ДФС-24.  [c.23]

Использование в качестве теплоносителя изопентана требует сосуда Дьюара, погруженного в жидкий азот. Быстрое охлаждение изопентана осуществляется напуском воздуха между стенками сосуда. При достижении требуемой температуры воздух откачивается. Остаточный холодоприток может регулироваться открытым проволочным нагревателем, погруженным  [c.140]

Герметичные ячейки, подробно здесь рассмотренные, приспособлены для градуировки термометров капсульного типа. Для градуировки стержневых термометров в тройной точке аргона, являющейся в настоящее время альтернативной точке кипения кислорода, создана эквивалентная герметичная ячейка [14]. На рис. 4.21 показана такая ячейка вместе с устройством для охлаждения и реализации тройной точки аргона. Пр и комнатной температуре давление аргона в ячейке составляет около 56 атм. Она заполнена аргоном таким образом, чтобы в тройной точке нижняя чаеть ячейки была заполнена твердым или жидким веществом. В процессе работы ячейка первоначально погружается в жидкий азот так, чтобы аргон замерзал в ее нижней части. Когда это происходит, ячейка полностью заливается азотом. Затем сосуд с азотом герметизируется и в нем устанавливается давление, соответствующее температуре тройной точки аргона (83, 798 К). Для этой цели в верхней части сосуда имеется клапан. При такой процедуре давление азота возрастает от 101 325 Па при 77,344 К до 130 кПа при 83,798 К. Этим методом можно реализовать тройную точку аргона, используя для наблюдения за ней стержневой платиновый термометр. Для уменьщения влияния неоднородности температуры ванны жидкого азота ячейка покрывается слоем пенопласта. Точность реализации тройной точки аргона описанным методом не столь высока, как в ячейках для капсульных термометров, из-за недостаточной однородности температурного поля ванны. Тем не менее она находится в пределах 1 мК, и поэтому ячейка типа показанной на рис. 4.21 представляется хорошим конкурентом аппаратуре для реализации точки кипения. кислорода.  [c.166]

Сосуды для хранения н транспортирования жидких газов выполняют двухстенными. Внутренний еосуд цистерны для жидкого азота (рис. 8.41) выполняют из сплава АМц, который крепится цепями к наружному, выполненному из стали 20. Межстенное пространство  [c.276]

Несущую способность "прессовых соединений можно значительно повысить нанесением гальванических покрытий на посадочные поверхности. На рис 334 показаны результаты сравнительного испытания прессовых соединений (Г. А. Бобровников). На посадочные поверхности наносили Гальванические покрытия толщиной 0,01—0,02 мм. Соединения собирали двумя способами под гидравлическим прессом (зачерненные колонки) и с охлаждением вала в жидком азоте (защтрихованные колонки). В последнем случае между соединяемыми поверхностями при сборке образовывался зазор 0,05 мм на сторону. За единицу сравнения принято усилие с.твнга Рц для контрольного соединения без покрытия, собранного под прессом (без охлаждения вала).  [c.484]


Для улучшения условий работы полупроводникового лазера и обеспечения непрерывного режима генерации кристалл необходимо охлаждать до низких температур. Мощность лазера на арсениде галлия при температуре жидкого азота в импульснопериодическом режиме составляет 100 Вт, в непрерывном режиме — 10 Вт. Лучшие образцы полупроводниковых лазеров могут работать при нормальных температурах.  [c.124]

Предварительное охлаждение вакуумной трубки производится с п0 М0щью коаксиального сосуда Дьюара, наружная часть которого заполняется жидким азотом, а внутренняя (соединенная с насосом) —жидким гелием.  [c.160]

Для преобразования выбирается обычно среда, в которой скачок частоты при комбинационном рассеянии имеет больщую величину. Наибольщее значение колебательной частоты (и соответственно скачка частот при комбинационном рассеянии) имеет водород (сой = = 4155 СМ ). Поэтому активной средой часто служит газообразный водород при давлении (50-f-100) 10 Па и жидкий водород. Применяется также дейтерий ((й = = 2993 см ), жидкий азот ((о = 2326 см- ) и другие среды.  [c.315]

В четырехкаскадной схеме Кеезома и Игенона, в которой применялись аммиак, этилен, метан и азот, испаряемые при атмосферном давлении, расход энергии составлял 0,54 квт-час на 1 кг жидкого азота. Эта величина в 2,5 раза превышает расход энергии, требуемый для снтжения 1 кг азота в идеальном обратимом термодинамическом цикле. Однако расход энергии  [c.40]

Более современные ожижители воздуха. Подробное описание более современных ожижителей воздуха по схеме Линде выходит за рамки настоящей работы. Можно лишь указать, что они основываются на схеме с двумя ступенями давлений, приведенной на фиг. 55. Однако в настоящее время основной задачей является производство не жидкого воздуха, а чистого жидкого кислорода или чистого жидкого азота, которые получаются путем низкотемпературной ректификации воздуха. Небольшие воздухоразделительные установки, пригодные для лабораторий, разработаны с использованием холодильного цикла, основанного на адиабатическом расширении сжатого газа (см. разделы 6 и 7), как, например, схелхы Клода—Гейландта (и. 32) и схемы низкого давления (и, 36 п 37).  [c.67]

ВЫСОКОЙ ЧИСТОТЫ, включает в себя компрессор, который подает газ под давлением 160—170 атм в первый теплообменник в точке 1. На выходе из ванны жидкого азота в точке 5 газ охлаждается до температуры жидкого азота. (Для простоты на фиг. 59 показана только одна ванна жидкого азота. Практически же имелось две ванны одна с азотом, кипящим при атмосферном давлении, с тедшературой около 77° К, и другая — с азотом, кипящим при понижениом давлении, с температурой 65° К. Между двумя ваннами  [c.74]

Технический водород чистотой 99,5% из баллонов, пройдя редукционный вентиль, в точке <3 входит в теплообменник под давлением 3—4 атм. После охлаждения в теплообменнике и ванне жидкого азота водород поступает в конденсатор С, где ожижается иод тем же давлением. Для облегчения ожижения конденсатор заполнялся проволочными сеткашг. Вымороженные отвердевшие примеси собираются в нижней части конденсатора С, имеющего достаточный объем для их накопления. Отвод жидкого водорода производится через сливную трубку 8, змеевик 9, погруженный в жидкий водород, находящийся в ванне В, и сливной вентиль Fj.  [c.74]

Пройдя теплообменник Т Т, газ расширяется в игольчатом вентиле, проходит противотоком систему низкого давления и выбрасывается в атмосферу. Аппаратура узла ожижения помещена в сосуд Дьюара с внутренним диаметром 63,5 мм, который служит для сбора жидкого водорода, получившегося после расшп-рения в дроссельном вентиле. Слив жидкого водорода производится через сифон S с вакуумной изоляцией. Если при нуске сосуд Дьюара с ожижительной аппаратурой предварительно ох.лаждался жидким азотом, то ожижение водорода в установке начиналось примерно через 5 ман после того, как всюду достигалась телшература жидкого азота.  [c.77]

Если применить более мощный насос для откачки ванны с жидким азотом, который давал бы возможность получить температуру предварительного охлаждения 63° К (тройная точка азота), то коэффициент ожиженргя г увеличится примерно до 24%.  [c.77]

МОГ работать без смазки. В двадцатых годах водородные детандеры тина Клода получили промышленное применение для очистки водорода, где требуются-значительно более низкие температуры, чем достигаемые с помощью жидкого азота. В некоторых подобных машинах поршень герметизируется не кожаной манжетой, а неметаллическими иоршневымн кольцами.  [c.139]

Жидкий гелий получается в количестве 7,5 л1час. На охлаждение аппаратуры от температуры жидкого азота до 15°К расходуется 20 л жидкого водорода. В установившемся режиме расход жидкого водорода составляет 1,3 л на 1 л жидкого гелия.  [c.143]

Количество сжижаемого гелия колеблется от 25 до 28 л час. Если жидкий азот не применяется, то производительность падает до 10 л/час. Пусковое время не превышает 1 час 45 мин. Во время пускового периода потребляется 40 л жидкого азота, а во время работы приблизительно 1 л жидкого азота на 1 л жидкого гелпя. Цирку 1[яцпя гелия осуществляется компрессором производительностью 5,2 м 1мш1 при давлении до 13 атм. В каждый из детандеров газ входит при одном и том же давлении и покидает детандеры при одном и том же низком давлении ( 1,1 атм).  [c.148]

Отжиг сплавов для достижения равновесного или метастабилъного состояния. Обычно отншг сопряжен с меньшими трудностями, чем плавка, так как необходимая для отжига температура несколько ниже. Плохо растворимые вещества могут быть сохранены в метастабильном твердом растворе путем отжига при высокой температуре и последующей закалки. Чтобы сохранить однородность сплава в метастабильном состоянии и предотвратить его частичный распад, нужно обеспечить достаточно высокую скорость закалки, а для того, чтобы сплав не подвергался старению , т. е. заметному распаду, необходима достаточно низкая конечная температура закалки. С этой же целью в некоторых случаях следует хранить закаленный сплав при очень низкой температуре, например в жидком азоте. При региении вопроса о прикреплении к образцу из закаленного сплава контактных проводников нужно учитывать, что местный нагрев, неизбежный при пайке, способен нарушить устойчивость сплава. Последнее имеет особое значение при измерении термо-э. д. с., для которых возникновение местных неоднородностей может быть существенным.  [c.185]


Кривая Л —поле Н параллельно I, dj температура жидкого азота. б—влияние Mai HHTiioro поля на сопротивление галлия (по 1 апице).  [c.202]

В большинстве случаев закон Кюри—Вейсса выполняется, т. е. кривая зависимости у от Г оказывается прямой линией (фиг. 1). Однако ири более ннзких температурах (для многих солей уже ири температурах ниже температуры кипения жидкого азота) были обнаружены отклонения от этого закона, названные Камерлинг-Оныесом [1] крпомагнитпыми аномалиями (ср. с фиг. 2).  [c.382]

Еще одно значение параметра расщепления было сообщено Тейнис-сеиом [146], определившим его по измерениям парамагнитной релаксации при температурах жидкого азота. Он получил =0,296° К эта величина выше нашего значения, однако, как и в случае хромо-калиевых квасцов, вполне возможно, что значение несколько меняется с изменением температуры.  [c.481]


Смотреть страницы где упоминается термин Жидкий азот : [c.28]    [c.40]    [c.73]    [c.74]    [c.76]    [c.77]    [c.77]    [c.92]    [c.96]    [c.146]    [c.146]    [c.147]    [c.148]    [c.151]    [c.202]    [c.202]    [c.477]   
Машиностроительные материалы Краткий справочник Изд.2 (1969) -- [ c.279 ]



ПОИСК



Азот



© 2025 Mash-xxl.info Реклама на сайте