Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка электронно-лучевая

Кроме размерной обработки, электронно-лучевой способ применяют для оплавления поверхностного слоя металла с целью устранения трещин, образующихся при закалке и других видах обработки деталей, упрочнения закаленной поверхности после заточки и шлифования деталей наклепом при помощи электронного луча и т. д., а также для напыления защитных пленок металлических и неметаллических материалов.  [c.426]


Проведение этих мероприятий во многом зависит от габаритных размеров и конструктивного оформления сварных заготовок. Для сложных заготовок с элементами больших толщин и размеров при наличии криволинейных швов в различных пространственных положе-йиях можно применять только хорошо свариваемые металлы. Последние сваривают универсальными видами сварки, например ручной дуговой покрытыми электродами или полуавтоматической в защитных газах в широком диапазоне режимов. При сварке не нужны, например, подогрев, затрудненный вследствие больших толщин и размеров элементов, а также высокотемпературная термическая обработка, часто невозможная ввиду отсутствия печей и закалочных ванн соответствующего размера. Для простых малогабаритных узлов возможно применение металлов с пониженной свариваемостью, поскольку при их изготовлении используют самые оптимальные с точки зрения свариваемости виды сварки, например электронно-лучевую или диффузионную в вакууме. При этом легко осуществить все необходимые технологические мероприятия и требуемую термическую или механическую обработку после сварки.  [c.246]

К лучевым методам формообразования поверхностей деталей машин относят электронно-лучевую и светолучевую (лазерную) обработку.  [c.412]

Электронно-лучевой метод перспективен при обработке отверстий диаметром 1 мм—10 мкм, прорезании пазов, резке заготовок, изготовлении тонких пленок и сеток из фольги. Обрабатывают заготовки из труднообрабатываемых металлов и сплавов, а также из неметаллических материалов рубина, керамики, кварца, полупроводниковых материалов.  [c.413]

Электронно-лучевая обработка имеет преимущества, обусловливающие целесообразность ее применения создание локальной концентрации высокой энергии, широкое регулирование и управление тепловыми процессами. Вакуумные среды позволяют обрабатывать заготовки из легкоокисляющихся активных материалов. С помощью электронного луча можно наносить покрытия на поверхности заготовок в виде пленок, толщиной от нескольких микрометров до десятых долей миллиметра. Недостатком обработки является то, что она возможна только в вакууме.  [c.413]

Лазерная и электронно-лучевая обработка материалов Справочник/  [c.309]

Ниже приводятся основные положения теории эмиссии чистых металлов и реальных катодов, встречающихся на практике при дуговой сварке и электронно-лучевой обработке.  [c.60]

В настоящее время электронно-лучевая технология сформировалась как самостоятельное направление в области обработки  [c.106]


Нагрев обрабатываемого материала электронным лучом осуществляется в результате выделения энергии в поверхностных слоях вещества и дальнейшей теплопередачи ее во внутренние слои. Высокая интенсивность ввода энергии в вещество при электронно-лучевой обработке приводит к развитию значительных поверхностных температур, уровень которых может превышать точку кипения даже самых тугоплавких материалов.  [c.113]

Возможность получения при электронно-лучевой сварке ванны расплавленного металла малого объема резко снижает деформации свариваемых изделий, что позволяет сваривать конструкции из уже окончательно обработанных деталей и узлов с минимальной последующей размерной обработкой или вовсе без нее. При этом возможна также сварка изделий в термообработанном состоянии (например, после закалки), так как зона разупрочнения получается достаточно малой, что не сказывается на общей работоспособности изделия в целом. По такому принципу сваривают блоки шестерен коробок передач автомобилей и станков, шевронные шестерни силовых передач, что значительно снижает трудоемкость их изготовления.  [c.114]

ТЕХНОЛОГИЯ ЭЛЕКТРОННО ЛУЧЕВОЙ ОБРАБОТКИ  [c.252]

Использование в качестве легирующих добавок карбидных фаз позволяет получить структуру по типу "твердые включения-вязкая матрица", подобную твердым сплавам и обладающую повышенной твердостью. Степень упрочнения материала и изменение механических свойств зависят от режимов электронно-лучевой обработки и состава легирующих добавок. Оптимальное сочетание указанных факторов приводит к существенному повышению износостойкости модифицированных сталей (рис. 8.11).  [c.254]

Названные процессы являются физической основой различных методов модификации структуры и свойств материалов под влиянием различных видов внешнего энергетического воздействия. При термической обработке - это тепловая энергия, при ионно-лучевой и ионно-плазменной — энергия потока ионов, при электронно-лучевой -энергия потока электронов и т.д.  [c.269]

В специальном машиностроении и для нужд новой техники используют сплавы сложных составов на основе вольфрама, ниобия, молибдена и сплавы, содержащие такие элементы, как бериллий, цирконий, кобальт и др. Новые сплавы сложного состава поступают в обработку в виде слитков после дуговой и электронно-лучевой плавки.  [c.89]

Одним из видов нанесения защитных покрытий на детали из высокотемпературных материалов служит метод окунания в расплав [1]. Такой метод используется для кратковременной защиты покрытий при горячей обработке давлением молибдена и ниобия. Для нанесения качественного покрытия необходимо определение оптимальных температур и состава расплава, при которых происходит удовлетворительное смачивание твердых металлов расплавом. Смачивание твердых молибдена и ниобия расплавами на основе алюминия исследовали на установке, позволяющей раздельный нагрев твердой и жидкой фаз [2]. Опыты проводили в среде гелия, температуру фиксировали платина — платинородиевой термопарой. В качестве объектов исследования использовали молибден и ниобий после электронно-лучевой плавки, алюминий чистоты 99,98% и порошки легирующих компонентов кремния, титана и хрома марки ч. д. а. Для экспериментов готовили навески одинаковой массы 500 мг. При достижении твердой подложкой температуры опыта навеска плавилась и соприкасалась с подложкой, время контакта при заданной температуре составляло 2 мин, по истечении которого каплю фотографировали аппаратом Зенит-С на  [c.55]

Разработка новых способов и создание средств сварки конструкций из новых материалов толщиной до 200 мм и более, внедрение новых аппаратурно-совместимых процессов электронно-лучевой обработки  [c.76]

Поверхностные свойства обеспечиваются как нанесением защитного слоя или покрытия, так и преобразованием поверхностного слоя металла при помощи химических, физических, механических методов, диффузионным насыщением, методов химико-термической обработки. Активно развиваются методы электронно-лучевой и лазерной закалки, вакуумное физическое и химическое напыление износостойких покрытий, ионное азотирование и др.  [c.199]


Электронно-лучевая обработка  [c.1027]

ЭЛЕКТРОННО-ЛУЧЕВАЯ ОБРАБОТКА  [c.501]

Электронно-лучевая обработка основана на превращении кинетической энергии направленного пучка электронов в тепловую. Высокая плотность энергии сфокусированного электронного луча позволяет обрабатывать заготовки за счет нагрева, расплавления и испарения материала с узколокального участка.  [c.412]

Схема установки для электронно-лучевой обработки (электронная пушка) показана на рис. 7.14. В вакуумной камере 1 установки вольфрамовый катод И, питаемый от исючкика тока, обеспечивает эмиссию свободных электронов. Электроны формируются в пучок специальным электродом и под действием электрического поля, создаваемого высокой разностью потенциалов между катодом И анодом 10, ускоряются в осевом направлении. Луч электронов проходит систему юстировки 9, диафрагму 8, корректор изображения 7 и систему магнитных линз 6, которые окончательно  [c.413]

Лазерную обработку применяют для прошивания сквозных и глухих отверстий, разрезки заготовок ка части, вырезания заготовок из листовых материалов, нрорезания пазов. Зтим методом можно обрабатывать заготовки из любых материалов, включая самые твердые и прочные. Например, лазерную обработку отверстий применяют при изготовлении диафрагм для электронно-лучевых установок, дюз для дозирования воздуха или газов, деталей топливной аппаратуры дизелей, сит. Диафрагмы изготовляют из вольфрамовой, танталовой, молибденовой или медной фольги, толщиной 50 мкм при диаметре отверстня 20—30 мкм. С помощью лазерного луча можно выполнять контурную обработку по аналогии с фрезерованием, т. е. обработку поверхностен по сложному периметру. Перемещениями заготовки относительно светового луча управляют системы ЧПУ, что позволяет прорезать в заготовках сложные криволинейный пазы или вырезать из заготовок детали сложной геометрической формы.  [c.415]

Конструктор должен хорошо знать новейшие технологические процессы, в том числе физические, электрофизическне и электрохимические способы обработки (электроискровую, электронно-лучевую, лазерную, ультразвуковую, размерное электрохимическое травление, рб-работку взрывом, электрогидравлическим ударом, электромагнитным импульсом И т. я.). Иначе он будет стеснен а выборе рациональных форм деталей и ве сможет заложить в конструкцию условия производительного изготовления.  [c.71]

Выбор ускоряющего напряжения при электронно-лучевой обработке в существенной мере зависит от назначения процесса. С одной стороны, чем выше это напряжение, тем большую энергию можно сообщить электронам и тем эффективнее будет воздействие электронного луча на обрабатываемый материал. С другой стороны, noBbiujenne напряжения приводит к резкому повышению уровня рентгеновского излучения, сопутствующего электронно-лучевой обработке, усложнению и удорожанию оборудования и необходимости выполнения специальных требований техники безопасности. В связи с этим в электронно-лучевой технологии в настоящее время применяется следующее разделение электронно-лучевого оборудования по значению ускоряющего напряжения  [c.110]

Задача второй области приложения триботехнологии - управление триботехническими характеристиками поверхностей трения - решается главным образом путем разработки специальных методов модифицирующей упрочняющей обработки. При этом модификация свойств поверхностных слоев трущихся деталей достигается модифицированием структуры или химического состава и структуры материала деталей. В этой области триботехнология тесно смыкается с трибоматериалове-дением как по решаемым задачам повышения триботехнических характеристик трибосопряжений, так и по используемым методам исследования. Современная триботехнология располагает большим числом технологических процессов, используемых в течение многих десятилетий или разработанных в последние 1()-15 лет. Основные из них следующие термическая обработка, диффузионно-термическая (химико-термиче-ская) обработка, поверхностно-пластическая деформация, ионно-плазменная модификация и нанесение покрытий, электронно лучевая обработка, ультразвуковая упрочняющая обработка, лазерное упрочнение, различные комбинированные методы модификации,  [c.10]

ТРИКО КХНИЧЕСКИЕ СВОЙСТВ.Л ТВЕРДЫХ СПЛАВОВ, МОДИФИЦИРОВАННЫХ ЭЛЕКТРОННО ЛУЧЕВОЙ ОБРАБОТКОЙ  [c.222]

Таким образом, применение электронно-лучевой обработки для изменения свойств твердосплавного режущего инструмента позволяет уменьшить интенсивность его изнашивания. Кроме того, обеспечивается возможность исгюльзования более широкого диапазона скоростей резания, что повышает производительность и снижает себестоимость изделий.  [c.224]

Применение электронно-лучевой обработки для модификации триботехнических свойств материалов имеет определенные преимущества по сравнению с другими видами обработки концентрированными потоками энергии. Главным образом это связано с достижением больщего сечения пучка, возможностью изменения глубины проникновения электронов, независимостью от оптических свойств поверхности обрабатываемого материала. Использование интенсивных импульсных электронных пучков [146-154] позволяет путем изменения параметров облучения энергии электронов , плотности энергии пучка 5, длительности импульса t- влиять на пространственное распределение выделенной энергии и динамику тепловых полей в приповерхностных слоях твердых тел. При этом формирование структуры и фазового состава материалов определяется совокупностью протекающих микро- и макропроцессов, отражающих соответственно прохождение электронов в веществе и рассеяние энергии.  [c.252]

Электронно-лучевая обработка может быть эффективно использована для реализации процессов перемешивания в жидкой фазе нанесенных на поверхность материала покрытий [154]. Подобная модификация особенно эффективна для получения новых фаз в системах, мало смешиваемых в твердом состоянии, Toflutnna перемешанного слоя зависит от плотности энергии пучка. Увеличение плотности энергии пучка электронов способствует легированию элементами покрытия глубинных слоев, превышающих исходную толщину покрытия [154]. Кроме того, импульсный нагрев, сопровождаюпщй облучение, приводит к образованию новых химических соединении, твердых растворов и аморфных фаз.  [c.253]


Другим способом электронно-лучевого упрочнения металлов и сплавов, разработанным в последнее время [159, 160], является легирование материалов пучками релятивистских электронов. Преимущество данного способа обработки заключается в возможности легирования поверхностных слоев на большую глуб1шу, чем, например, при лазерном легировании. Толщина расплавленного слоя при воздействии электронов может достигать 1 мм [160]. Для легирования используются порошки карбидов состава ВдС, W , Ti , а также смеси типа В С Сг. Электронно-лучевое воздействие способствует полному растворению легируюп их фаз. При этом достигается равномерное распределение  [c.253]

Для решения этой задачи большое значение приобретает разработка оптимальных методов поверхностного легирования, таких, как термодиффузионная обработка, электроискровое легирование, ионная имплантация, электронно-лучевая обработка, которые позволяют обрабатывать поверхности, непосредственно соприкасающиеся с рабочими средами, расширяют возможности и эффективность использования катодных покрытий. Перспективным методом поверхностного легирования металлов и сплавов является ионная имплантация. Она позволяет регулировать толщину легированного слоя, концентрацию вводимых компонентов, их распределение по глубине за счет изменения энергии и рпзы внедрения. Толщина имплантированного слоя в зависимости от энергии может составлять от 0,1 до 3 мкм. Изменение коррозионной стойкости после ионной имплантаций происходит за счет обеспечивания пассивного состояния при имплантации металлами, разупрочнения структуры, приводящего к повышению сродства поверхности к кислороду, изменения дефект-но сти решетки. При этом важно, что для повышения защитных свойств вводимый элемент может образовывать с защищаемым металлом или сплавом метастабильный твердый раствор внедрения или замещения в широком диапазоне концентраций.  [c.73]

При силойом и скоростном точении стали, а также при лазерной, электрогидроимпульсной, электроискровой, электронно-лучевой, плазменной обработке и других в поверхностных слоях возникает структура, которая в 3 %-ном растворе HNO3 в этиловом спирте не травится, остается белой. Эта структура имеет особенные физико-химические и электрохимические свойства, резко отличающиеся от исходного металла и друг от друга. Методы, позволяющие получать на обрабатьтаемой поверхности сплавов белые слои, получили название импульсной технологии.  [c.113]

Кислород — очень вредная примесь в вольфраме. Нераскисленные образцы вольфрама, полученные и электронно-лучевой плавкой и спеканием порошков, содержат повышенную концентрацию кислорода. При наличии 0,001-—0,005 % кислорода на границе зерен имеются оксиды во.тьфрама (которые обнаруживаются только электронно-микроскопическим методом) [35]. Это приводит к межкристаллитному разрушению образцов и практически исключает возможность обработки давлением. Добавка раскислителей, в частности углерода, способствует снижению содержания кислорода, очищению границ зерен и повышению их прочности. Это позволяет обрабатывать вольфрам давлением при повышенных температурах [1].  [c.135]

При плавке, обработке и кристаллизации металла в ИПХТ-М и некоторых типах электропечей с охлаждаемым кристаллизатором (вакуумно-дуговых, электронно-лучевых, плазменно-дуговых, электрошлако-вых) расплав непосредственно соприкасается с отдельными металлическими элементами конструкции, работоспособность которых обеспечивается их интенсивным охлаждением. Как указывалось в 1, во избежание загрязнения расплава температура контактирующей с ним поверхности металлических деталей 1 2 не должна превышать определенные значения, зависящие от материалов и гидродинамической обстановки в зоне контакта (обычно - 350-г450 °С). При несколько большей температуре зоны контакта в ней развиваются физико-химические процессы, приводящие к разрушению детали.  [c.35]

Статистическое накопление и обработку сигналов можно проводить в процессе перемещения преобразователя по поверхности изделия (рис. 5.48) или измерения угла ввода, т. е. качания диаграммы направленности. При этом стробированием по времени выделяют слой изделия на некоторой глубине Я, где предполагается наличие дефектов (на рисунке этот слой заштрихован). Корреляционная зависимость помех при этом тем меньше, чем больше степень обногмения зерен в рассеивающем объеме при движении акустического поля преобразователя. Сильная корреляционная зависимость полезных сигналов характерна для протяженных дефектов. При точечных дефектах сигналы коррелируют за счет ширины диаграммы направленности преобразователя. Если в процессе перемещения преобразователя наблюдать сигналы от выделенного слоя на электронно-лучевой трубке с большим послесвечением, то сигнал от дефекта будет отличаться от помех большей яркостью.  [c.296]

Приборы с визуальным представлением информации должны обеспечить запоминание результатов прохождения через изделие каждого посылаемого импульса. Наиболее просто этого достигают, применяя долгосветящуюся электронно-лучевую трубку. Современные приборы снабжены блоками аналогово-цифровой обработки информации, ее хранения, обработки и представления на экране в желаемом виде.  [c.394]

К 1985 г. тотребление электроэнергии в промышленности предусматривается на уровне 795—800 млрд. кВт-ч с приростом к 1980 г. около 110 млрд. кВт-ч, или 16%. что связано как с ростом промышленной продукции, так и виедрением прогрессивных технологических процессов, классических, а также новых электрофизических и электрохимических технологий плазмосикте-за, вакуумно-дугового переплава, электронно-лучевой обработки и др.  [c.50]

Механическую обработку поперечных темплетов проводили таким образом, чтобы из каждого темплета можно было вырезать 3 сварных образца длиной 250 мм для испытаний на каждый вариант. Сварные соединения были изготовлены электронно-лучевой сваркой в вакууме без применения присадки, а также ручной дуговой сваркой вольфрамовым электродом с присадкой проволоки марки IN O F69. Сварные соединения, выполненные обоими указанными методами, были обработаны до (или после) сварки но трем режимам термообработки 1) закалка до сварки, после сварки — без термообработки 2) закалка и двухступенчатое старение до сварки, после сварки—без  [c.311]

К электрофизическим и электрохимическим методам обработки материалов относятся электрохимические, электрохимикомеханические (анодно-механические), электроэрозионные, электрогидравлические, электронно-лучевые, плазменные, ультразвуковые, светолучевые и дп.  [c.943]

Медь электронно-лучевой плавки характеризуется минимальным содержанием растворенных газов и летучих примесей, низким электросопротивлением (менее И 2-Ю- ом-мм /м) и высокой технологичностью. Артемовский завод обработки цветных металлов им. Квиринга и Московский экспериментальный завод качественных сплавов освоили производство слитков и полуфабрикатов из этой меди.  [c.111]


Смотреть страницы где упоминается термин Обработка электронно-лучевая : [c.121]    [c.253]    [c.112]    [c.200]    [c.82]    [c.220]    [c.278]    [c.278]   
Краткий справочник металлиста изд.4 (2005) -- [ c.752 , c.753 ]



ПОИСК



Обработка лучевая

Электронно-лучевая обработк



© 2025 Mash-xxl.info Реклама на сайте