Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вихрь начальный

Вернемся к процессу развития циркуляции. Мы видели, что вихрь создается вблизи задней кромки он остается позади, в то время как крыло продолжает движение. Мы называем этот вихрь начальным вихрем. Его ясно можно различить на фотографиях (рис. 22). Одновременно, как мы уже говорили ранее, создается циркуляция вокруг профиля крыла, и пока вихревая область оставляет крыло в вихревом слое, циркуляция возрастает. Однако резонно предположить, что когда начальный вихрь унесен па большое расстояние, то циркуляция достигает своего максимального значения, так как больше не существует разности скоростей между течениями, оставляющими верхнюю и нижнюю поверхности. Это предположение независимо друг от друга выдвинули Кутта и Жуковский. Оно называется условием Кутта-Жуковского или условием плавного потока на задней кромке. Это заметный мо-  [c.51]


В отличие от воздушных вихрей, начальная скорость которых может достичь 100 м/сек и более, в воде при начальной скорости 10—15 м/сек вследствие сильного вращения жидкости, движущейся вместе с вихрем, возникает кавитационное кольцо. Оно возникает в момент образования вихря при срыве пограничного слоя с края цилиндра. Если пытаться получить вихри со скоростью  [c.352]

Г, + 0,25А и Г-2+ 0,75А, у которых центры смещены вдоль вертикального радиуса на соответствующие расстояния (рис. 2.18) [116]. Оптимальное соотношение ширины Ь и высоты А прямоугольного канала в выходном сечении 6 А = 2 1. При этом входные кромки тщательно обрабатывают, обеспечивая плавный вход, а носик сопла закругляют с радиусом 0,1 мм. Предположение о том, что форма острой кромки должна сократить интенсивность возмущений на границе между втекающим потоком и остальной массой газа, находящейся в камере энергоразделения [40, 116), противоречит теоретическим взглядам самого автора сопла А.П. Меркулова и других приверженцев гипотезы взаимодействия вихрей. Ее вибрация может служить причиной возникновения начальной турбулентности, приводящей впоследствии к ее генерации во всем объеме камеры энергоразделения. На рис. 2.19 показаны сравнительные характеристики вихревых труб, использующих различные сопловые вводы. Нетрудно заметить, что прямоугольное спиральное сопло А.П. Меркулова дает заметный выигрыш при прочих равных условиях по сравнению с другими типами закручивающих устройств.  [c.69]

Возникновение циркуляции вокруг крыла тесно связано с возникновением вихрей позади крыла. Вначале, пока крыло находится в покое, циркуляция отсутствует и общий момент импульса системы крыло — окружающая среда равен нулю. Поэтому и в дальнейшем общий момент импульса этой замкнутой системы должен оставаться равным нулю. В начальный момент, пока циркуляция еще не возникла, картина обтекания должна быть близка к той, которая изображена на рис. 352. Частицы воздуха, обтекающие крыло снизу, поднимаются мимо задней его кромки вверх. При этом под действием сил вязкости движение частиц воздуха становится завихренным, Так как частицы воздуха испытывают торможение со стороны кромки крыла, то они приобретают вращение против часовой стрелки. У кромки постепенно образуется вихрь с вращением против часовой стрелки (рис. 355). Затем этот вихрь отрывается от крыла и уносится потоком. Вихри, обладающие моментом импульса, соответствующим вращению против часовой стрелки, возникают один за другим, и таким образом у задней кромки крыла все время возникают моменты импульса. В результате в силу закона сохранения моментов импульса вокруг крыла должна возникнуть циркуляция, направленная в сторону, противоположную вращению вихря (по часовой стрелке).  [c.565]


Процесс захвата низконапорной среды происходит за счет отделившихся от потенциального ядра вихрей высоконапорного газа. Количество захватываемой среды интенсивно возрастает на начальном участке струи и существенно снижается на основном участке. Энергетические свойства процесса эжекции в струйном течении выражаются через КПД, имеющего вид  [c.133]

Для выполнения расчета основных параметров термотрансформатора, схематично представленного на рис. 9.32, требуются следующие исходные данные давление температура 7 , компонентный состав С высоконапорного газа и давление P низконапорной среды, в которую происходит истечение охлажденного газа из вынужденного вихря. Кроме того, при расчете задаются величины радиуса отверстия диафрагмы Г .,,,,, начального радиуса Г(. вихревой камеры и угол расширения или сужения стенок камеры энергоразделения у- Если угол у по потоку свободного вихря расширяющийся, то его величина принимается положительной, если угол у сужающийся, то его величина принимается отрицательной.  [c.263]

В гидродинамике доказывается для весьма широкого класса практически важных движений, что и в случае неустановившегося движения циркуляция по замкнутому контуру постоянна, однако в этом случае рассматривается так называемый жидкий контур, т. е. контур, состоящий из одних и тех же частиц. Последнее утверждение называется теоремой Томпсона. Из этой теоремы следует, что если некоторая масса жидкости в начальный момент времени имела безвихревое движение или покоилась, то и впредь в этой части жидкости не возникает вихрей, о чем уже упоминалась выше (см. также учебник Н. Я. Фабриканта, цитированный выше, в первой сноске).  [c.105]

Такой подход к решению задачи приводит к правильному конечному результату независимо от того, какие процессы происходят между рассматриваемыми начальным и конечным сечениями камеры, насколько интенсивно идет процесс смешения, возникают ли скачки уплотнения, имеется ли отрыв потока, вихри, встречные токи и т. д. Принятое допущение об одномерности потока в конечном сечении является весьма существенным, так как очевидно, что никаких сведений о характере поля скорости в конце смешения такой расчет дать не может они должны быть заданы дополнительно, если г = 1.  [c.506]

Рис. 10.9. Фотография начального вихря Рис. 10.9. Фотография начального вихря
Итак, начальный вихрь, срывающийся с задней кромки крыла, вызывает возникновение циркуляции вокруг крыла, которая  [c.24]

Это уравнение представляет собой частный интеграл уравнений движения и относится к линии тока. Если начальные скорость и давление одинаковы для всех линий тока, то и константа для всех линий тока одна и та же. Стационарный вихрь . Решением уравнения (9.23) будет  [c.295]

Эти соотношения являются начальными условиями для решения нестационарной задачи о диффузии вихря. При отсутствии влияния твердых границ или иных возмуш,ений естественно считать, что все время движения и, = = О, т. е. частицы перемещаются по круговым траекториям. Поэтому, пренебрегая влиянием массовых сил (считая, например, что вихревая нить вертикальна), движение можно описать уравнением Навье—Стокса (5.14) в цилиндрических координатах, которое в данном случае примет вид  [c.302]

Наглядное представление о характере изменения вихря Q (г, /) и поля скоростей и (г, t) можно составить по кривым, изображающим зависимости (8.25) и (8.26) (рис. 8.6). Можно видеть, что для каждого фиксированного радиуса rj величина вихря Qj вначале возрастает и, достигнув максимума, убывает, с течением времени стремясь к нулю. При этом чем больше радиус, тем меньше значение максимума 2,. Механизм этого движения состоит в том, что завихренность с циркуляцией Го, имевшая место в начале координат в момент t = О, распространяется с течением времени на все более обширную область, однако периферийных точек достигает тем меньшая завихренность, чем дальше точка расположена от начального вихря.  [c.304]


Эти соотношения являются начальными условиями для решения нестационарной задачи о диффузии вихря. При отсутствии влияния твердых границ или иных возмущений естественно считать, что во все время движения = 0, т. е. частицы будут  [c.337]

В соответствии с гипотезой Чаплыгина—Жуковского при плавном обтекании крыла поток обычно не огибает заднюю кромку, а сходит с нее (рис. 9.13, в). При этом скорости на острых задних кромках несущей поверхности конечны. Сход потока с таких кромок сопровождается образованием начального (разгонного) вихря и, как следствие, формированием свободных нестационарных вихрей, отделяющихся от присоединенных. Изменение интенсивности присоединенных вихрей вызывает сход с них пелены свободных вихрей, параллельных присоединенному вихрю. Эта вихревая пелена располагается на самой несущей поверхности и за ее пределами, сходя с задней кромки. Таким образом, в этом случае циркуляция по произвольному контуру, охватывающему сечение крыла, не равна нулю.  [c.289]

Совмещение двух как будто бы противоречивых явлений объясняется следующим образом в начале движения крыла на верхней и нижней поверхностях возникают различные скорости, в результате чего на задней кромке образуется поверхность разрыва скоростей, которая приведет к появлению начального вихря (рис. IV.1, а). Этот вихрь, интенсивность которого определяется  [c.94]

При рассмотрении начальной кавитации крыла конечного размаха учитывают особенности ее возникновения и развития па различных участках поверхности крыла и за крылом на поверхности крыла, удаленной от кромок на кромке крыла в концевых вихрях.  [c.7]

Рассмотрим задачу о диффузии вихрей в вязкой несжимаемой жидкости в предположении, что движение жидкости плоскопараллельное и жидкость занимает всю плоскость ). Рассматриваемое движение — неустановившееся. Пусть в начальный момент времени f = О жидкость движется потенциально везде, за исключением полюса О, представляющего собой след на плоскости движения бесконечного прямолинейного концентрированного вихря с циркуляцией Г.  [c.113]

Уравнение (29.5) линейное и пригодно для рассмотрения любого симметричного относительно оси г движения и, в частности, для начальной задачи с любой заданной функцией (г, 0). Соответствующее решение линейной задачи можно построить методом суперпозиции решения для точечного вихря.  [c.308]

Графически на диаграмме v p это можно отобразить следующим образом (рис. 8-5). Если начальному состоянию газа соответствует точка /, состоянию среды, в которую истекает газ,— точка 2, а состоянию газа, соответствующему достижению максимального расхода, — точка а, то заштрихованная на рисунке площадь соответствует потенциальной энергии газа, превращающейся в кинетическую энергию истекающей струи расположенная же под ней площадь 2—2 —а —а соответствует той величине потенциальной энергии газа, которая, как было сказано выше, непроизводительно расходуется на образование вихрей при истечении. Параметры, соответствующие максимальному расходу газа, при котором в сопле устанавливается критическое давление, называют критическими. К ним, помимо р р, относят г нр и Икр, причем, как можно показать на основании данных, известных из физики, критическая скорость Шкр равна скорости распространения звука в истекающей среде (в данном сечении).  [c.88]

Кроме того, на величину Re p может влиять шероховатость поверхности пластины, интенсивность теплообмена и т. д. Сам переход от ламинарного к турбулентному режиму течения жидкости в пограничном слое, как показывают опытные данные, происходит не в точке, а на некотором участке, в связи с чем иногда вводят два значения Re,(pi и Re p2, где Re pi =-— критическое число Рейнольдса, отвечающее переходу от ламинарного к переходному режиму течения, когда в пограничном слое возникают первые вихри и пульсации Re pa = — критическое число Рейнольдса для перехода к развитому турбулентному режиму течения. На рис. 3-2 приведены зависимости Re pi и Re pn от степени начальной турбулентности набегающего потока.  [c.70]

Задачей подводящих каналов является обеспечение начального состояния потока при входе в лопастное колесо 1) осесимметричного с возможно более равномерным распределением скоростей по всему сечению потока, необходимого для создания установившегося относительного движения жидкости в области лопастного колеса 2) нулевого значения начального момента скорости, которое служит основой расчёта напора лопастного колеса, и 3) изменения величины скорости от значений во всасывающем трубопроводе до величины при входе в колесо. Кроме того, при исполнении подводящих каналов следует учитывать условия работы, возникающие при режимах, отличных от нормального, во время которых возможно возникновение противотоков и образование осевого вихря, вредно отражающегося на распределении давления в подводящем канале.  [c.357]

Особенно высокая интенсивность пульсаций за решеткой (в кромочных следах) объясняется вихревой структурой следов. В начальном участке следа система дискретных вихрей создает условия, необходимые для конденсации (см. 3.1 [61]). При этом описанный механизм конденсационной турбулентности должен вызывать значительное увеличение амплитуд пульсаций. Подробные исследования, проведенные В. М. Леоновым, показали, что с приближением к состоянию насыщения из области перегрева амплитуды пульсаций давления торможения возрастают в 2,5—3 раза в зависимости от формы кромки (скругленная, плоскосрезанная, заостренная).  [c.87]

Кризисное возрастание Ар о наиболее отчетливо продемонстрировано в вихревых следах за пластинами. Из рис. 3.11 следует, что экстремальные значения Ар о достигаются при Aso l на любом удалении от кромки в пределах начального участка (х=0- 7) для скругленной и плоскосрезанной кромок, причем наибольшие значения Ар о установлены в сечениях х Ъ на оси следа для скругленной кромки. Известно, что примерно на таком расстоянии от кромки скорость продольного движения и циркуляция скорости Е каждом вихре достигают максимальных значений.  [c.87]


При появлении мелкодисперсной жидкой фазы в отрывных областях частота пульсаций падает, так как мелкие капли частично подавляют пульсации в отрывных областях. Следовательно, рассматриваемые, опыты подтверждают и в этом случае влияние начального состояния на пульсационные характеристики потоков насыщенного и влажного пара. По мере увеличения начальной влажности размеры частиц влаги возрастают, инерционность системы увеличивается и амплитуда пульсаций падает в этом случае влага служит своеобразным демпфером в процессе образования, срыва и диффузии паровых вихрей в зонах отрыва.  [c.250]

На рис. 125 кружками отмечены экспериментальные точки, соответствующие движению вихря, начальные параметры которого равны о=10 см, 7о = 4,3 м1сек, а величина а = 6-10-з. Сплошная кривая получена по формуле (26). Отклонение расчетной кривой от экспериментальных точек при больших 1 объясняется тем, что турбулентная вязкость со временем уменьшается и, начиная с некоторого момента, делается сравнимой с ки-  [c.347]

Взаимодействие вихрей эллиптической формы происходит по тому же сценарию, причем с более близкими значениями критических расстояний, при которых начинается обмен частицами или пол1ЮС объединение вихрей [Веретенцев, Рудяк, 1986]. Взаимодействие вихрей, начальная форма которых определяется из условия сшивки вихревого и потенциального течений, описано в монографии Сэффмэна [2000], где указано, в частности, критическое значение параметра S/Г" = 0,3121 S - площадь каждого из вихрей), при котором вихри становятся неустойчивыми к бесконечно мш1ым двумерным возмущениям. Переходя к приведенному диаметру вихря d = (45/л) /", получаем критическое расстояние / = l,586rf, что несколько ниже, чем для круговых и эллиптических вихрей.  [c.339]

В частности, в осесимметричных струях такие структуры идентифицируются с неустойчивостью вихревого слоя и его сворачиванием в концентрации завихренности — вихри. Снос этих вихрей вниз по потоку сопровожцается процессом их последовательного слияния попарно, что и определяет расширение слоя смешения. Каскад попарных слияний вихрей заканчивается образованием последовательности клубков. В конце начального участка крупномасштабные клубки разрушаются и генерируют мелкомасштабную турбулентность. Взаимодействие упорядоченных, когерентных структур с хаотическим турбулентным фоном определяет динамику развития структурного турбулентного движения.  [c.127]

Во втором случае, при воздействии на турбулентную струю высокочастотного звукового сигнала (Sh = 2- 5), происходит ослабление интенсивности турбулентного перемешивания в приосе-вой части начального участка струи уменьшаются пульсашюн-ные скорости, происходит 1 ельчение периодических вихрей, слой смешения становится тоньше и увеличивается длина начального участка, уменьшается угол раскрытия и эжекционная способность струи как на начальном, так и на основном участках струи. Указанное явление было обнаружено при числах Рейнольдса Re = 1(Р 5 1(И и малых значениях числа Маха.  [c.128]

Таким образом, КВС как области с повышенным энергосодержанием, переходят на периферию, тем самым увеличивая ее энергию. Такой механизм неустойчивости действует только в одном направлении и хорюшо согласуется с возникновением реверса при образовании зоны рециркуляции в области диафрагмы вихревой трубы. В этом случае КВС возникают на фанице рециркулирующего потока. Направление силы Г можно определить по знаку скалярного произведения вектора угловой скорости вращения приосевого вихря Л и вектора угловой скорости вихревого жгута <0, после его разворота. В описанном выше безре-циркуляционном режиме это произведение положительно, что соответствует силе, направленной к периферии. Возникновение зоны рециркуляции приводит к изменению направления начальной завихренности КВС и осевой составляющей скорости, что соответствует зеркальному отражению относительно плоскости, перпендикулярной оси вихревой трубы. Но при зеркальном отражении скалярное произведение не изменяется и, соответственно, не изменяется направление действия силы F. В результате вихревой перенос энергии будет идти из зоны рециркуляции в область потока, выносимого через отверстие диафрагмы, что и приводит в конечном счете к его нагреванию.  [c.130]

Коэффициент сопротивления трубы при поступательно-вращательном движении жидкости по трубе в случае сравнительно больших размеров воздушного вихря (/ Щ, т. е. при малой толщине слоя жидкости, может быть приближенно вычислен следующим образом. На начальном участке трубы, где толщина пограничного слоя меньше толщины слоя заполняющей трубы жидкости, а сам пограничный слой незначительно отличается от плоского, сопротивление движению будет в известной степени аналогично сопротивлению при обтекании плоской пластины потоком со скоростью, близкой к максимальной скорости Шо жидкости в трубе. Поэтому между коэферициентом сопротивления трубы и коэффициентом сопротивления плоской пластины в конце начального участка трубы, т. е. при /" ч, должно выполняться следующее приближенное соотношение  [c.655]

Обтекание тел с затупленной кормовой частью (неудобообте-каемых тел), как правило, сопровождается отрывами. Кинематическая структура потока зависит от числа Рейнольдса и, если движение возникло из состояния покоя, от времени с начала движения. На рис. 8.29 показаны снятые на кинопленку последовательные стадии развития пограничного слоя и формирования вихрей при обтекании кормовой части цилиндрического тела потоком воды, начинающим движение из состояния покоя. В начальный момент пограничный слой почти отсутствует, и течение близко по структуре к потенциальному. В дальнейшем происходит нарастание пограничного слоя, его утолщение и, наконец, отрыв (рис. 8.29, 4). Оторвавшийся пограничный слой свертывается в крупный вихрь, оттесняющий поток от поверхности тела.  [c.350]

Рассмотрим схемы дозвукового обтекания сечения несущей поверхности, изображенные на рис. 9.13, а, б. Такой характер обтекания, когда критическая точка сдвинута относительной задней кромки, наблюдается в редких случаях и лишь в начальный момент как следствие резкого изменения параметров движения. В этот момент циркуляция еще не возникает, свободные вихри не отделяются от присоединенных, начальный вихрь не сходит с задней кромки. Таким образом, этому моменту соответствует бесциркуляционное течение, при котором циркуляция по замкнутому контуру, охватывающему любое сечение крыла, равна нулю. Очевидно, в данном случае ни за крылом, ни на его поверхности свободные вихри не появ-  [c.288]

Если движение идеальной жидкости, определяемое уравнением (5.1а), было в некоторый начальный момент времени безвихревым, то согласно теореме Лагранжа вихрь скорости rot и будет равен нулю в любой последующий момент времени. Условие rot и =0 означает, что существует такая скалярная функция ф, градиет которой в любой точке области течения равен вектору скорости и, т.е. и = = grad ф. При этом в общем случае  [c.184]

На начальном участке (при малых значениях х) гидродинамический слой очень тонок (в лобовой точке х=0 6г=0) и течение в нем ламинарное, упорядоченное. По мере удаления от лобовой точки толщина пограничного олоя растет. Постепенно ламинарный режим течения переходит в турбулентный. При турбулентном пограничном слое около поверхности сохраняется тонкий ламинарный поделай 5л.п, где скорость невелика и силы вязкости гасят турбулентные вихри.  [c.41]


Результаты расчета по уравнениям (5.20), представленные в [2], показьгаа от, что в начальных сечениях сопла вблизи стенки образуется обратное течение (тороидальный вихрь), а профиль вращательной скорости характеризуется кривой с максимумом. По мере продвижения потока в сопло осевая скорость становится равномерной, а вращательная скорость стремится к закону вращения твердого тела.  [c.109]

Другой способ получения потоков влажного пара мелкодисперсной структуры состоит в применении специальных поверхностных холодильников-турбули-заторов, устанавливаемых в контурах влажного пара перед исследуемой моделью (рис. 2.3, а). Поверхность охлаждения сформирована из продольно обтекаемых полых пластин с отношением //А=6-ь10 (рис. 2.9, а), внутри которых циркулирует охлаждающая вода. Каждая пластина выполнена двухходовой. За пластинами образуются вихревые аэродинамические следы, начальные участки которых состоят из дискретных вихрей, расположенных в шахматном порядке (дорожки Кармана).  [c.37]

Сопоставляя приведенные данные, отметим, что в начальном участке вихревого следа происходит интенсивное дробление пленок и капель в дискретных вихрях, а затем реализуется частичная коагуляция капель. Одновременно осуществляется обмен каплями с ядром потока. Очевидно преимущество скругленных кромок большой толщины, обеспечивающих заметное уменьшение диаметров капель при Дкр>0,15. Влияние толщины и формы кромки на дисперсность в закромочном следе установлено в опытах Ю. И. Абрамова. Для решетки С-9012А было показано, что плоско срезанная кромка формирует капли максимальных размеров, а ступенчатая — минимальных. Однако, несмотря на активный процесс дробления за плоскосрезанной, ступенчатой и скругленной кромками, зрозионно-опасные капли в следе остаются при любой форме и размерах кромок.  [c.112]

Следует еще раз вернуться к роли режимного параметра га, определяющего перепад давлений на клапане. С увеличеним га амплитуда пульсаций снижается, а частота меняете слабо. Эта тенденция обнаружена в экспериментах при любой начальной влажности, а также на перегретом и сухом насыщенном паре. Следовательно, с увеличением перепада давлений на клапане процессы возникновения, развития и срыва вихрей в отрывных зонах интенсифицируются, что объясняется увеличением градиентности течения на предотрывных участках чаши и диффузора, а также заметным смещением линий отрыва и интенсификацией процессов переноса массы и импульса в этих областях.  [c.250]


Смотреть страницы где упоминается термин Вихрь начальный : [c.134]    [c.101]    [c.24]    [c.25]    [c.90]    [c.340]    [c.385]    [c.147]    [c.66]    [c.312]    [c.458]    [c.74]   
Аэродинамика (2002) -- [ c.50 ]

Гидроаэромеханика (2000) -- [ c.112 ]

Аэродинамика Часть 1 (1949) -- [ c.307 ]



ПОИСК



Взаимодействие двух одинаковых вихрей при разных начальных расстояниях

Вихрь

Вихрь начальный (разгонный)

Начальный вихрь несущей поверхности



© 2025 Mash-xxl.info Реклама на сайте