Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерения электрические методы

Измерения электрическим методом производятся в относительных единицах уровней виброскорости — в децибелах.  [c.78]

Первый потенциал ионизации, измеренный электрическими методами, оказался равным VI = 1,85 В.  [c.335]

Приборы, основанные на измерении электрическим методом неэлектрических величин например, электрические термометры сопротивления, термоэлектрические термометры, электрические манометры, топливомеры, электрические и магнитоэлектрические тахометры, индукционные компасы.  [c.12]


Из авиационных приборов а принципе магнитоэлектрической системы построены амперметры, вольтметры, а также указатели (измерители) ряда приборов, применяемых для измерения электрическим методом неэлектрических величин.  [c.155]

Таким образом, задача измерения электрическим методом самых различных неэлектрических величин решается довольно просто, если можно на входе в датчик получить такое механическое перемещение, которое однозначно отражало бы уровень измеряемой величины. Этим и объясняется, что на принципе измерения сопротивлений, изменившихся в результате перемещения подвижного контакта под действием фактора, величина которого измеряется, основаны очень многие электрические авиационные приборы топливомеры, манометры, указатели положения закрылков, заслонок, термометры (в которых используется эффект расширения жидкости с температурой) и т. д.  [c.241]

Другой возможный метод определения величины к основан на измерении электрических шумов сопротивлений. Среднеквадратичное напряжение шумов на сопротивлении й Ом дается выражением (см. гл. 3)  [c.27]

При испытаниях деталей машин широко применяют электрические методы измерения перемещений и соответственно элект-  [c.475]

При сравнении значений показателя преломления п, измеренных в видимой области спектра, со статическим значением фе, определяемым обычными электрическими методами, может оказаться, что эти две величины будут сильно различаться, если у исследуемого вещества имеются интенсивные инфракрасные полосы.  [c.96]

Измерение электрического сопротивления уже давно применяется в качестве метода исследования степени упорядоченности. пространственной  [c.164]

ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН  [c.141]

Для измерения электрических величин используются методы как непосредственной оценки, так и сравнения. Здесь рассмотрены только некоторые методы для измерения тех электрических вели-  [c.144]

Электрические методы основаны на измерении проводимости, диэлектрической проницаемости и других параметров, зависящих от концентрации фаз в потоке. Этими методами определяется средняя по длине датчика истинная концентрация фаз. Малая инерционность измерения электрических величин позволяет применять электрические методы для диагностики нестационарных процессов. Точность методов зависит от степени различия электрических свойств фаз, составляющих смесь, и от концентрации фаз. Например, для парожидкостных потоков наилучшие результаты имеют место при ф<0,8.  [c.241]

Для измерения электрических сопротивлений используют мостовые, компенсационные, логометрические методы и метод амперметра — вольтметра.  [c.322]


Высокую точность измерения электрического сопротивления датчика обеспечивает потенциометрический метод, схема которого показана на рис. 16.4, б. Метод основан на сравнении падения напряжения на вращающемся датчике (с учетом переходного сопротивления щеточных контактов) и образцовом сопротивлении Jv, которое подключают к потенциометру также через щеточные контакты. Для подключения питания к датчику и измерения падения сопротивления используют одну и ту же пару контактов, но возможна схема и с четырьмя контактными кольцами, из которых два используют для подвода питающего тока, а два других — для соединения контактов датчика с потенциометром. Возможны и другие схемы измерения электрических сопротивлений датчиков.  [c.323]

В нулевом методе действие измеряемой величины полностью уравновешивается действием известной величины, так что их взаимный эффект сводится к нулю. В этом случае измерительный прибор (нулевой) служит лишь для установления факта уравновешивания. Нулевой метод обладает высокой точностью, которая определяется точностью воспроизведения образцовой меры и чувствительностью нулевого прибора (например, метод измерений электрического сопротивления термометра уравновешенным мостом).  [c.6]

Электрические методы измерения позволяют применять для регистрации кратковременных процессов безынерционные датчики и устранять влияние сил трения на результаты показаний приборов. Этим методом удобно пользоваться как в лабораторных, так и в производственных условиях, регистрируя одновременно несколько процессов, различных по своей природе и протекающих в разных местах машины.  [c.425]

Методы и техника измерений электрических параметров сред в СВЧ диапазоне радиоволн достаточно хорошо описаны в ряде работ. Максимальной точностью измерений обладают резонаторные методы. Из волноводных методов практическую применимость имеет способ измерения постоянной распространения в измерительной линии, заполненной образцом, так как он позволяет не только измерить электрические параметры, но и оценить степень неоднородности среды в выбранном направлении. Для оценки параметров плоскослоистых изделий (брусьев) больших габаритов без какой бы то ни было доработки целесообразно использовать простой метод измерения смещения наклонно падающего пучка.  [c.228]

В связи с перспективностью использования покрытий в качестве электроизоляционного материала при высоких температурах исследовали закономерности измерения электрической прочности и проводимости окиси алюминия, нанесенной плазменным методом на никелевые пластинки [136]. Электрический пробой покрытия при различных температурах (до 1600 К) на воздухе осуществлялся между основным металлом и полусферическим электродом, прижимаемым к поверхности покрытия. Радиус полусферы никелевого или изготовленного из дисилицида молибдена электрода подбирался таким образом, чтобы электрическое поле в зоне пробоя было равномерным. Напряжение, которое подавалось на электроды, увеличивалось с постоянной скоростью л 200 В/с.  [c.86]

В качестве модельного объекта исследования был выбран монокристалл широко распространенного минерала кальцита, а модельной средой служили водные растворы уксусной кислоты. Такое сочетание взаимодействующих фаз обеспечивало конгруэнтное растворение минерала и благодаря слабой диссоциации уксусной кислоты позволило эффективно регистрировать кинетику растворения карбоната кальция методом измерения электрической проводимости электролита, увеличивающейся вследствие хорошей диссоциации продукта коррозии — уксуснокислого кальция.  [c.35]

Измерение электрической проводимости проводилось параллельно двумя методами индукционным и электро-контактным на микроомметре М-246. Образцы для измерения контактным методом вырезались из центральной части темплета. При бесконтактном методе измерение электрической проводимости производилось по сечению темплета через каждые 10 мм. Изменений показаний по сечению темплета выявлено не было.  [c.66]

Получение материалов с заранее заданными свойствами, безусловно, является одной из сложнейших и не всегда разрешимых задач. При этом большое значение имеет эффективный и надежный метод контроля состояния структуры. Наиболее широкое распространение получили такие прямые методы оценки структуры, как металлографический и рентгеновский, а также косвенные методы, основанные на измерении электрических параметров.  [c.169]


Измерение электрических свойств — эффективный метод изучения дефектов кристаллической решетки, возникающих в процессе деформации [1—3]. Измерения электропроводности нашли широкое применение при исследовании низкочастотной усталости [4—6]. Однако, учитывая особенности процесса ультразвукового нагружения, при котором деформация происходит в микрообъемах металла, для получения дополнительной информации о процессе акустической усталости нами, кроме метода электропроводности, применен метод термоэдс, являющийся более чувствительным, чем электросопротивление, параметром, реагирующим на все изменения электронного состояния металла [7, 8]. К тому же процесс измерения термоэдс на неравномерно деформированном образце по использованной нами схеме проще, чем измерение электросопротивления, а в некоторых случаях этот способ может быть единственно возможным.  [c.195]

Кулонометрический метод. Принцип этого электрохимического метода определения толщины, заключающийся в анодном растворении металла на известной площади с измерением электрического заряда, потребляемого в данном процессе, противоположен принципу электроосаждения. С учетом площади, на которой происходит электролиз, и электрохимического эквивалента металла по закону Фарадея делается простой расчет количество электричества в кулонах, расходуемое в процессе, переводится в толщину растворенного покрытия. Для получения точных результатов расчета необходимо, чтобы растворение происходило с известным постоянным выходом по току на аноде (желательно 100%-ным). Выбранный электролит должен устранить возможность возникновения эффектов пассивации или избыточной поляризации и, кроме того, не оказывать химического воздействия на покрытие при отсутствии электрического тока. Разумеется, важно точно определить площадь анода.  [c.144]

При проведении усталостных микроструктурных исследований металлических материалов методами тепловой микроскопии весьма важно осуществлять количественную оценку процесса зарождения и распространения усталостной трещины. Пр этом чаще всего используют или визуальное наблюдение за распространением магистральной трещины с измерением ее длины с помощью-микроскопа и микрометрической насадки АМ9-2, или методы измерения электрического потенциала в зоне распространения трещины. Автоматические анализаторы изображения позволяют получить данные о длине трещины и площади пластической деформации в ее вершине.  [c.286]

Современные электрические методы измерения дают возмож-. ость измерить практически любую физическую величину с использованием соответствующих измерительных преобразователей в широком диапазоне их значений, измерить величины постоянные и переменные во времени (в том числе и быстро изменяющиеся), а также произвести измерения на расстоянии. Развитие дискретной измерительной техники позволяет представить результаты измерения электрическими методами не только в виде чисел на отсчетном или регистрирующем устройстве (при этом измерения выполняются с высокой точностью и больщим быстродействием), но и в форме, удобной для ввода в вычислительные и управляющие машины.  [c.141]

Простой метод определения кислорода в котельной воде описан Вейером , а Га-азе и Витек описали электрохимические методы определения кислорода. Для регистрации концентрации кислорода в котельной питательной воде применяются спе--Фиг. 62. Принципиальная схема элек- Циальные приборы. Однн из трического аппарата для определения наиболее удобных приборов кислорода в котельной воде. основан на пропускании пузырьков водорода через воду и на измерении электрическим методом количества извлеченного кислорода. Принцип описан Браунлай . Четыре тонких спирали из платиновой проволоки образуют ветви (/ , R2, Ыз и Ri) мостика Уитстона (фиг. 62) и нагреваются током от батареи В лри условии, что все ветви окружены чистым водородом, мостик уравновешен и ток не проходит через гальванометр С. Но если две противоположно расположенных спирали (скажем Нг и На) окружены смесью водорода с воздухом, полученной в результате прохождения пузырьков водорода через котельную воду (К-г и Кз остаются окруженными чистым водородом), скорость отдачи тепла Н1 и уменьшится и, следовательно, их температура поднимется.  [c.426]

На самолетах и других летательны1х аппаратах электрические измерительные приборы- применяются как для измерения собственно электрических величин (тока, напряжения, электрической мощности), так и для измерения электрическим методом неэлектрических величин (температуры, давления жидкости, механических перемещений и др.). В первом случае измеряемая величина подводится непосредственно к измерителю во-втором неэлектрическая величина, значение которой нужно измерить, преобразуется сначала в электрическую, которая уже воспринимается указателем.  [c.145]

Сцу, измеренной электрическим методом, с общей концентрацией меди (Сиу+Си у), определенной радиоактивными методами. Оказалось, что при температуре 600°С эти две концентрации почти равны, в то время как при 800°С общая концентрация меди почти в два раза больще концентрации электрически активной меди Сцу.  [c.306]

Для измерения постоянных тт медленно меняющихся параметров преимущественно используют более простые методы - механические или оптические. Пневматические методы применяют как бесконтактные. Для измерения быстро-мепяющихся параметров, а также для автоматического контроля размеров преимущественно применяют электрические методы, достоинствами которых являются малая инерционность, малое влияние на объект измерения благодаря малым массам и размерам датчиков, дистанцион-ность, удобная регистрация результатов с  [c.475]

Электрические методы. Электрические методы определения размеров частиц основаны на измерении таких величин, как заряд, подвижность, емкость и сопротивление. Электрические импульсы, создаваемые каплями, которые касаются проволочки зонда, в некоторых случаях подчиняются эмпирической зависимости, содержащей диаметр частицы в степени 1,6 [256]. Более усовершенствованным методом является использование прибора Коултер каунтер [838], который регистрирует изменение сопротивления. Другой метод основан на анализе вольт-а.мперной характеристики конденсатора из плоских параллельных пластин, между которыми пропускается аэрозоль [142]. Для определения размеров жидких капель используется также и тот факт, что при отводе тепла от проволоки, нагреваемой током, изменяется ее сопротив-.гение, которое оказывается пропорциональным размеру капли [274, 857]. Дальнейшие подробности и приложения этого метода приведены в гл. 10.  [c.28]


Известно, что точность всех электрических измерений ограничивается уровнем флуктуаций тока и напряжения в измерительном устройстве, определяемом как внутренними электрическими шумами самого устройства, так и флуктуациями измеряемой величины. В фотоэлектрических уст1)ойствах электрические шумы также ограничивают их точность и предел чувствительности. Хотя разработаны методы, позволяющие с помощью фотоэлектронных приборов измерять довольно слабые световые потоки (например, одноэлектронный метод), однако не следует думать, что любой сколь угодно малый световой сигнал может быть фотоэлектрически зарегистрирован и измерен. Электрические шумы, природа которых может быть весьма различна, ограничивают возможность измерения сверхслабых световых сигналов. Из всех возможных причин, влияющих на предел чувствительности фотоэлектрических измерений, коротко остановимся на двух, связанных с тепловым движением электронов и конечностью заряда электрона.  [c.176]

Измерение сопротивления мостовымп методами. Для точного измерения электрического сопротивления в большинстве случаев пригодны многочисленные разновидности мостовых методов, развившихся из 1 .лассического  [c.170]

Для измерения физической величины неэлектрической природы электрическим методом ее необходимо преобразовать в электрическую величину. Например, такие неэлектрические величины, как линейные и угловые перемещения, скорость перемещения, давление и температура, напряжения и деформации, уровень жидкости, преобразуются в электрические величины с помощью измерительных преобразователей, которые рассматриваются ниже. Область применения этих преобразователей может быть существенно расщи-рена с использованием измерительных преобразователей неэлектрических величин в неэлектрические же величины, которые перечислены выше. Так, например, усилие или крутящий момент можно преобразовать в линейное или угловое перемещение в термоанемометре скорость газа, а в тепловом вакуумметре — давление разреженного газа однозначно связывают с температурой нити накала и т. п.  [c.141]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

Сущность электрического метода (рис.55,в) заключается в определении удельного объемного элегарического сопротивления гуммировочного покрытия, контактирующего с раствором электролита (рабочей средой или 20%-ным раствором поваренной соли). Проводэт контрольное измерение параметров тока, затем еще 2 измерения через 10 мин и 24 ч. рассчитывают значения удельного  [c.104]

Чтобы получить достаточно высокую точность измерения электрических величин, нужно выбрать амперметр и вольтметр не только высокого класса точности, но и с такими пределами измерения, чтобы измеряемые в опыте величины были близки к пределу прибора. Наиболее высокая точность измерений может быть получена в случае применения потенциометрического метода с четырехпроводной схемой. Электрическая схема в этом случае аналогична схеме измерения сопротивления термометра сопротивления (см. рис. 3.14) с тем лишь отличием, что дополнительно используется делитель напряжения, так как падение напряжения на нагревателе составляет обычно несколько вольт и не может быть измерено на потенциометре. Большое внимание должно быть уделено обеспечению стабильности напряжения во время опыта, так как его колебания увеличивают случайную погрешность измерений. Поэтому при точных измерениях теплоемкости для питания калориметрического нагревателя применяют батарею аккумуляторов большой емкости.  [c.105]

В настоящее время широкое распространение получили электрические методы измерения самых разнообразных неэлектрических величин, в том числе деформаций и напряжений. Эт0 объясняется целым рядом достоинств электрических методов высокой точностью и чувствительностью электроизмерительной аппаратуры, ее безынерционностью, возможностью производить дистанционные измерения и непрерывно их регистрировать и рядом других.  [c.217]

Проблемы всегда вызывала дополнительная изоляция сварных швов на строительной площадке. В 1910 г. использовали солому или джут с жироподобными веществами, которые в грунте спустя некоторое время омылялись. Берлинский аптекарь Шаде случайно узнал об этой проблеме. Он предложил по аналогии с перевязкой ран применять тканую ленту, пропитанную вазелином. Наиболее стойкими оказались поставляемые трубными заводами с 1928 г. битуминизированные ленты, наносимые в горячем состоянии. В ходе исследований битуминизированных лент для изоляции труб, проводившихся начиная с 1930 г. в бывшем Газовом институте в Карлсруэ (теперь Институт Энглера — Бунте), важную роль уже играли электрические методы измерений [14].  [c.29]

В ряде работ отмечается, что начальные изменения микростроения при старении не могут быть разрешены в световом микроскопе, тогда как именно на этих ранних стадиях наиболее значительно меняется поведение металлов и сплавов при механических испытаниях [106]. Для обнаружения ранних стадий процессов старения наиболее чувствительным является метод измерения электрического сопротивления материала. Как известно, удельное электросопротивление металла или однофазного сплава является функцией общего числа и распределения точечных дефектов, дисклокаций и растворенных атомов. Большие изменения удельного электросопротивления можно однозначно связывать с образованием скоплений растворенных атомов или выделений.  [c.220]


Измерение электрического сопротивления. Испытуемые образцы, обычно проволочные, помещают в реальную систему и в ходе экспонирования измеряют их электрическое сопротивление (рис. 124). По-мере того, как поперечное сечение проволоки уменьшается в результате коррозии, электрическое сопротивление возрастает. Этот метод дает более быстрый отклик, чем метод измерения потерь массы, так что изменение коррозивности может быть замечено в пределах 24 ч. Инструменты, разработанные для этой цели, производятся промышленностью.  [c.144]


Смотреть страницы где упоминается термин Измерения электрические методы : [c.383]    [c.449]    [c.161]    [c.18]    [c.56]    [c.238]    [c.242]    [c.195]    [c.188]   
Ковочно-штамповочное производство (1987) -- [ c.4 ]



ПОИСК



Измерение веса электрическими методами

Измерение методы

Измерения электрического сопротивления бесконтактными методами

Метод измерения электрического сопротивления

Методы измерения и анализа шума электрических машин

Методы измерения неэлектрических величин электрическими приборами

Методы измерения температуры нагретых частей электрических машин

Методы измерения электрических свойств (резистометрический анализ)

Параметры электрические - Методы измерения 36 - Средства

Применение методов измерения электрических свойств к исследованию металлов

Применение методов измерения электрических свойств при исследовании металлов и сплавов

ЭЛЕКТРОХИМИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ КОРРОЗИОННЫХ ИСПЫТАНИЙ МЕТАЛЛОВ Измерение электродных потенциалов

Электрические измерения

Электрические методы

Электрические методы измерений физических величин

Электрические методы измерения деформации

Электрические методы измерения спектров поглощения

Электрические свойства, методы измерения

Электрические свойства, методы измерения амперметра и вольтметра

Электрические свойства, методы измерения в переменных электрических полях

Электрические свойства, методы измерения мостовые

Электрические свойства, методы измерения мостовые двойные

Электрические свойства, методы измерения потенциометрический

Электрический метод измерения размеров капель

Электрическое сопротивление мостовые методы измерения



© 2025 Mash-xxl.info Реклама на сайте