Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциальное и вихревое течение жидкости

Глава 3. ПОТЕНЦИАЛЬНОЕ И ВИХРЕВОЕ ТЕЧЕНИЕ ЖИДКОСТИ  [c.128]

Отметим, что предположение о сферической форме газового пузырька правомерно при достаточно больших Ке 600 (см. рис. 3). Поместим начало координат в центр пузырька. Скорость жидкости на бесконечном удалении от поверхности пузырька считаем постоянной величиной и обозначим через и (направление скорости совпадает с отрицательным направлением оси .). В фиксированной относительно газового пузырька снсте.ме координат функция тока 6 , соответствующая вихревым движениям газа внутри пузырька, вызванным внешним потенциальным течением жидкости, имеет вид  [c.40]


Полученные равенства действительны для течения невязких жидкостей и газа. При этом течение может быть как установившимся, так и не установившимся, потенциальным или вихревым плотность среды может быть как постоянной, так и зависящей от давления. При течении жидкости должно удовлетворяться условие сплошности  [c.83]

Напомним свойства вихревых, вращательных и потенциальных течений. Следует различать вихревые течения и вращательные движения жидкостей и газов.  [c.113]

Если мы хотим описать динамику элемента жидкости в течении, то можно показать, что в наиболее общем случае она состоит из перемещения, вращения и деформации (рис. 17). В теории механики жидкостей движением жидкости мы называем потенциальное течение или безвихревое течение, в котором вращение равно нулю, так что элемент только переносится и деформируется тогда как если элемент еще и вращается, то мы называем течение вращающимся потоком или вихревым течением. Термин потенциальное течение возник из математического понятия потенциала скоростей.  [c.44]

Различают вихревые и безвихревые (потенциальные) движения газа. В реальных условиях из-за действия сил вязкого трен Я постоянно образуются вихревые движения, характерные тем, что элементарные частицы вращаются вокруг своих осей. Во многих случаях близкая к истинной картина течения получается при рассмотрении движения как безвихревого. В общем случае для определения скорости v каждой частицы по величине и направлению нужно знать три величины — проекции Vy, вектора скорости v на оси координат х, у, 2 эти координаты могут быть функциями времени t. Исследование течений жидкости в предположении, что движение является безвихревым, упрощается в связи с тем, что для определения скорости по величине и направлению достаточно знание лишь одной функции — потенциала скорости, частные производные от которой по координатам х, у. z дают значения соответствующих проекций скорости и, Vy и V,. Понятие вихревого и потенциального движений относятся как к вязкой, так и к идеальной жидкости, сжимаемой и несжимаемой.  [c.455]

Строение римановой поверхности отображения устанавливается в 10,11. А именно, при отображениях дозвуковой области потенциального течения в плоскость uv (соответственно, дозвуковой области вихревого течения в плоскость р/З) риманова поверхность имеет такое же строение, как и при отображении (х, у) и, v) потенциального течения несжимаемой жидкости, т. е. такое же, как и у аналитической функции точки разветвления изолированы, в каждой точке разветвления скрепляется  [c.28]


Выше были рассмотрены уравнения движения твердого тела в жидкости, теперь перейдем к рассмотрению другого класса задач, связанных с движением твердого тела, содержащего полости, заполненные идеальной несжимаемой жидкостью, вокруг неподвижной точки. При этом наиболее интересен случай, когда жидкость совершает движение, обладающее однородной завихренностью [125, 129, 256]. В этом случае также отделяется шестимерная система уравнений, описывающих изменение кинетического момента М тела и завихренности жидкости Случай потенциального течения жидкости в односвязной полости приводит лишь к изменению моментов инерции твердого тела и определяет инвариантное многообразие = 0. Для потенциального течения в многосвязной полости получаются уравнения движения твердого тело с гиростатом, этот случай подробно изучался Н. Е. Жуковским [78]. Тело с гиростатом называется эквивалентным по Жуковскому. Можно показать, что однородное вихревое движение жидкости возможно лишь в эллипсоидальной полости [129].  [c.270]

Описанная конструкция находит наиболее содержательное применение в задаче о баротропных течениях идеальной жидкости в потенциальном силовом поле. Согласно теореме Бернулли, функция Бернулли / постоянна на линиях тока и вихревых линиях. Следовательно, интегральные поверхности М совпадают с поверхностями уровня интеграла Бернулли f = с.  [c.23]

Таким образом, решения уравнения Шредингера находятся в однозначном соответствии с потенциальными течениями идеальной обобщенно баротропной жидкости с функцией давления (7). Эта аналогия физикам хорошо известна. Ее обсуждение и применение к динамике сверхпроводимости содержится, например, в известном курсе лекций Р. Фейнмана (т. 3, гл. 19). В связи со сказанным возникает интересный вопрос имеют ли физический смысл вихревые течения этой воображаемой квантовой жидкости  [c.226]

Теорема Лагранжа. В точках, в которых скорость имеет потенциал, вектор завихренности согласно его определению равен нулю. Иными словами, потенциальное течение жидкости является безвихревым. Возникает вопрос, может ли потенциальное в начальный момент времени течение стать вихревым Для идеальной жидкости ответ на этот вопрос дает теорема Лагранжа, которая утверждает, что если в начальный момент движения идеальной несжимаемой жидкости, подверженной действию потенциальных сил, существовал потенциал скорости, то он будет существовать во все последующие моменты ее движения. Иными словами, движение, однажды будучи безвихревым, всегда им и останется.  [c.39]

Поскольку сопротивление давления определяется только распределением давления по поверхности тела, естественно попытаться в рамках теории идеальной жидкости построить такую схему течения, которая давала бы теоретическое распределение, близкое к действительному. Схема безотрывного обтекания круглого цилиндра потенциальным потоком, рассмотренная в гл. 7, дает удовлетворительный результат только для лобовой части поверхности цилиндра, а на тыльной ее стороне теоретическое и опытное распределения давлений резко расходятся, причем теория приводит к парадоксу Даламбера. Схема отрывного обтекания (Кирхгофа), как отмечено выше, дает более точный результат по распределению скорости, однако расчетное сопротивление при этом почти в 2 раза меньше действительного. Хорошая согласованность теоретических и экспериментальных результатов получается при использовании схемы так называемой вихревой дорожки Кармана, согласно которой за обтекаемым телом образуется полоса, заполненная дискретными вихрями, расположенными в шахматном порядке (рис. 10.3). При определенном соотношении расстояний между вихрями эта дорожка является устойчивой и с помощью уравнения импульсов можно найти теоретическое значение вихревого сопротивления.  [c.393]

Рассматриваемый тип движения газовых пузырьков в жидкости соответствует области 2 рис. 5.6. В этой области строгий анализ требует, вообще говоря, решения полного уравнения Навье—Стокса (1.4г) или (1.4д). Однако интерпретация границы сферического пузырька как свободной поверхности жидкости с нулевым касательным напряжением на ней позволяет использовать следующий приближенный подход. При обтекании газового пузырька чистой (без поверхностно-активных веществ) жидкостью, как уже отмечалось, практически отсутствует зона отрыва потока от поверхности раздела фаз (в отличие от обтекания твердой сферы, которое при Re > 1 сопровождается отрывом потока практически сразу за ее миделе-вым сечением). В силу этого вихревое движение локализуется в весьма тонком пограничном слое на поверхности обтекаемого пузырька и в следе за пузырьком. Во всей остальной области течение может рассматриваться как потенциальное. Толщина пограничного слоя 5 на границе пузырька радиуса а по порядку величины должна  [c.216]


Постепенное расширение и сужение потока. В устройствах, сечения которых постепенно увеличиваются (диффузоры, раструбы), скорости течения потока в процессе движения уменьшаются, а давление возрастает (рис. 105). Иначе говоря, кинетическая энергия жидкости преобразуется в потенциальную. На первый взгляд при таком движении нет условия для образования отрывных течений. Однако, как показывает опыт, при угле конусности диффузора 0 Si 14° поток отрывается от стенки и образуется вихревая область, обычно возле одной стороны (какой именно — зависит от случайных причин).  [c.182]

Вихревое движение в отличие от потенциального характеризуется тем, что вектор угловой скорости Подобное течение в реальной жидкости наблюдается довольно часто. Так, наблюдая движение воды в реке, легко заметить образование вихрей за опорами мостов, за кормой лодок и катеров, при ударе весел о воду, при обтекании 92  [c.92]

Разложение скорости жидкости на составляющие. При изучении малых колебаний идеальной жидкости можно ограничиться рассмотрением только потенциальных течений, так как в линейном приближении вихревые составляющие не влияют на свободные колебания и распределение давления в жидкости [13]. При таких предположениях скорость частиц жидкости можно представить в виде  [c.287]

Фактически энергия движения в зоне отрыва постоянно черпается из основного потока за счет обмена на границе раздела. Отвлекаясь, однако, от такого рода обменных процессов и подходя к явлению пока чисто кинематически, можно допустить, что течение в зоне отрыва — это незатухающее вихревое движение идеальной жидкости. Следовательно, в кинематическом отношении отрывные течения несжимаемой жидкости естественно моделировать с помощью схемы своеобразного смешанного движения идеальной жидкости, которое в зонах отрыва вихревое, а вне их потенциальное, причем при переходе через границу раздела поле скоростей должно оставаться непрерывным.  [c.154]

Мы возвращаемся теперь к теории волн на поверхности тяжелой жидкости, первые результаты в которой были получены Лагранжем (см. выше, п. 15). Поучительно сопоставление следующих работ. В начале XIX в. пражский профессор Герстнер нашел одно из возможных точных решений (для бесконечной глубины жидкости). Зыбь Герстнера описывается весьма простыми формулами. Но в течение более чем ста лет этот результат оставался, изолированным, единственным примером прогрессивных волн конечной амплитуды. Его физическое значение тоже ограниченно, так как движение при зыби Герстнера является вихревым, следовательно (согласно классической теореме Лагранжа), не может быть создано из состояния покоя (как и не может быть разрушено) под действием потенциальных сил.  [c.280]

Движение жидкости, лишенной трения, с вращением частиц. Вихревые нити. Для изучения движений однородной, лишенной трения жидкости с вращением частиц воспользуемся опять теоремой Томсона о постоянстве циркуляции по замкнутому жидкому контуру. Из этой теоремы и из геометрических свойств ротации скорости (называемой также вихревым вектором) можно вывести известные теоремы Гельмгольца о вихревых движениях. Эти теоремы, касающиеся весьма важных геометрических и механических соотношений, имеющих место при движении жидкости с вращением частиц, были выведены самим Гельмгольцем несколько иным путем, а именно — на основе электродинамических представлений . Однако следствия, вытекающие из этих теорем, получаются простыми только в том случае, когда частицы жидкости, находящиеся во вращении, занимают область в виде нити, и вне этой области движение происходит без вращения частиц. В таком случае говорят о вихревых нитях. Важнейшие теоремы о вихревых нитях можно вывести из свойств окружающего их потенциального течения, не углубляясь при этом в детали движения жидкости с вращением частиц. Таким образом, мы должны вернуться  [c.107]

Вихри и связанное с ними циркуляционное потенциальное течение возникают всегда в результате образования поверхностей раздела. Все потенциальные течения являются результатом давления, передаваемого на жидкость ограничивающей ее стенкой или находящимся внутри нее телом. Циркуляционное течение возникает главным образом в том случае, когда внутри жидкости имеется поверхность, одна часть которой испытывает некоторое время давление, а другая, соседняя, часть не подвергается давлению. Примером может служить образование вихревого кольца около отверстия в стенке (рис. 45) стенка испытывает давление слева и отвечает равным противодействием, в то время как отверстие не подвергается давлению. Другим важным примером является движение крыла самолета, когда площадь, находящаяся непосредственно под крылом, некоторое время нагружена весом самолета, а продолжение этой площади за пределами крыла не подвергается в это время никакому давлению. В конце 7 мы упомянули, что из поверхности раздела, возникающей позади крыла, образуются два вихря, сбегающие с концов крыла (см. рис. 46). Кроме того, в начальный момент движения, при разгоне крыла, образуется вихрь, изображенный на рис. 66. Этот начальный вихрь вместе с боковыми вихрями образует одну общую, обычно несколько размытую вихревую нить. Само  [c.112]

Проблема исправления уравнений гидродинамики была поставлена впервые Н. П. Кастериным еще в 1937 г. Н. П. Кастерин считал, что уравнения Эйлера являются лишь первым приближением для описания картины вихревых течений. Во втором приближении надо учитывать дискретность структуры газа и прерывистость изменений основных гидродинамических величин. Например, в рамках идеальной жидкости следует предположить, что на границе потенциального и вихревого течений существует разрыв гидродинамической скорости. Взяв за основу эту идею о разрывном изменении скоростей, Н. П. Кастерин получил новые уравнения для описания вихревого поля в идеальной жидкости [Л. 1-12].  [c.60]


Помимо мембранной аналогии Прандтля имеют место гидродинамические аналогии с ламинарным течением вязкой жидкости (аналогия Буссинеска), с потенциальным течением идеальной несжимаемой жидкости (аналогия Томсона и Тета) и аналогия Гринхилла с вихревым течением идеальной несжимаемой жидкости.  [c.151]

Течение жидкости может быть вихревым или безвихревым (потенциальным). Исследование безвихревого потока можно свести к нахэждению так называемой потенциальной функции (или потенциала скоростей), знание которой позволяет полностью рассчитать поле скоростей различных течений. Для некоторых видов вихревого потока определение его кинематических характеристик можно свести также к отысканию одной неизвестной функции — функции тока. Следовательно, нахождение потенциала скоростей и функции тока — важнейшая задача аэродинамики. В связи с этим предлагается ряд вопросов н задач, связанных с нахождением потенциальной функции и функции тока, а также построением кинематического характера течения и опре- делением поля скоростей для случаев, когда эти функции известны.  [c.40]

Для выявления характера течения жидкости (потенциального или вихревого) необходимо найти значения вихря rot У (или его составляющих ю , Ыу, Юг)-Так как рассматриваемый поток плоский, то Юж = ю = 0 и для анализа течения достаточно определить = 0,5(дУу/дх — дУJdy).  [c.50]

Если Ц. с. равна кулю по любому контуру, проведённому внутри жидкости, то течение жидкости— звихре-вое, или потенциальное, и потенциал скоростей—однозначная ф-ция координат. Если же Ц. с. по нек-рым контурам отлична от нуля, то течение жидкости либо вихревое в соответственных областях, либо безвихревое, но с неоднозначным потенциалом скоростей (область течения многосвязная). В случае потенц. течения в многосвязной области Ц, с. по всем контурам, охватывающим одни и те же твёрдые границы, имеет одно и то же значение. Ц. с. широко используется как характеристика течений идеальной (без учёта вязкости) жидкости. По динамич. теореме Томсона (Кельвина) Ц. с. по замкнутому жидкому контуру остаётся постоянной во время движения, если, во-первых, жидкость является идеальной, во-вторых, давление (газа) жидкости зависит только от плотности, в-третьих, массовые силы потенциальны, а потенциал однозначен. Для вязкой жидкости Ц. с. со временем изменяется вследствие диффузии вихрей. При плоском циркуляц. обтеканий контура идеальной несжимаемой жидкостью, при к-ром скорость на бесконечности отлична от нуля, воздействие жидкости на контур определяется по Жуковского теореме и прямо пропорционально значению Ц. с.,  [c.441]

Очевидно, что такое течение будет потенциальным, так как представляет сумму плоскопараллельного течения и иотенцпальцого вращения жидкости вокруг бесконечно длинного вихревого шнура, совпадающего с осью симметрии. Угол наклона скорости в таком течении меняется по закону  [c.260]

В.ЧЗКОЙ жидкости. Рассуждения, приводящие к понятию установившегося течения жидкости, неубедительны. Теория идеальной жидкости с большим успехом применяется для расчета неустановившихся течений. Потенциальные течения жидкости, математически возможны, но они могут быть неустойчивыми. Вероятно, что беспорядочные вихревые движения в слсде, теоретически вводимые при изучении течения идеальной жидкости, мало отличающегося от потенциального течения (например, течения Кармана с бесконечными вихревыми дорожками), являются удовлетворительной математической моделью процессов, наблюдаемых при больших числах Рейнольдса. Следует считать, что задачи с симметричными условиями могут и не иметь устойчивых симметричных решений. Таким образом, парадоксы теории идеальной жидкости могут являться парадоксами топологического переуп-рощения и парадоксами симметрии [4],  [c.64]

Первый пример потенциального движения жидкости привел еще в середине XVIII в. Л. Эйлер. Последующее изучение кинематики сплошной среды, выполненное Коши и Стоксом, привело к появлению понятия вихря и к изучению вихревых течений. Ряд изящных и важных теорем о вихревых линиях и вихревых трубках был опубликован в 1858 г. Г. Гельмгольцем, привлекшим интерес исследователей к вихревым течениям. В этот же период было введено понятие циркуляции скорости и установлена связь циркуляции с потоком вихря. Гельмгольцу, в частности, принадлежит важная кинемати-74 ческая теорема о постоянстве потока вдоль вихревой трубки, из которой следует невозможность обрыва вихревых трубок внутри жидкости.  [c.74]

Третья составляющая сопротивления получается благодаря интегралам импульса и давления на коротких сторонах (соответствующих основаниям цилиндра в 87), одна из которых находится в не13озмущенной жидкости, а другая пересекает вихревую дорожку. Течение в обоих этих местах потенциальное и — если пренебречь действием движущегося вместе с телом источника — установившееся, следовательно, к нему можно применить обычное уравнение Бернулли. Выполнение вычисления даст для этой составляющей величину  [c.149]

Поэтому вихревые течения идеального газа с нулями V внутри области течения представляют собой топологические классы, не эквивалентные потенциальным. Роль сжимаемости, однако, как и в случае потенциальных течений, менее существенна очевидно, нетрудно доказать топологическую эквивалентность вихревых течений с нулями V внутри области течения аналогичным вихревым течениям несжимаемой жидкости (при дополнительном условии ограниченности числа М). Примеры упомянутого класса течений дают так называемые вихрепотенциальные течения, описывающие образование циркуляционных отрывных зон при обтекании профиля по схеме Бэтчелора.  [c.201]

Если Ц. с. равна пулю по любому контуру, проведенному внутри жидкости, то течение жидкости — безвихревое, или потенциальное течение, и потенциал скоростей — однозначная ф-ция координат. Если же Ц. с, по нек-рым контурам отлична от нуля, то течение жидкости — либо вихревое в соответственных областях, либо безвихревое, но с неоднозначным потенциалом скоростей (область течения многосвязная). В случае потенциального течения в многосвязной области Д. с. по всем контурам, охватывающим одни и те же твердые границы, имеет одно и то же значение. Д, с, широко иснользуется как характеристика течений идеальной (без учета вязкости) жидкости. По динамич. теореме Томсона (Кельвина) Д. с, по замкнутому жидкому контуру остается постоянной во все время движения, если 1) жидкость является идеальной, 2) давление (газа) жидкости зависит только от плотности и 3) массовые силы — потенциальны, а нотенциал однозначен. Для вязкой жидкости Д. с. со временем изменяется вследствие диффузии вихрей. При плоском циркуляционном обтекании контура идеальной несжимаемой жидкостью, при к-ром скорость на бесконечности отлична от нуля, воздействие жидкости на контур определяется но Жуковского теореме и прямо пропорционально значению Ц. с., плотности жидкости и значению скорости потока на бесконечности. При плоском обтекании идеальной жидкостью крыла с острой задней кромкой величипа Д. с. определяется Чаплыгина — Жуковского постулатом. При обтекании крыла конечного размаха, хорда к-рого в плане меняется, Д. с. вдоль размаха крыла также меняется.  [c.401]


Из (4.8) вытекает, что дЗ/дЬ + Н — функция лишь от координат Ж1,..., Х2к и времени Ь. Это соотношение обобщает уравнение Гамильтона—Якоби и переходит в него при к = О (когда поле и потенциально). Тогда (4.7) будет замкнутой канонической системой дифференциальных уравнений для потенциалов Клебша с гамильтонианом д8/дЬ + Н. Эти наблюдения обобщают известные результаты Клебша и Стюарта (см. [42]) о вихревых течениях идеальной жидкости (когда и = 3).  [c.127]

Используем общие определения параграфа 2 применительно к векторному соленоидальному полю завихренности и. Тогда из общих свойств векторных полей на основании теоремы Стокса (1.8) следует, что циркуляция Г по любому замкнутому стягиваемому контуру равна алгебраической сумме интенсивностей к всех вихревых трубок, пересекающих поверхность, ограниченную этим контуром. Это справедливо и в частном случае вихревых трубок бесконечно малого поперечного сечения — вихревых нитей. Обратим внимание на то, что понятие вихревая нить и вихревая линия отличны. Вихревая нить — это особая линия в распределении поля завихренности, полностью определяемая значением интенсивности к. В свою очередь — вихревая линия — это линия, касательная к которой в каждый момент времени совпадает с направлением мгновенной оси вращения жидких элементов. Применительно к описанию вихревого движения термины вихревые линии и нити ввел Г. Гельмгольц в (135). Он сформулировал основные свойства интегралов гидродинамических уравнений второго класса (так были названы течения, содержащие отличную от нуля завихренность в отличие от полностью потенциальных течений, весьма детально к тому времени изученных). Сформулированные в виде трех положений, эти свойства в дальнейшем названы законами или теоремами Гельмгольца для в 1хревого движения. Более столетия они встречаются в различных интерпретациях практически во всех учебниках по механике жидкости. Приведем эти законы в формулировках Г. Гельмгольца  [c.34]

Если Ц. с. по любому замкнутому контуру, проведённому внутри жидкости, равна нулю, то течение жидкости будет безвихревым, или потенциальным течением. Если же Ц. с. по нек-рым контурам будет отлична от нуля, то течение жидкости будет либо вихревым в соответственных областях, либо безвихревым, но с неоднозначным потенциалом скоростей (область течения неодносвязна, т. е. в ней имеются замкнутые твёрдые границы, напр, быки моста в реке). В последнем случае Ц. с. по всем контурам, охватывающим одни и те же границы, имеет одно и то же значение. Ц. с. широко используется как характеристика течений идеальной (без учёта вязкости) жидкости (см., напр., Жуковского теорема). Для вязкой жидкости Ц. с, всегда отлична от нуля и со временем изменяется вследствие диффузии вихрей.  [c.848]

Осесимметричное закрученное потенциальное течение несжимаемой жидкости в трубе произвольного сечения можно построить как сумму незакручен-ного течения и течения, вызванного бесконечным вихревым шнуром, совпадающим с осью симметрии. Это очевидно из того, что течение, вызванное вихревы.м шнуром, всегда удовлетворяет граничным условиям на осесимметричной поверхности. Сложность представляет только отыскание незакрученного течения, но в данном случае оно строится просто.  [c.260]

Сопротивление крыла конечного размаха больше, чем крыла с бесконечным удлинением, поскольку свободные вихри генерируются непрерывно и на это расходуется дополнительная энергия. В модели идеальной жидкости эта дополнительная энергия уходит на образо-вамие свободных вихрей, так что требуется непрерывный подвод энергии к вихревой системе, несмотря на то, что течение остается потенциальным. В модели потенциального течения результирующая сила R отклоняется вниз по течению от нормали к направлению скорости Свободного потока Va (рис. 15-19). По определению подъемная сила А перпендикулярна Va. Составляющая R, направленная параллельно Vo, есть дополнительная сила сопротивления и называется индуктивным сопротивлением Dj. Из рис. 15-19 и выражения (15-34) имеем  [c.417]

Главы 6—14 образуют законченное целое в них делается попытка дать подробное описание двумерного движения с единой точки зрения функций комплексного переменного при этом широко применяется конформное отображение, теорема Чаплыгина — Блазиуса и ее обобщения. В главе 6 исследуются потенциальные течения в главе 7 рассматривается простое крыло Жуковского, глава 8 посвящена источникам и стокам. В главе 9 подробно рассматривается движение цилиндра и дается обобщение теоремы Кутта — Жуковского, охватывающее случай ускоренного движения (п. 9.53). Глава 10 содержит изложение теоремы Шварца — Кристоффеля о конформном отображении и ее некоторые непосредственные приложения в главах 11, 12 даются дальнейшие приложения с целью изучения прерывных течений с отрывом струй и образованием каверн в потоке за цилиндром, сюда включено также описание изящного метода Леви-Чивита. Глава 13 посвящена рассмотрению прямолинейных вихрей, вихревой дорожки Кармана и сопротив.1с-нию, вызванному вихревым следом за телом. В главе 14 рассматривается. 1вумерное волновое движение жидкости.  [c.10]


Смотреть страницы где упоминается термин Потенциальное и вихревое течение жидкости : [c.390]    [c.289]    [c.41]    [c.149]    [c.38]    [c.38]    [c.202]    [c.76]    [c.267]    [c.152]    [c.108]    [c.113]   
Смотреть главы в:

Гидравлика и аэродинамика  -> Потенциальное и вихревое течение жидкости



ПОИСК



Вихревое течение жидкости

Вихревые усы

Потенциальное жидкости

Потенциальное и вихревое течения

Потенциальное течение

Потенциальное течение жидкост

Течение в жидкости

Течение вихревое



© 2025 Mash-xxl.info Реклама на сайте