Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод интегрирования проблемы

Соответственно эти строгие выражения шести переменных элементов в данной динамической проблеме согласуются с результатами, полученными из шести обыкновенных дифференциальных уравнений (150) и (151) при помощи обычных методов интегрирования и с теми, которые получены путем исключения из уравнений (113), (114), (147).  [c.269]

За свою почти сорокалетнюю научную деятельность Михаил Васильевич Остроградский (1801—1861) создал ряд ценных трудов по основным проблемам механики. Ему принадлежат первоклассные исследования по методам интегрирования уравнений аналитической механики и разработке обобщенных принципов статики и динамики.  [c.214]


По своей сути обсуждаемая проблема является задачей интегрирования системы обыкновенных дифференциальных уравнений (ОДУ) первого порядка, описанной ранее (п. 4.1). Таким образом, с точки зрения программной реализации данный блок состоит из двух классов — класса, реализующего численный метод интегрирования систем ОДУ, и класса, описывающего модель неуправляемого движения центра масс и углового движения ЛА.  [c.206]

В книге приведены решения 560 задач по всем разделам курса теоретической механики. Цель сборника — помочь читателю овладеть фундаментальными методами теоретической механики и научить применению математического аппарата теории для исследования конкретных систем. Рассмотренные задачи относятся к анализу движения заряженных частиц в электромагнитных полях, космических аппаратов в ньютоновом поле тяготения, проблеме коррекции орбит космических аппаратов, небесной механике, колебаниям линейных и нелинейных систем, динамике твердого тела, электромеханике, релятивистской динамике. Существенная особенность книги — математические аспекты гамильтонова формализма представлены как мощный аппарат анализа широкого спектра задач на основе разработанных автором методов интегрирования систем общего вида.  [c.1]

Численные методы интегрирования требуют большого объема вычислительных работ. Значительно быстрее и проще эта задача решается на электрической моделирующей установке. Однако на пути широкого внедрения этого метода в исследовательскую практику возникает проблема технической реализации электрической модели. Есть два пути ее осуществления — применение универсальных электроинтеграторов или изготовление специализированных устройств для решения конкрет- ной задачи. В данной работе принято компромиссное решение — модель изготавливается из набора унифицированных узлов на специализированной стойке. Функциональная схема модели приведена ниже.  [c.63]

Основные требования, предъявляемые к методу интегрирования системы (2.23), — универсальность, надежность, точность и экономичность. Выполнить эти требования в рамках одного метода невозможно, поэтому разработан ряд базовых методов различной степени точности и экономичности, применяемых в зависимости от особенностей решаемой задачи. При выборе базовых методов основными критериями являются точность, устойчивость и экономичность. Основные проблемы, возникающие при алгоритмической реализации методов, — обеспечение сходимости при решении системы НАУ, которая получается на каждом шаге Л после подстановки (2.24) в (2.23) контроль точности и устойчивости интегрирования автоматический выбор шага Л для минимизации вычислительных затрат.  [c.42]


После оценки параметров физической БД переходят к ее реализации. При создании сквозных интегрированных САПР, очевидно, нет смысла хранить данные для всего процесса проектирования в одной сверхсложной и большой БД, поэтому концептуально различимые единицы САПР (например, этап логического и структурного синтеза) целесообразно описать в раздельных БД. Здесь не возникает проблемы установления связей и зависимостей между раздельными БД. Чисто фактическое размещение данных во вспомогательной памяти называют физической БД. Как правило, производительность БД определяется указанным размещением данных. При создании физической БД перед проектировщиком часто стоят противоречивые задачи. Приведем несколько из них. Каким образом разбивать БД на части Необходимо ли резервировать память и в каком объеме Каковы должны быть размеры блоков и размещаемых в них сегментов и записей Какие будут выбраны методы доступа Какой будет выбран метод уплотнения данных Какая часть памяти должна располагаться на внешних носителях и т. д. Как видно, создание физической БД, как и многие другие задачи САПР, относится к задачам многокритериальной оптимизации. Поэтому полная оптимизация физической БД в настоящее время невозможна.  [c.125]

Первая трудность носит технический характер. Сегодня численное интегрирование не представляет принципиальных затруднений. Анализ проблемы устойчивости представляет более трудную и тонкую задачу. За последние годы здесь достигнуты важные результаты и разработаны эффективные методы анализа [7, 27], которые позволили найти решения ряда важных для практики задач гидростатики.  [c.110]

В главе 2 мы познакомились с методами вычисления одномерных интегралов. При переходе к кратным интегралам возникают новые проблемы, связанные с разбиением области интегрирования и  [c.183]

Мы знаем общий метод варьирования произвольных постоянных интегралов дифференциальных уравнений с целью согласования этих интегралов с теми же уравнениями, но с прибавлением к ним определенных членов однако та форма, которую мы в предыдущем отделе (п- 10) придали общим уравнениям динамики, имеет то преимущество, что она дает некоторое соотношение между вариациями произвольных постоянных, вводимых при интегрировании, которое особенно упрощает формулы этих вариаций в задачах, где они выражают действие возмущающих сил. Мы выведем сначала это соотношение затем мы дадим наиболее простые уравнения для определения вариаций произвольных постоянных в интересующих нас проблемах.  [c.413]

Экспериментальная установка. Экспериментальная установка, применявшаяся в описанных ранее экспериментах с постоянным электрическим полем, была использована и для первых опытов с переменным электрическим полем, хотя, разумеется, подводимое напряжение было переменным. Подводимая электрическая мощность определялась путем численного интегрирования наложенных графиков тока и напряжения по одному периоду. Сравнение, аналогичное тому, которое было сделано для опытов с постоянным электрическим полем, между подводимой электрической мощностью и увеличением степени подогрева газа, позволило бы количественно определить увеличение коэффициента теплоотдачи. Однако измерение электрической мощности оказалось сложной проблемой, так как сдвиг фазы между током и напряжением зависит не только от частоты, но п от амплитуды. Поэтому решено было использовать эти измерения лишь в качественном плане, т. е. чтобы определить, может ли вообще быть достигнуто заметное изменение теплоотдачи. Считалось, что интенсивная разработка методов измерения электрической мощности была бы оправдана, если бы результаты указывали на то, что значительное изменение теплоотдачи действительно имеет место.  [c.445]

Если задача о росте трещины решается аналитически, то необходимо при этом найти главный ( ключевой ) элемент механического поля для произвольного процесса роста трещины, а роль критерия роста трещины заключается в отборе истинного движения из класса всех динамически допустимых движений. Если же данная задача решается численно, то основной проблемой является проблема интегрирования уравнения поля шаговым методом, удовлетворяя при этом заданному условию постоянства ключевого элемента механического поля.  [c.97]


Общие уравнения двумерной теории оболочек выводятся в части I при помощи гипотез, которые пока, как и в первом издании, принимаются на веру. Однако теперь в книгу введен новый раздел (часть VI), в котором проблема сведения трехмерных краевых задач теории упругости к двумерным задачам теории оболочек решается методом асимптотического интегрирования. Здесь дается обоснование гипотез теории оболочек, обсуждается область их применимости, оцениваются связанные с ними погрешности и намечаются пути уточнения.  [c.9]

Основное различие между гармоническим анализом и методами численного интегрирования заключается в том, что в первом периодичность решения используется для получения информации о движении системы в моменты времени до и после ij3 , тогда как в последних такая информация доступна лишь для предшествующих моментов времени. Отсюда следует, что проблемы точности и сходимости при определении переходных процессов более трудны, чем при получении периодического решения методом гармонического анализа. Преимущества методов Рунге — Кутта и прогнозирования с пересчетом объясняются использованием в них оценок движения не только при i )n, но и при г Зп+1. Объем вычислений часто может быть сокращен путем уменьшения частоты коррекции по некоторым параметрам (например, учет неравномерности поля индуктивных скоростей) при сохранении требуемой точности.  [c.698]

В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]

Уже из краткого рассмотрения ясно, что вопросы численного анализа краевых задач уточненной теории оболочек разработаны недостаточно полно. Создание и развитие численных методов их решения остаются важной и актуальной задачей, требующей внимания ученых и специалистов. Этой проблеме посвящена гл. 7, в которой развит эффективный метод численного интегрирования линейных осесимметричных краевых задач статики и задач устойчивости слоистых оболочек вращения, основанный на идее инвариантного погружения.  [c.110]

Книга состоит из десяти глав. По охватываемому материалу I Vi главы соответствуют в целом традиционным курсам механики. Задачи остальных четырех глав связаны с тематикой спецкурса Методы интегрирования канонических систем . В отличие от лагранжева формализма гамильтонов подход позволяет в принципе найти решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. В этом аспекте канонический формализм является мощным рабочим методом, позволяющим получить приближенное решение широкого круга физических и математических задач [1]. Рассмотрены проблемы, относящиеся к интегр ированию нелинейных уравнений, преобразованиям Дарбу и Фрелиха, ВКБ-приближению, определению собственных векторов и собственных значений, гамильтоновой теории специальных функций. Дополнительные преимущества дает метод удвоения переменных, позволяющий использовать канонический формализм для решения нового класса задач алгебраических и трансцендентных уравнений, сингулярио-возму-щенных уравнений, построению Паде-аппроксимантов, обращению интегралов и т. д. Широта диапазона рассматриваемых проблем обусловлена возможностью приведения к гамильтоновой форме нелинейных систем общего вида и универсальностью используемых методов интегрирования.  [c.3]

Метод Бубнова — Галеркина представляет собой некоторый приближенный метод интегрирования ди( )( )еренциаль-пых уравнений и не связан непосредственпо с вариационной проблемой.  [c.197]

Рассматриваются проблемы, связанные с разработкой алгоритмов для решения задач кинематического и динамического синтеза механизмов. Анализируется возможность использования различных методов интегрирования систем дифферен-.щиальных уравнений и методов поиска значений оптимизируемых параметров. Ил. 1, библиогр. 4 назв.  [c.196]

Как в спектральных, так и в прямых методах интегрирования уравнений движения петли ГЦК необходимо располагать представительным (для получения достаточной точности) набором форм и частот ее собственных колебаний. Решение проблемы собственных значений МКЭ для петли ГЦК вьшолнено изложенным выше блочно-степенным методом.  [c.196]


Первое издание книги опубликовано издательством Московского университета в 1988 г. Во втором издании книги приведены решения 160 новых задач. Включена новая глава 11 Релятивистская механика . Теперь сборник содержит решения 560 задач, иллюстрируюш их приложения методов теоретической механики к исследованию широкого круга проблем. Представлены задачи по всем разделам классической механики динамика частицы во внешнем поле и тел переменной массы, динамика системы частиц, уравнения Лагранжа, линейные и нелинейные колебания, динамика твердого тела, электромеханика, уравнения Гамильтона и канонические преобразования. Задачи по электромеханике рассмотрены в рамках лагранжева формализма. Включены также 42 задачи по релятивистской динамике, которые отсутствуют в известных сборниках задач по механике. Ряд задач, представляюш их различные аспекты одной проблемы, представлен в нескольких разделах сборника. Значительно расширен раздел, включаюш ий множество задач, иллюстрируюш их применение новых методов интегрирования систем нелинейных уравнений обш его вида, представленных в гамильтоновой форме.  [c.5]

До настоящего времени не найдены методы интегрирования уравнений Навье — Стокса в их общем виде. Правда, для некоторых частных случаев течения вязкой жидкости удалось найти решения, но среди этих частных случаев только совсем немногие не налагают никаких ограничений на величину вязкости. К числу таких случаев, допускающих для коэффициента вязкости любые значения, принадлежат, например, течение Пуазейля в трубе и тбчение Куэтта между двумя параллельными стенками, из которых одна неподвижна, а другая движется в своей плоскости с постоянной скоростью (рис. 1.1). Это обстоятельство вынудило искать решение проблемы расчета течений вязкой жидкости, исходя из двух предельных случаев. А именно, с одной стороны, были рассмотрены течения с очень большой вязкостью, а с другой стороны, стали исследоваться течения с очень малой вязкостью, так как в том и другом случае получаются некоторые математические упрощения. Однако результаты, полученные для таких предельных случаев, ни в коем случае нельзя интерполировать на течения 0 средней величиной вязкости.  [c.75]

Понятия о колебательных движениях и волнах сформулировались в начале XIX в. В то время получены линейные решения уравнений теоретической механики и гидродинамики, описывающие движения планет и волн на воде. Несколько позднее благодаря наблюдательности Д. С. Рассела [186], теоретическим исследованиям Б. Римана [97, 99] и других исследователей сформировалось понятие о нелинейных волнах. Однако, если линейные колебания и волны были весьма полно изучены в XIX в., что нашло отражение в фундаментальном курсе Д. Рэлея [177], то этого нельзя сказать о нелинейных колебаниях. Сознание того, что нелинейные уравнения содержат в себе качественно новую информацию об окружающем мире пришло после разработки А. Пуанкаре новых методов их изучения. Созданные им и другими исследователями методы интегрирования нелинейных уравнений нашли широкое применение в радиофизике [6] и механике твердых тел [73]. Более медленно нелинейные понятия и подходы входили в механику жидкости и твердого деформируемого тела. Показательно, что первые монографии, посвященные нелинейному поведению деформируемых систем, были опубликованы на-рубеже первой половины XX в. [39, 72, 107, 153]. В это же время резко возрос интерес к нелинейным колебаниям и волнам в различных сплошных средах. Сформировались нелинейная оптика, нелинейная акустика [97, 173], теория ударных волн [9, 198] и другие нелинейные науки [184, 195, 207]. В них рассматриваются обычно закономерности формоизменения волн, взаимодействия их друг с другом и физическими полями в безграничных средах. Нелинейные волны в ограниченных средах исследованы в значительно меньшей степени, несмотря на то что они интересны для приложений. В последнем случае важнейшее значение приобретает проблема формирования волн в среде в результате силового, кинематического, теплового или ударного нагружения ее границ. Сложность проблемы связана с необходимостью учета физических явлений, которые обычно не проявляют себя вдали от границ, таких как плавление, испарение и разрушение среды, а также взаимодействия соприкасающихся сред. В монографии рассмотрен широкий круг задач генерации и распространения нелинейных волн давления, деформаций, напряжений в ограниченных неоднородных сплошных средах. Большое внимание уделено динамическому разрушению и испарению жидких и твердых сред вблизи границ, модельным построениям для адекватного математического описания этих процессов. Анализируется влияние на них взаимодействия соприкасающихся сред, а также механических и тепловых явлений, происходящих в объемах, прилегающих к границам.  [c.3]

Другое, более известное, решение проблемы Ферми—Паста—Улама связывает регулярность колебаний некоторых видов нелинейной цепочки с близостью их к полностью интегрируемым нелинейным системам при любой энергии (см., например, прекрасный обзор Забуского [518]). В частности, уравнение (6.5.3) с квадратичной нелинейностью (дх дг) дх/дг) и дисперсией (см. примечание редактора на с. 406) имеет бесконечный набор независимых интегралов движения и является, по-видимому, полностью интегрируемым. Хотя такое решение проблемы годится далеко не всегда ввиду исключительности полностью интегрируемых систем, оно послужило толчком для развития мощных методов интегрирования нелинейных уравнений (см., например, работы [457, 518]).— Прим. ред.  [c.407]

В связи с теорией продольных колебаний возникает важная проблема удара. Когда два тела сталкиваются, каждое из них приходит в состояние внутренних колебаний в свое время, повидимому, надеялись, что разрешение задачи о колебаниях двух стержней, возникающих вследствие их продольного столкновения, может пролить свет ка законы удара. Пуассон первый приступил к разрешению проблемы с этой точки зрения. Его метод интегрирования в тригонометрических рядах чрезвычайно осложняет получение общих выводов вследствие досадной ошибки в анализе, он пришел к парадоксальному заключению, что два стержня из одвого и того же материала и с одинаковым сечением не могут отделиться друг от друга, если только их длины ие равны между собою. Сен-Венан ш) исследовал эту проблему, решая уравнение колебаний при помощи произвольных функций и получил некоторые результаты, наиболее важные из которых относятся к продолжительности удара и к существованию коэфициента восстановления для совершенно упругих тел 11 ). Эта теория не подтверкдается экспериментами. Поправка, предложенная Фохтом 1 ), будучи разработана до конца, также мало улучииет дело. Таким образом попытка свести проблему удара к колебаниям, повидимому, должна быть оставлена. Гораздо более успешной была теория Герца ), основанная иа решении проблемы, которую мы назвали проблемой передачи силы. Герц исследовал независимо частный случай этой проблемы, относящийся к давлению двух тел друг на друга. Он предложил рассматривать деформацию как местный статический эффект, который постепенно возникает и убывает. Он нашел способы определения продолжительности удара, а также величины и формы тех частей поверхностей, которые приходят в соприкосновение. Согласие этой теории с экспериментами оказалось удовлетворительным.  [c.38]


Глава 4 содержит краткий обзор различных подходов к проблеме интегрируемости уравненнй движения и некоторые наиболее общие и эффективные методы их интегрирования. Указа-11Ы разнообразные примеры проинтегрированных задач, составляющих золотой фонд классической динамики. Материал этой гл 1ВЫ используется в главе 5, посвященной одному из наиболее результативных разделов механики — теории возмущений. Основная задача теории возмущений — исследование задач механики, мало отличающихся от задач, точно проинтегрированных. Элементы этой теории (в частности, широко известный и применяемый принцип усреднения ) возникли в небесной ме-> анике в связи с попытками учесть взаимные гравитационные возмущения планет Солнечной системы. К главам 4 и 5 примыкает глава б, в которой исследована принципиальная возможность интегрирования уравненнй движения (в точно определенном смысле). Оказывается, интегрируемые системы являются редким исключением и это обстоятельство повышает роль приближенных методов интегрирования, изложенных в лаве 5. Классическим вопросам небесной механики посвящена "1торая глава. В ней рассмотрена интегрируемая задача 2-х тел,  [c.9]

Введение. Мы привели дифференциальные уравнения движения к особенно удобному каноническому виду. Однако наша конечная цель будет достигнута только тогда, когда мы сможем решить эти уравнения. Поскольку нам неизвестен метод непосрественного интегрирования этих уравнений, то приходится идти косвенными путями. Одним из таких путей является метод преобразований координат. Мы пытаемся отыскать такую систему координат в фазовом пространстве, в которой входящая в канонические уравнения функция Гамильтона имела бы настолько простой вид, чтобы уравнения движения могли быть непосредственно проинтегрированы. Естественно, что с этой точки зрения желательно исследовать всю группу преобразований координат, связанных с каноническими уравнениями. Изучение этих канонических преобразований оказывает ценную помощь при интегрировании уравнений механики. Теория канонических преобразований в основном связана с именем Якоби. Хотя он, возможно, и не обладал воображением, присущим Гамильтону, и его усилия были в основном направлены на решение задачи интегрирования уравнений, однако открытие канонических преобразований явилось все же огромным достижением. Получившаяся в результате теория интегрирования сыграла важную рель в развитии современной атомной физики. В далеко идущих исследованиях Гамильтона проблема интегрирования являлась второстепенной задачей.  [c.225]

Предположим, что мы произвели некоторое каноническое преобразование гамильтоновых уравнений некоторой данной задачи. Уравнения сохранили свою форму, но гамильтонова функция Н(д, р) превратилась в функцию Н д, р) новых переменных д ир. Если мы умеем интегрировать новые гамильтоновы уравнения, то решение исходных уравнений будет немедленно найдено и задача тем самым решена. В общем случае новые уравнения могут не иметь никаких преимуществ перед исходными в отношении интегрируемости. Но Якоби показал, что если можно построить такое каноническое преобразование, которое преобразует гамильтонову функцию Н(д, р) в Н(р), которая содержит только переменные р, то полученные уравнения Гамильтона могут быть немедленно проинтегрированы и, следовательно, динамическая задача решена. Таким образом, метод Якоби состоит в замене прямого интегрирования уравнений Гамильтона отысканием соответствующего канонического преобразования. Этот метод Якоби для интегрирования уравнений Гамильтона является примером преобразования одной математической проблемы в другую. Вместо попыток прямо интегрировать уравнения Гамильтона, мы ищем решение совершенно другого рода уравнения. Подобная же картина имеет место для случая связи между конформными преобразованиями и задачей Дирихле.  [c.832]

Итак, основные этапы развития аналитической динамики таковы первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжев метод вариации произвольных постоянных и аналогичная теория Пуассона и связанные с нею проблемы интегрирования затем Гамильтон представил интегральные уравнения посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или из того условия, что она должна одновременно удовлетворять двум дифференциальным уравнениям в частных производных Гамильтон же нашел новую форму уравнений движения Якоби свел интегрирование дифференциальных уравнений динамики к нахождению полного интеграла единственного дифференциального уравнения в частных производных он же развил теорию последнего множителя системы дифференциальных уравнений движения Остроградский рассмотрел проблему интегрирования уравнений динамики Раус нашел новую форму дифференциальных уравнений движений Пуанкаре развил теорию интегральных инвариантов наконец,  [c.848]

Во Введении представлены две формы метода непрерывное продолжение, основанное на интегрировании задачи Коши по параметру с помОщыо явных схем, и дискре1ное продолжение, реализующее шаговые процессы по параметру с итерационным уточнением решения на каждом шаге. Здесь же обсуждаются трудности, возникающие при продолжении решения в окрестности особых точек, и ставится проблема выбора параметра продолжения.  [c.5]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]


Смотреть страницы где упоминается термин Метод интегрирования проблемы : [c.43]    [c.682]    [c.683]    [c.249]    [c.203]    [c.9]    [c.235]    [c.17]    [c.126]    [c.282]    [c.298]    [c.309]    [c.236]    [c.647]    [c.15]    [c.196]    [c.203]    [c.387]   
Система проектирования печатных плат Protel (2003) -- [ c.250 ]



ПОИСК



Анализ проблемы Кондо Метод континуального интегрирования в основных моделях магнитных систем

Интегрирование

Методы интегрирования

Проблема п-тел



© 2025 Mash-xxl.info Реклама на сайте