Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминиевая Фольга

Рассматриваются также вопросы, связанные с конструированием солнечных батарей, предназначаемых для применения в качестве источников энергоснабжения на Луне. На лунной батарее (рис. 8-8) регулирование теплового режима осуществляется с помощью гладкой алюминиевой фольги с нанесенным па нее покрытием Z-93.  [c.192]

Если из них определенным образом вырезать пластинку, то при сжатии или растяжении такой пластинки на ее поверхности появятся электрические заряды — с одной стороны положительные, с другой— отрицательные. В этом и состоит пьезоэлектрический эффект. Этот эффект обратим. Если пластинку покрыть с двух сторон металлическими электродами (например, алюминиевой фольгой) и присоединить к ним источник переменного напряжения, то пластинка попеременно то сжимается, то растягивается. Эти колебания поверхности пластинки и возбуждают в среде ультразвуковые волны. Используя пьезоэлектрические излучатели, удается получать ультразвуки сравнительно небольшой интенсивности.  [c.243]


Материалом электродов может служить оловянная, свинцовая или алюминиевая фольга толщиной 10—50 мкм. Фольгу смазывают тонким слоем химически чистого конденсаторного вазелина, конденсаторного масла или другого аналогичного вещества, обладающего малыми диэлектрическими потерями (1е бсЗ-10 ), и накладывают на образец, тщательно притирая ее затем к поверхности образца для удаления излишков смазки и для достижения плотного контакта без воздушных включений. Необходимо следить, чтобы смазка не попадала на края и торцы образца. Для керамики,  [c.64]

По технологии, аналогичной технологии изготовления намотанных изделий, наматывают из лакированной бумаги сердечники проходных изоляторов — вводов конденсаторного типа для высоковольтной аппаратуры и трансформаторов. Благодаря помещению (при намотке) на определенных диаметрах слоев алюминиевой фольги получают как  [c.188]

Чистый алюминий — металл еще более мягкий, чем медь, он хорошо прокатывается в тонкие листы вплоть до тонкой (6—7 мкм) алюминиевой фольги. Из-за малой меха-  [c.254]

Ниже приведены свойства алюминиевой фольги после 4 ч отжига при 600 °С в атмосфере воздуха или в расплавленных флюсах и последующего испытания в тех же условиях [1]  [c.52]

Регенеративные аппараты применяются главным образом в таких отраслях промышленности, где температура уходящих газов высока и требуется высокий подогрев воздуха (например, доменное, мартеновское, коксовальное, стеклоплавильное и другие производства). В качестве аккумулирующей насадки обычно берется шамотный или силикатный кирпич, который укладывается или в виде сплошных каналов, или с промежутками в коридорном порядке, или с промежутками в шахматном порядке, кроме того, в качестве насадки применяются металлические листы, алюминиевая фольга и пр.  [c.263]

Прокладочный и упаковочный материал для металлоизделий различного назначения. Может быть использована для очистки поверхности металла от масел и смазок (в качестве ветоши) в процессе консервации и переконсервации. Имеет ватный подслой, поэтому может быть рекомендована в качестве амортизирующего прокладочного материала для очень тонких листовых материалов, таких, как цинковая, медная электролитическая, танталовая, алюминиевая фольга, цинкографические листы из цинковых сплавов для многоступенчатого травления, а также для изделий электронной техники, электроизмерительных спектральных приборов и т. д.  [c.98]

Алюминиевая фольга со слоем полиэтилена толщиной 30 мкм 8/12 7/10 4/7 2/5  [c.108]

Результаты испытаиий этих образцов приведены на рис. 32. С увеличением продолжительности предварительного отжига при 811 К поперечная прочность незначительно уменьшается после обработки О , а после обработки Т-б — максимальна при средних продолжительностях отжига. Исследование излома этих образцов показало, что основным типом разрушения является разрушение матрицы (в чистом виде или в сочетании с расщеплением волокон). Иногда матрица разрушалась путем отслаивания материала, нанесенного плазменным напылением, от фольги-подложки значит, из-за несовершенства связи прочность алюминия, занесенного путем плазменного напыления, может быть меньше прочности алюминиевой фольги. Меньшую роль играло разрушение по поверхности раздела между долей этого типа разрушения и продолжительностью предварительного отжига нет прямой связи. В случае обработки Т-6 низкие значения прочности при малых продолжительностях предварительного отжига, вероятно, обусловлены неполным переходом матрицы в твердый раствор, а при большей продолжительности отжига (160 ч)—тем, что усиливается расщепление волокон (причина этого явления пока неизвестна). Поперечная прочность данной серии образцов, как правило, не зависела от термической обработки, приводящей к изменению состояния поверхности раздела, так как расщепление волоков или разрушение матрицы происходило до того, как на-  [c.224]


Сор 102-142 352-440 9 5 Лента (пластмасса) Лента (алюминиевая фольга) 242-330 790 165 165  [c.82]

Пример 14.1. Какова толщина алюминиевой фольги, имеюшей поверхностную плотность 2,4 мг/см-  [c.334]

Данные приведенные в табл. 27, получены на волокне борсик диаметром О, 07 мм. При увеличении диаметра волокна прочность композиционного материала в поперечном направлении значительно возрастает. Так, например, в работе [109] указано, что композиционные материалы, полученные методом намотки волокна борсик с диаметром 0,145 мм на алюминиевую фольгу толщиной 0,025 мм с шагом 0,182 мм и последующего нанесения плазменным методом сплавов 6061 или 2024 после сборки в пакет и диффузионной сварки в вакууме по режиму температура 490— 565° С, давление 400 кгс/мм , время выдержки 1 ч, имели прочность в поперечном направлении 28 кгс/мм .  [c.135]

Существует несколько технологических методов изготовления боралюминия. Э о диффузионная сварка пакета из чередующихся слоев алюминиевой фольги и волокон бора под давлением, пропитка пучка волокон бора жидким металлом, плазменное напыление алюминиевой матрицы на монослои этих волокон, уложенных на поверхности вращающегося барабана.  [c.127]

Для проведения экспериментов с плоскими волнами нагрузки использовался диэлектрический датчик, образованный двумя слоями диэлектрика с электродом из алюминиевой фольги между ними, находящийся между двумя проводящими поверхностями. Конструктивная схема датчика представлена на рис. 80.  [c.182]

Теоретический расход холода (тепла) в этом случае должен равняться тепловыделениям (теплопоглощению) человека, что должно дать экономию в мощности по крайней мере в 5 раз. Однако практически невозможно осуществить поверхность, не поглощающую тепловых лучей. Поглощенное тепло отводится от поверхностей путем конвекции к воздуху комнаты. Это является первым источником теплопотерь. Кроме того, необходимость смены воздуха в помещении (проветривание) требует охлаждения (нагрева) приточного воздуха. Поэтому практически экономия холода (тепла) получается меньшей. Одноэтажный дом, в котором была осуществлена опытная установка кондиционирования воздуха, имел следующие показатели общая площадь 168 м объем 460 м площадь наружных стен 149 м площадь остекления 56 м . Стены — бревенчатые (0150 мм) с обшив кой из красного дерева, пол — бетонный по земле, крыша— плоская с изоляцией войлоком. Стены и потолок были оклеены внутри тисненными обоями из плотной бумаги, покрытой слоем алюминиевой фольги толщиной 0,01 мм. Фольга в свою очередь была покрыта тонким слоем (1 мкм) подкрашенного лака, прозрачного в инфракрасной области спектра, но поглощающего тепловое излучение в видимой части спектра. Цвета этого лака подбирались так, чтобы, создав приятное для глаз восприятие, не уменьшать значительно отражательную  [c.238]

Для определения материалов на трубчатых образцах длина наружного электрода Ь должна составлять 10 25 или 50 мм. Этот электрод выполняется из металлической трубки или в виде мётал-лической пленки, осаждаемой шоопированием, распылением или вжиганием, допустимо использовать и суспензию графита в лаке. Внутренний электрод должен быть длиннее наружного. Для внутреннего электрода могут быть использованы прямой стержень или плотно вставленный в трубку провод, а также алюминиевая фольга.  [c.102]

Для электротехнических целей используют алюминий марки А1, содержащий не более 0,5% примесей. Еще более чистый алюминий марки АВОО (не более 0,03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий ншшысшей чистоты АВОООО содержит не более 0,004% примесей. Прокатка, протяжка и отжиг алюминия аналогичны соответствующим операциям для меди. Из алюминия может прокатываться тонкая (до 6—7 мкм) фольга, применяемая в качестве обкладок в бумажных и пленочных конденсаторах.  [c.20]

Конденсаторы частоты 50 Гц и средней частоты и.меют бумажный диэлектрик, пропитанный синтетической жидкостью. Обкладками служит алюминиевая фольга. Конденсаторы состоят из отдельных пакетов, соединенных в секции. Секции по.мещены в герметичный корпус, заполненный жидким диэлектриком с большой диэлектрической проницаемостью.  [c.171]

Средняя крышка печи 1с, разделяющая эти камеры и снабженная заслонками новоротных устройств, показана отдельно на рис. 8-14. Крышка представляет собой плоский пустотелый диск, знутри которого помещается изоляция. В качестве тепловой изоляции используются экраны 16 и 17, выполненные из алюминиевой фольги. Заслонки а и б устанавливаются в щелях крышки, сделанных в диаметральных направлениях рядом с центральной стенкой 15. Образцы с термопарой 19 подвешиваются в рамках 20, когорые крепятся к заслонкам с помощью онорнь[х трубок 18. Поворот каждой из двух заслонок с опытными образцами осуществляется независимо от другой заслонки с помощью ручек 6 и ведущих трубок 10. Подвеше1 ные образцы при повороте заслонки вращаются вокру оси рамки, при этом положение ручек показывает положение соответствующего образца в верхней или нижней камере. Измерение температуры в печах производится с помощью термопар. Электродвижущая сила термопар измеряется с помощью чувствительного гальванометра или самопишу-ц его потенциометра ЭПП-0 , отградуированного на шкалу в 1 мв.  [c.374]


В частности, фирма Фаччилд Весто (США разработала систему 2000 ДС, которая в сочетании с ЭВМ позволяет выполнять коррекцию с учетом изменений химического состава контролируемых полос. Она успешно применяется на станах горячей прокатки, высокоскоростных станах холодной прокатки, станах холодной прокатки алюминия, алюминиевой фольги и латуни.  [c.396]

Для электротехнических целей используют алюминий, содержащий не более 0,5 % примесей, марки А1. Еще более чистый алюминий марки АВОО (не более 0,03 % примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов оксидных конденсаторов. Алюминий наивысшей чистоты АВОООО имеет содержание примесей, не превышающее 0,004 %. Разные примеси в различной степени снижают удельную проводимость у алюминия. Добавки Ni, Si, Zn или Fe при содержании их 0,5 % снижают у отожженного алюминия не более чем на 2—3 %. Более заметное действие оказывают примеси Си, Ag и Mg, при том же массовом содержании снижающие у алюминия на 5—10 /о. Очень сильно снижают у алюминия добавки Ti и Мп.  [c.201]

В ряде случаев применение экранов совершенно необходимо в частности, они необходимы при измерении температуры газа вблизи горячих или холодных поверхностей. Применение экранов из алюминиевой фольги (альфоля) позволяет использовать в качестве тепловой изоляции воздушные прослойки.  [c.168]

Ассортимент изоляционных материалов разнообразен. Многие из них носят специальные названия, например шлаковая вата, зоно-лит, асбозурит, асбослюда, ньювель, совелит и др. Шлаковая вата получается из шлака, который расплавляется и затем паровой струей разбрызгивается. Зонолит получается из вермикулита (сорт слюды) путем прокаливания его при температуре 700—800° С. Асбослюда представляет собой смесь асбеста и слюдяной мелочи. Совелит является продуктом химического производства. Широкое применение получила так называемая альфольевая изоляция. В качестве изоляции здесь используется воздух, и вся забота сводится к уменьшению коэффициента конвекции и снижению теплоотдачи излучением путем экранирования алюминиевой фольгой (см. рис. 6-11). Коэффициент теплопроводности материалов в сильной мере зависит от их пористости. Чем больше пористость, тем меньше значение эффективного коэффициента теплопроводности. О пористости материала можно судить по величине его плотности, с увеличением пористости плотность материала уменьшается.  [c.200]

Для упаковки большинства металлоизделий в антикоррозионную бумагу или при консервации маслами и консистентными смазками в качестве оберточного наружного барьерного слоя. Пригодна также в качестве прокладочного материала при выстилании изнутри деревянной и картонной тары, например при упаковке латунной, медной, стальной или алюминиевой фольги, приборов механических, термомет-  [c.98]

Новотный и Холик [22 ] применяют реактив 23 для микроисследования алюминиевой фольги (конденсаторной фольги).  [c.259]

Полуфабрикаты (слойные заготовки) металлических композиционных материалов обычно получают намоткой волокон (борных) на алюминиевую фольгу, закрепленную на оправке, с использованием клея или методов плазменного напыления. Полученная заготовка снимается с оправки, раскатывается и используется как листовой полуфабрикат. В процессе вакуумного горячего прессования происходит диффузионная сварка алюминиевой матрицы. При этом, так же как при использовании полимерных матриц, трудно избея ать пористости, в связи с чем должен быть обеспечен строгий контроль параметров процесса.  [c.63]

Рис. 6.1. Подрыв битумного покрытия толщиной 6 мм при свободной коррозии кромок листа в насыщенном кислородом растворе 0,5 М Na l при 25 С / — битумы без алюминиевой фольги 2 — битумы с алюминиевой фольгой для закупоривания выхода газов Рис. 6.1. Подрыв <a href="/info/161923">битумного покрытия</a> толщиной 6 мм при <a href="/info/39778">свободной коррозии</a> кромок листа в <a href="/info/289947">насыщенном кислородом</a> растворе 0,5 М Na l при 25 С / — битумы без алюминиевой фольги 2 — битумы с алюминиевой фольгой для закупоривания выхода газов
Намотка волокна производилась на модифицированном универсальном токарно-винторезном станке с использованием ходового винта для точной укладки борного волокна (рис. 54). Волокно наматывалось на металлическую оправку с обернутой вокруг нее алюминиевой фольгой. Конструкция такой оправки достаточно подробно описана и показана на рис. 55 (патент США, № 3.575. 783, 1971 г.). Оправка цилиндрическая, разрезная, состоит из двух полуцилиндров I, скрепленных с одной стороны между собой шарниром 2. Обе половины оправки могут раздвигаться до необходимой степени при помощи двух пружин 3 и закрепляться запорной скобой 4. В вырез в запорной скобе входит винт, имеющий форму барашка, закрепляющий оправку в положение подпружинения. Подпружинение оправки позволяет скомпенсировать разницу в термическом расширении между волокном и подложкой из фольги при нагреве их в процессе плазменного напыления и обеспечивает легкий съем напыленной ленты с оправки. Технологические особенности процесса плазменного напыления подробно описаны в гл. V. Схематически процесс намотки показан на рис. 56, а процесс плазменного напыления — на рис. 57.  [c.123]

Получение композиционного материала методом горячего прессования в вакууме также описано в работе [178]. Для улучшения прочности связи матрицы с волокном и с целью исключения возможности образования на поверхности раздела углеродное волокно—алюминий карбида алюминия на поверхность углеродных волокон наносили слой меди толщиной 0,2—0,4 мкм. Исходные волокна имели предел прочности 200 кгс/мм , плотность 1,73 г/см средний диаметр отдельных волокон был равен 8 мкм. Материал получали в вакууме 2—5 10 мм рт. ст. при температуре 620—650° С и времени выдержки 30—120 мин прессованием пакетов из чередующихся слоев алюминиевой фольги и однонаправленного углеродного волокна с медным покрытием. Предел прочности композиций, содержащих 10—15 об. % волокон, был равен 23—32 кгс/мм , а композиций с 20—40 об. % волокон — 35—48 кгс/ мм . Микрорентгеноспектральное, электронно-микроскопическое исследования композиций, а также исследсвание в растровом электронном микроскопе не обнаружили повреждений углеродных волокон.  [c.138]


Прокатка. Процесс изготовления полуфабриката в виде леиты из композиционного материала на основе алюминия, упрочненного борным волокном, описан ниже (Патент Франции № 2133317, 1971 г.). Предварительную заготовку, состоящую из чередующихся слоев алюминиевой фольги и однонаправленного, уложенного с определенным шагом борного волокна, подвергали прокатке при температуре 600—650° С. Прокатку вели с небольшими степенями деформации за несколько проходов. Для улучшения прочности связи на границе раздела матрица — волокно на поверхность волокон рекомендуется наносить тонкое покрытие из вольфрама, никеля или меди. Полученный в виде ленты композиционный материал, содержащий около 50 об. % борного волокна, имел модуль упругости 25 ООО кгс/мм .  [c.145]

При изготовлении композиционных матералиов с алюминиевой матрицей, упрочняемых волокнами бора, карбида кремния и др., процесс напыления можно вести в режимах, обеспечивающих достаточно прочную связь напыляемого металла как с волокном, так и с алюминиевой фольгой, являющейся частью матричного материала. Однако возможно получение достаточно прочной моно-слойной ленты и без фольги напыленный слой обеспечивает при этом прочность, необходимую при дальнейших операциях резки, укладки и прессования для получения компактного материала.  [c.172]

Процесс плазменного напыления использовали для получения композиции алюминий — стальная проволока (12Х18Н10Т) [24]. На цилиндрическую оправку наматывали с небольшим натягом слой алюминиевой фольги. Стальную проволоку диаметром 0,2 мм наматывали на фольгу с помощью намоточного устройства с шагом, изменяющимся от 0,25 до 1 мм. Оправку с намотанной проволокой переносили в камеру плазмотрона (УПУ-3), в которой по заданному режиму напыления наносили алюминиевое покрытие из порошка зернистостью от 50 до 100 мкм. Минимальная пористость напыленного слоя, составляющая 25—30%, достигалась при следующем режиме напыления напряжения 32 В, силе тока 760 А, расходе плазмообразующего газа от 20 до 30 л/мин. Толщина армированного монослоя составляла 0,4 мм, равномерность укладки волокон в процессе плазменного напыления не нарушалась. Для получения компактного, плотного материала требуемой  [c.175]

В проведенных экспериментальных исследованиях диэлектрический датчик давления зажимался в плоскости, перпендикулярной к фронту волны (рис. 88). Электрод датчика представлял собой узкую полоску (2X40 мм) алюминиевой фольги толщиной 0,01 мм.  [c.194]


Смотреть страницы где упоминается термин Алюминиевая Фольга : [c.566]    [c.96]    [c.239]    [c.46]    [c.196]    [c.245]    [c.182]    [c.211]    [c.217]    [c.108]    [c.120]    [c.95]    [c.270]    [c.102]    [c.93]    [c.137]   
Краткий справочник металлиста (1972) -- [ c.181 ]

Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.404 ]



ПОИСК



Алюминиевая пудра и фольга

Алюминиевая: пудра 81, 204, сварочная проволока 82, фольга 81, эмаль

Метод II. Получение свободной пленки на алюминиевой фольге

Пиломатериалы Пищевая» алюминиевая фольга

Применение алюминиевой фольги

Фольга

Фольга алюминиевая для технических целей

Фольга алюминиевая никелевая —

Фольга алюминиевая титановая

Фольга из порошков алюминиевых из сплавов титановых

Фольга из порошков алюминиевых медная — Механические свойств

Фольга из порошков алюминиевых спеченных



© 2025 Mash-xxl.info Реклама на сайте