Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Карбиды (тр) мелкодисперсные

Влияние термической обработки на жаропрочность сплавов происходит в результате дисперсионного твердения. Дисперсионное твердение связано со старением пересыщенных твердых растворов, сопровождающимся выделением мелкодисперсных включений упрочняющих фаз (карбидов, нитридов). Эти упрочняющие фазы присутствуют как в виде раздробленных крупных частиц по границам зерен, так и в виде равномерно рассеянных внутри зерен мельчайших частичек (рис. 13.5), повышающих сопротивление пластической деформации при высоких температурах, т. е. повышающих жаропрочность.  [c.202]


Термическая обработка дисперсионно твердеющих сплавов состоит из двух последовательных операций 1) закалки с температур 1000— 1300° С для перевода выделившихся при предшествующей обработке карбидов и металлических соединений в твердый раствор 2) старения — длительной выдержки при температуре 650—850° С для выделения избыточных фаз в мелкодисперсной форме.  [c.202]

При отпуске с 560—600 С усиливается выделение мелкодисперсных карбидов V из мартенсита, что повышает красностойкость и твердость.  [c.254]

Образование трещин связывают с локальной пластической деформацией ползучести, обусловливающей релаксацию (снятие) сварочных напряжений. Нагрев и выдержка в критическом интервале температур приводят к выделению мелкодисперсных частиц карбидов в теле зерен. Упрочнение последних способствует развитию пластической деформации преимущественно в приграничных областях зерен. В результате относительного смещения зерен на их стыках появляются пики микронапряжений, кото-  [c.547]

Модифицирование железо-углеродистых сплавов применяют для получения мелкозернистой структуры. Модификаторы выполняют роль центров кристаллизации, от которых начинается рост зерен. Ими являются мелкодисперсные частички тугоплавких химических элементов или их соединений (карбиды, нитриды, оксиды) [15].  [c.70]

Ванадий образует прочный карбид V (температура плавления 28(Ю С) в сталях, который существует наряду с цементитом. Мелкодисперсный карбид V выделяется при охлаждении из аустени-та, выполняя роль упрочняющей фазы. Ванадий и его сплавы работают при температурах 650 - 1100°С.  [c.87]

Исследованиями структуры покрытий из исследованных порошков установлено ее суш ественное отличие от покрытий на основе карбида хрома. Она состоит из мелкодисперсных включений боридов, равномерно распределенных в матрице (рис. 1). Микротвердость покрытий имеет значения (6—28)-10 МПа (рис. 2).  [c.155]

Действие этих компонентов заключается в измельчении микро- и макроструктуры, увеличении твердости аустенита за счет равномерного вкрапления в вязкую матрицу твердых мелкодисперсных карбидов, нейтрализации вредных примесей. В результате исследований отработаны оптимальный состав марганцовистой стали с применением комплексного легирования хромом, титаном и бором, а также режим термической обработки отливок.  [c.239]

Сплавы с нестабильной аустенитной матрицей проявляют значительно более высокую износостойкость, чем сплавы со стабильной основой. Высокое сопротивление изнашиванию первых объясняется значительными изменениями, происходящими в их поверхностных слоях в процессе износа (превращение аустенита в мартенсит, создание внутренних сжимающих напряжений, выделение мелкодисперсных карбидов по плоскостям скольжения, значительное перераспределение количеств структурных составляющих и т. д.). Износостойкость таких сплавов повышается при наличии однородной карбидной фазы, причем ее содержание выше у марганцовистого аустенита по сравнению с никелевым.  [c.30]


Введение бора в чугун способствует его отбеливанию, причем можно достичь равномерного распределения мелкодисперсных карбидов по сечению отливки. Бор повышает микротвердость цементита и общую твердость.  [c.67]

По разработанной методике исследовались еще многие марки и типы сталей [146—148]. В большинстве случаев установлено ухудшающее влияние низкой температуры на абразивную износостойкость этих м,атериалов при двух схемах взаимодействия металлов с абразивной поверхностью (трение и удар). Значительный интерес представляют другие схемы взаимодействия материала с абразивом. Поэтому были проведены испытания на изнашивание стали 45 в крупнокусковой и мелкодисперсной абразивной массе. В первом случае в качестве абразива использовался гравий, а во втором— карбид кремния. Испытания в крупнокусковой абразивной массе проводились на установке ЧП-1 барабанного типа [149, 150], а в мелкодисперсной —на установке, схема которой предложена Н. М. Серпиком [151]. Методика выполнения этих исследований подробно изложена в работах [149—151], а основные результаты сравнительной износостойкости стали 45 при разных схемах изнашивания приведены на рис. 61. Испытания показали, что схема взаимодействия материала с абразивом — один из главных факторов,  [c.157]

В работе [90] при изготовлении графитовых изделий, стойких к окислению, рекомендуется производить погружение в шлам, состоящий примерно из равных количеств мелкодисперсного кремния и мелкодисперсного карбида кремния с последующим отжигом при 1500 С в течение 5—25 с. При этом на поверхности графитовых изделий образуются покрытия из кремния, в которых диспергирован карбид кремния.  [c.224]

Известно, что при низком отпуске закаленной стали (80 — 200°С) происходит гетерогенный распад мартенсита, частичное выделение из него углерода и образование мелкодисперсных карбидов типа Fe , увеличивающих электрохимическую гетерогенность стали. Электронномикроскопические исследования и карбидный анализ показали, что незначительна пластическая деформация при ВТМО стали (е =0,1) мало изменяет рельефность мартенсита, но уменьшает количество карбид-  [c.57]

Однако размер зерна не всегда определяет склонность материала к ВТРО. В работе [96] исследовалось влияние температуры рекристаллизации на высокотемпературное охрупчивание стали 316, облученной в реакторе до дозы 1,7 10 н/см (2,3 10 тепл, н/см ). Пластичность образцов, рекристаллизованных при 950° С в течение 10—60 мин, оказалась выше, чем у рекристаллизованных при 1100° С в течение 2 мин, хотя размеры зерен незначительно различались (соответственно 24—35 и 48 мкм). В образцах, рекристаллизованных при 950° С, на границах зерен обнаружены выделения карбидов, тогда как после растворяющего отжига при 1100 С они не выявлены. Предполагается что мелкодисперсные выделения карбидов на границах зерен снижают высокотемпературное радиационное охрупчивание, затрудняя зернограничное растрескивание [43, 96].  [c.109]

В низко- и среднелегированных сталях легирующие элементы вводят в основном для упрочнения. Хром и молибден способствуют некоторому повышению коррозионной стойкости стали в котловой воде и насыщенном паре. Упрочнение достигается в основном вследствие повышения склонности легированных сталей к прокаливаемости, упрочнения феррита и образования мелкодисперсных карбидов. Одновременно несколько ухудшаются пластические свойства и свариваемость. Сварку листов больших толщин из низколегированных сталей приходится проводить с предварительным и сопутствующим подогревом после сварки во избежание образования трещин становится необходимым высокий отпуск это усложняет технологический процесс и увеличивает трудоемкость изготовления. Однако снижается металлоемкость, так как вследствие более высокой прочности легированных сталей растут допускаемые напряжения. Многие низколегированные стали имеют заметно более низкую температуру перехода в хрупкое состояние по сравнению с углеродистыми.  [c.107]

Старение наклепанной стали обусловлено ускоренным распадом пересыщенных растворов углерода и азота в феррите с образованием мелкодисперсных карбидов н нитридов. Наклеп вызывает искажение кристаллической решетки и снижение растворимости. При комнатной температуре процесс старения затягивается вследствие малой скорости диффузии.  [c.62]


Для повышения жаропрочности стали необходимо обеспечить торможение дислокаций и диффузии вакансий как по границам, так и в объеме зерна. Дислокации хорошо затормаживаются мелкодисперсными карбидами и интерметаллидами. Легирование твердого раствора элементами, повышающими жаропрочность, приводит к усилению межатомных связей, уменьшает диффузионную подвижность вакансий и тем самым замедляет диффузионную ползучесть. Сильные карбидообразователи — хром, молибден, титан, ниобий — связывают углерод в прочные карбиды, затрудняют его диффузию и способствуют получению стабильной структуры. Вследствие искажений кристаллической решетки в районе дислокаций последние очень активно притягивают атомы примесей. Вокруг дислокаций особенно легко концентрируются атомы элементов, образующих растворы внедрения,— углерода, азота, бора и др. Поэтому дислокации часто оказываются местами зарождения частиц второй фазы.  [c.83]

Пр и TeMnepatyjjaX otiiy Ka выше С наблюдается упрочнение, связанное с выделением специальных карбидов мелкодисперсной формы.  [c.109]

На микрофотографиях 472/3 и 4 эвтектоиду соответствуют светлые области. В правой части микрофотографии 472/5 видны мелкие частицы карбида ванадия. Еще боле дисперсный эвтектоид Ф + К образуется при большей скорости охлаждения в течение 4200 сек от 1050 до 500° С. На микрофотографиях 472/6 и 7 участки с мелкими частицами карбида ванадия имеют вид слегка потемневших областей. Вдоль границ первичных зереп аустенита образуется светлая сетка, так как выделение крупных частиц карбида ванадия на этих границах обедняет зернограничные области ванадием, предотвращая, таким образом, выделение мелких частиц карбида ванадия. На микрофотографии 473/1 на границах первичного зерна аустенита хорошо видны крупные полигональные карбиды. Мелкодисперсный эвтектоид образуется только в некотором удалении от границ.  [c.57]

Более удачным оказался другой путь. В металл шва вводят сильный карбидообразователь — ванадий. В этом случае в основном образуются карбиды данного элемента, ие растворяющиеся в железе и имеющие форму мелкодисперсных нетвердых включений. Металлическая основа при этом оказывается обезуглерожен-иой и достаточно пластичной. Примером могут служить электроды марки Ц 1-4 со стержнем из ниакоуглеродистой проволоки марок Сб-08 или Сп-08А и покрытием следующего состава мрамор 12%, плавиковый ншат 10%, феррованадий 66%, ферросилиций 4%, noTain 2%, жидкое стекло 30% массы сухой смеси.  [c.335]

Сварка чугуна стальными электродами с карбидообразующими элементами в покрытии приводит к тому, что С, поступающий в шов из основного металла, связывается в труднорастворимые мелкодисперсные карбиды (обычно ванадия), содержащиеся в электродном покрытии, и структура шва получается ферритиой с включениями мелкодисперсных карбидов. Так, электроды марки ЦЧ-4, в покрытие которых вводится 70% феррованадия, обеспечивают наплавленный металл с содержанием V 9—10%. При сварке чугуна электродами из малоуглеродистой  [c.95]

Появление хрупкости II рода наиболее вероятно связано с сегрегацией атомов некоторых элементов (главным образом, фосфора) на [ рапицах зерен, и обогащением поверхностных слоев зерна этими. элемента.ми без выделении избыточных мелкодисперсных фаз (карбидов, фосфидов и т. д.). Обогащение пограничных зон фосфором, снижающим работу образования межзереныых трещин, приводит к развитию отпускной хрупкости. Чем чище сталь от примесей, тем меньше ее склонность к отпускной хрупкости.  [c.190]

Сварка с регулированием термических циклов (РТЦ) за с ет сопутствующего охлаждения, одновременно с уменьшением околошовных участков подкалки, сужает области термопластических деформаций при сварке и уменьшает несовершенство кристаллического строения, измельчает структуру зон сплавления. Кроме этого, более быстротечное высокотемпературное состояние при сварке стали 15Х5М с РТЦ со-путствуюш им охлаждением способствует образованию в ЗТВ промежуточных более равновесных структур закалки бей-нитного характера с равномерно распределенными частицами карбидов по телу зерен, а увеличение скорости охлаждения при сварке создает условия гомогенизации аустенитного шва. При этом избыточные фазы выделяются в виде отдельных разобщенных включений или участков и получается мелкодисперсная более однородная структура шва повышенных снойств.  [c.151]

Упрочняющими фазами в сталях могут быть карбиды разного состава нитриды, карбонитриды, интерметаллиды, чистые металлы, малорастворимые в железе (например, чистая медь). Наиболее эффективное упрочнение достигается такими фазами, которые способны растворяться в твердом растворе (например, в аусгенпге при нагреве), а затем В1,1дсляться из него в мелкодисперсном состоянии и сохранят ься при температурах технологической обрабо кп и использования изделия. К эффективным упрочнителям относятся V , VN, Nb , NbN, МоС и комплексные фазы на их основе. Оптимальное упрочнение от твердых дисперсных частиц достигается при условии, когда эти частицы достаточно малы и когда расстояние между ними в твердом растворе мало. Обеспечивается это соответствую[цим подбором легирующих элементов и режимов термической обработки (закалка и высокий отпуск, закалка и низкий отпуск), позволяющих получить структуру с высокими механическими и триботехническими характеристиками.  [c.16]

Для придания необходимых физико-механических свойств в оксидную пленку могут вводиться находящиеся в электролите нерастворимые в воде в этих условиях металлы, а также мелкодисперсные тугоплавкие соединения (карбиды, бориды, нитриды) и окислы за счет электрофоретической доставки их на анод. Образование пленок происходит в локальных объемах порядка 10 см при температуре пробойного канала 2000 К и скорости охлаждения 10 - 10 градус/с. По такому принципу формируются керамические покрытия, применяемые для повышения коррозионной и термической стойкости алюминиевых деталей. Керамические покрытия пол чают из водных растворов силикатов щелочных металлов, например из 3-4-модульного силиката натрия (концентрация 0,1-0,2 М), они представляют собой шпинели AlSiOj, сформированные при анодировании в режиме искрового разряда (напряжение 350 В). Дегидратация и спекание силикатов на аноде происходят в результате искрового пробоя окисного слоя, образующегося при анодировании алюминия. При электролизе на аноде происходит разряд гидроксил-ионов I. силикатных мицелл, а также образуются окислы  [c.124]


Порошок бериллия окисляется быстро, а при повышении температуры бурно сгорает. С азотом бериллий реагирует при температуре выше 900 - С, образуя нитрид BejNa, а с углеродом вблизи температуры плавления образует карбид ВеаС. С водородом бериллий реагирует с трудом (в искровом разряде и т. п.К образуя гидрид. С аммиаком он реагирует легче, чем с азотом, образуя нитрид. Мелкодисперсный бериллий сгорает в парах серы, селена и теллура.  [c.517]

Изменение временного сопротивления сжатию композиций с оксидом, карбидом и нитридом титана в зависимости от содержания стеклосвязки приведено на рис. 2, б. Как видно, наполните.ль оказывает влияние на сопротивление сжатию, при этом композиции с мелкодисперсным наполнителем (нитрид титана, полученный плазмохимическим путел ) с удельной поверхностью 30 м /г в 1.5 раза больше, чем у композиции с нитридом титана, минимальный размер частиц которого 5 мкм. Но надо отметить, что на сопротивление сжатию сильное влияние оказывает состав стекловидной связки, так как композиций с этими же наполнителями, но с фосфатной стеклосвяз-кой в 3—4 раза меньше.  [c.105]

Специальная работа была посвящена выяснению возможности применения инденторов из карбида бора и ди-борида титана для измерения твердости карбидов при высоких температурах в вакууме [71, 178]. Исходными материалами для изготовления заготовок инденторов служили аморфный бор (чистотой 99,5%), ламповая сажа зольностью 0,2%, а также мелкодисперсный порошок карбида бора состава 76,8% В, 21,9% Си порошокдиборида титана состава 69,3% Ti, 30,4% В.  [c.56]

Пересыщенный вследствие закалки с высоких температур раствор углерода в аустените склонен к выделению при последующем нагреве дисперсных карбидов. Они тем крупнее, чем выше температура нагрева. Выделение карбидов не только снижает вязкость но и приводит к интеркристаллитной коррозии, в том числе коррозйонностойких сталей. Причиной этого являются мелкодисперсные, появляющиеся при кратковременных выдержках при температуре 600—650° С карбиды с высоким содержанием хрома, которые уменьшают концентрацию хрома в непосредственно прилегающих к ним областях матрицы (согласно теории обеднения хромом).  [c.145]

Микроструктура образцов стали 110Г13Л с ванадием в литом состоянии представляет собой аустенит с мелкодисперсными карбидами, причем карбидов в ней значительно больше, чем в стали без ванадия. Карбиды располагаются в основном внутри зерен аустенита и отличаются высокой дисперсностью. Уменьшение размеров зерна отмечено при содержании 0,3—0,4% ванадия, что положительно влияет на механические свойства стали и абразивный износ.  [c.240]

В. С. Попов и сотрудники [52] считают, что наиболее высокого сопротивления изнашиванию можно достичь, увеличив способность стали к упрочнению, поскольку доля энергии, затрачиваемой на упрочнение, составляет приблизительно 90% в балансе всех энергетических затрат при изнашивании. Одним из путей повышения износостойкости деталей, работающих в контакте с образивной средой, может быть применение метастабильных аустенитных сталей с включениями мелкодисперсных карбидов в аустенитной основе.  [c.12]

При испытании стали 45 в крупнокусковой абразивной массе [149] установлено, что микротвердость изношенной поверхности термоулучшенной стали несколько ниже, чем на глубине 0,2—0,3 мм. Если оценить ударное (с проскальзыванием) воздействие крупного гравия на изнашиваемую поверхность, то можно предположить, что слой с пониженной микротвердостью образуется за счет перенапряжения отдельных микрообъемов поверхности. Этого не происходит при испытании сталей в мелкодисперсной абразивной массе, так как нормальная (ударная) составляющая воздействия мелких частиц абразива незначительна при выбранном режиме испытаний. В этом случае изнашивание происходит за счет тангенциальной составляющей, реализуемой при окатывании зернами карбида кремния поверхности образца, но не каждое зерно может вырезать или выдавить лунку на поверхности материала. Это могут сделать лишь зерна, соответственно ориентированные относительно поверхности трения. Следует отметить, что при трении об абразивную поверхность вероятность ориентации зерен, определяющих интенсивность изнашивания, более высокая, чем при испытаниях в абразивной массе. При ударе об абразивную поверхность характер воздействия абразива на изнашиваемую поверхность в значительной мере идентичен испытаниям в крупнокусковой абразивной массе не только по виду изношенной поверхности, но и по микротвердости предразрушенного слоя  [c.158]

Влияние титана неоднозначно и зависит, по-видимому, от конкретной микроструктуры сплава. В мартенситно-стареющих сталях титан входит в состав интерметаллида N13X1. В этих сталях, поведение которых при закалке отличается от поведения большинства других сталей, рассматриваемых в данном разделе, титан усиливает водородное охрупчивание [27, 28], даже если принять во внимание вероятное изменение предела текучести с повышением его содержания. В то же время в прочих ферритных и мартенситных сталях при широких изменениях концентрации титана, уровня прочности и микроструктуры наблюдалось, как правило, существенное повышение стойкости в средах, содержащих как Нг, так и НаВ [10, 19, 20, 28, 29]. Положительное влияние титана при этом объясняли его способностью ограничивать количество остаточного аустенита, что снижает и опасность последующего образования мартенсита [28, 30]. Однако, как показывают недавние результаты, главная роль титана, если он присутствует в виде примеси замещения или в форме мелкодисперсного равномерно распределенного карбида, заключается в том, что он действует как преимуществен-  [c.55]

Оказывается, что при высоких уровнях прочности наиболее высокой стойкостью к воздействию внешней среды (по крайней мере водорода) обладают хорошо отпущенные мартенситные или бейиитные микроструктуры, полученные с помощью специальной обработки аусформинг и состоящие из мелких пластинок и равномерно распределенных мелкодисперсных карбидов [47, 48], При среднем или низком уровне прочности картина более сложная.  [c.60]

Установлено, что повышение температуры аустенизации стали 11Х12Н2МВФБА перед закалкой с 1020 до 1130 С существенно влияет на величину предела выносливости образцов. Более низкая температура закалки (1020°С) обусловливает более резкое снижение предела выносливости с повышением температуры отпуска (с 660,до 545 МПа), чем сталь, закаленная с 1130°С (с 620 до 580 МПа). Сталь, закаленная с 1020 или 1130°С и отпущенная при 600°С, состоит из мартенсита и мелкодисперсных легированных карбидов, причем в стали, закаленной с 1130°С карбидов меньше, чем в стали, закаленной с 1020°С, так как при низшей температуре аустенизации не происходит полное растворение карбидов ниобия а аустенита. Сталь, закаленная от 1020°С, меняет характеристики прочности и пластичности более заметно с изменением температуры отпуска, чем после закалки от 1130°С, т.е. повышение температуры аустенизации обусловли вает большую стабильность свойств стали при повышенных температурах. Высокий предел выносливости стали 11Х12Н2МВФБА после закалки и отпуска при 600 °С достигается в основном за счет выделения упрочняющей метастабильной фазы (Сг, W, Мо, V )j( N) и карбонитридов ниобия Nb( N). Повышение температуры отпуска до 660 и УОО С обусловило-снижение предела выносливости в воздухе соответственно до 580 и 500 МПа вследствие выделения и коагуляции сложного карбида /№,, С .  [c.59]

Газовое контактное хромирование мартенситной нержавеющей стали 13Х12Н2ВМФ привело к образованию на поверхности образцов ферритной зоны толщиной около 0,1 мм и неравномерной карбидной зоны толщиной 0,005 мм. Вследствие увеличения концентрации хрома в слое при насыщении до такой, при которой а ->7 ->а-превращения отсутствуют, диффузионный слой состоит из о-таердого раствора хрома в железе и мелкодисперсных карбидов. Микротвердость толстой ферритной зоны равна 2300 МПа, основной структуры — 3500 МПа.  [c.176]


Проведенные исследования позволили разработать новую хро-моникельмарганцевую жаропрочную сталь аустенитного класса, содержащую небольшое количество никеля [28 ]. Химический состав стали следующий 0,3—0,45% С, доО,35 % Si, 10,0—12,5% Сг, 11,5 -13,5% №, 6—11% Мп, 3,2 -4,2% А1, 1,4—2,0% V. Высокая жаропрочность разработанной стали связана с образованием гетерогенной структуры С мелкодисперсным выделением двух упрочняющих фаз интерметаллического соединения NiAl.H карбидов ванадия. Присутствие этих фаз в стали установлено рентгеноструктурным фазовым анализом. Исследовали микроструктуру и прочностные свойства стали после различных режимов термической ебработки. Образцы были изготовлены -из проката трех опытных плавок стали (№ 1, 2, 3, табл. 47). Изучалось влияние температуры и времени выдержки при закалке и старении на твердость и длительную прочность стали.  [c.171]

Стойкость против образования окалины и жаропрочность при температурах до 800° С склонность к выделению строчечных крупных карбидов в процессе изготовления стали а мелкодисперсных — при последующих нагревах до умеренных температур (старение)  [c.699]

В ферритной матрице во всех изученных состояниях плотность дислокаций составляет примерно 5 10 мм , она несколько уменьшается после старения без напряжения, однако точные выводы делать трудно из-за сильной разориентированности дислокационной структуры. Встречаются дислокации, декорированные мелкодисперсными выделениями сферической формы (рис. 3, б). Такой вид обычно имеют карбиды ванадия, которые способствуют формированию стабильной дислокационной сетки, в матрице феррита, чем препятствуют образованию высокоразориентированной ячеистой структуры в процессе ползучести. Действительно, после старения под напряжением в стали 12ХГНМФ не наблюдалось образования деформационных ячеек.  [c.105]

Перлитные хромомолибденованадиевые стали упрочняются под влиянием легирования твердого раствора элементами, повышающими энергию связи твердого раствора и затрудняющими диффузию и рекристаллизаци-онные процессы. Упрочнение происходит также благодаря выделению мелкодисперсных карбидов.  [c.118]


Смотреть страницы где упоминается термин Карбиды (тр) мелкодисперсные : [c.61]    [c.67]    [c.236]    [c.254]    [c.130]    [c.513]    [c.159]    [c.156]    [c.14]    [c.462]   
Структура коррозия металлов и сплавов (1989) -- [ c.277 ]



ПОИСК



Карбиды



© 2025 Mash-xxl.info Реклама на сайте