Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы вариационные в теории возмущений

Хотя мы получили точные уравнения для параметров отклика и точные выражения для поправок к средним значениям динамических переменных, следует отметить, что успех применения всего изложенного формализма к конкретным задачам в значительной степени зависит от удачного выбора базисным динамических переменных Р . Далее мы покажем, что все наборы базисных переменных оказываются эквивалентными, пока мы имеем дело с точными формулами линейной реакции. Однако это не так, если корреляционные функции вычисляются приближенно, скажем, методами теории возмущений. Как правило, чем меньше динамических переменных включено в базисный набор, тем выше порядок приближения, который приходится учитывать. Ситуация здесь во многом аналогична той, которая встречается в вариационном методе решения кинетического уравнения Больцмана [78]. Интересно, что для решения уравнений линейной реакции также можно сформулировать вариационный принцип, относящийся к различным наборам базисных переменных [68]. Этот вопрос обсуждается в приложении 5А.  [c.344]


Периодические решения. Поиску периодических решений уравнения (1.1) посвящена обширная литература. Обычно для этой цели применяют методы теории возмущений или используют функциональные и вариационные методы. Ссылки на некоторые наиболее известные работы можно найти, например, в книгах [2, 3]. Укажем также некоторые более поздние работы [4]-[8].  [c.235]

Приближенное определение формы поверхности при конечном уровне вибраций. Минимизация функционала энергии при простейшей аппроксимации формы поверхности. При конечном соотношении параметров, характеризующих влияние силы тяжести и вибраций, методы теории возмущений перестают быть пригодными в этом случае приближенное решение можно найти, воспользовавшись вариационной формулировкой проблемы, полученной в 2.2.  [c.107]

Исследуя наиболее общие законы механического движения, присущего в той или иной мере любому физическому процессу и явлению, классическая механика оказывается тесно связанной с другими разделами физики (электродинамикой, оптикой, статистической физикой, теорией относительности, квантовой механикой и т. д.). Многие следствия, вытекающие из основных законов механики (например, законы сохранения энергии, импульса и механического момента вариационные принципы), при соответствующем обобщении приобретают форму фундаментальных законов природы. При решении частных задач механика широко использует математические методы исследования многие из этих методов (например, методы Лагранжа и Гамильтона, вариационные методы и методы теории возмущений), впервые разработанные и апробированные в классической механике, ныне широко используются почти во всех разделах теоретической физики.  [c.5]

Изложенный выше метод можно применить для вычисления бесконечно малых изменений, которые возникают в потенциале при бесконечно малом изменении фазового сдвига (как функции энергии). В результате такого расчета мы получим вариационную производную от потенциала по фазовому сдвигу. Развиваемый ниже метод представляет эффективный способ обращения обычной теории возмущений.  [c.566]

Для построения волновых пакетов более общего вида нельзя использовать суперпозицию решений, но теорию модуляции можно изучать непосредственно. Эту теорию можно развить в общем виде, используя вариационный подход 11.7. В этой главе вариационный подход будет детально изучен и для завершения предыдущего обсуждения обоснован как формальный метод теории возмущений. Подробные приложения теории будут даны в гл. 15 и 16.  [c.466]


Априорное условие периодичности Ф эквивалентно устранению вековых членов. Поэтому последовательные приближения условия периодичности (14.43) будут проявляться как вековые условия в более традиционной схеме. Мы видим, что, даже следуя традиционной схеме, выгодно исходить пз уравиений (14.42) и (14.43). Но, поскольку уравнения (14.42) п (14.43) эквивалентны вариационному принципу (14.44), еще лучше подставить разложение непосредственно в (14.44) и использовать вариационный принцип для получения как уравнений для ф , так и для вековых условий. Таким образом, вариационный подход не следует рассматривать как независимый метод. Он включает обычную теорию возмущений, выделяя основные моменты и позволяя формулировать результаты в более общем виде.  [c.482]

Ввиду того что детали метода имеют чисто технический характер, мы рассмотрим только случай симметричных плоских течений около выпуклых плоских препятствий. Следует, однако, отметить, что развиваемая теория не только допускает возможность широких обобщений, но и позволяет получить вариационные формулы, имеющие самостоятельный интерес. Эти формулы дают выражение для вариации формы каверны (или струи), вызванной заданным возмущением препятствия (или отверстия). Выраженные в виде функциональных уравнений типа (7.1) или (7.6), они содержат дифференциалы операторов в банаховых пространствах, определение которых мы сейчас дадим.  [c.216]

В промежуточной области температур вариационная оценка является, естественно, интерполяционной. Ее успех во многом зависит от того, как выбран оператор Яо и какие в него включены вариационные параметры (в теории возмущений гамильтониан Щ таких параметров вообше не включает). Так как эти параметры затем определяются из уравнений минимизации, решения которых могут оказаться и не бесконечно гладкими функциями температуры и других термодинамических параметров, то появляется возможность описать (хотя и в вариационном приближении) фазовые переходы 1-го и 2-го родов, которые могут происходить в изучаемых системах именно в области промежуточных температур. Напомним, что для того, чтобы получить разрывную функцию, рассчитывая ее с помощью регулярного метода (в нашем случае с помощью низко- или высокотемпературных разложений), необходимо отсуммировать бесконечную последовательность членов ряда.  [c.351]

В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

Систематически излагается термодинамика и статистическая теория миогочастичных райиовесных систем. В основу статистической физики равновесных идеальных и неидеальных систем положены метод Гиббса и метод функций распределения Боголюбова. Излагается классическая и квантовая теория газа, твердого тела, равновесного излучения, статистическая теория плазмы и равновесных флуктуаций. Обсуждаются методологические вопросы курса, В книге рассматриваются также некоторые новые вопросы, еще не вошедшие в программу теория критических индексов, вариационный принцип Боголюбова, термодинамическая теория возмущений, интегральные уравнения для функций распределения (уравнение самосогласованного поля,, интегральное уравнение Боголюбова—Борна—Грина, уравнение Перкуса— Иевика).  [c.2]

МЕТОД СКЛЕЙКИ КОНФОРМНЫХ ОТОБРАЖЕНИИ. В теории конформных отображений установлен ряд вариационных принципов, позволяющих рценить влияние вариации некоторого участка границы на геометрические параметры отображения. Используя гидродинамическую трактовку соответствующих результатов, можно сформулировать принцип локального влияния формы границы изменение формы отдельного участка границы вызывает возмущение потока лишь в некоторой окрестности этого  [c.312]


Обычно доказательства неинтегрируемости и хаотического поведения гамильтоновых систем основаны на построении трансверсальных гомоклинических траекторий к гиперболическим положениям равновесия или периодическим траекториям. Как правило, доказать существование таких траекторий удается только для систем, близких к интегрируемым, когда можно применить один из методов теории возмущений, например основанный на интеграле Пуанкаре-Мельникова 21]. Если в системе нет малого параметра, то методы теории возмущений неприменимы. Тогда приходится использовать непертурбационные методы, одним из которых является вариационный метод. В настоящей работе подход, основанный на вариационных принципах механики, проиллюстрирован на простейшем случае автономных гамильтоновых систем с двумя степенями свободы. По поводу других классов систем см., например, [1, 2, 6, 9, 10, 12, 16, 25-28] и библиографии в этих работах.  [c.147]

В дополнение к основному материалу рассмотрены также и другие важные вопросы. Влияние внешнего шума на динамику системы с двумя степенями свободы представлено в 5.5 (с использованием результатов п. 5.4г), для большего числа степеней свободы — в 6.3, а некоторые приложения рассмотрены в 6.4. Описание диссипативных систем в гл. 7 является более или менее независимым от обсуждения гамильтоновых систем. При изучении материала гл. 7 следует обращаться к введению в 1.5, а также к описаниям метода сечения Пуанкаре в п. 1.26 и показателей Ляпунова в п. 5.26 и 5.3. Бифуркации удвоения периода рассмотрены в п. 7.26, 7.3а и в дополнении Б (см. также п. 3.4г). Другие специальные вопросы, такие, как теория возмущений Ли ( 2.5), методы ускоренной сходимости ( 2.6), некоторые аспекты теории ренормализации ( 4.3 и 4.5), неканонические методы (п. 2.3г), глобальное устранение резонансных знаменателей (п. 2.4г и, частично, 2.5в), вариационные методы (п. 2.66 и 4.6) и модуляционная диффузия (п. 6.2г), можно отложить до ознакомления с основным материалом.  [c.12]

Особое место занимает пятая глава, посвященная методам расчета флуктуаций поля, выходящим за рамки теории возмущений. Здесь находят применение математические методы, развитые в квантовой теории поля,— диаграммная техника и уравнения в вариационных производных. Применение этих методов позволяет в ряде случаев рассматривать эффекты, не поддающиеся расчету при помощи той иди иной формы метода возмущений, например, распространение волп в среде с сильными флуктуациями покааа-теля преломления.  [c.7]

Вместе с тем имеется ряд вопросов принципиального характера, требующих дальнейшего рассмотрения. Что касается области 1, то здесь улучшение метода требует перехода к нелинейным уравнениям, что в результате должно ослабить ограничения на а , R, ка. Сюда же относится и более аккуратное решение уравнения Бете — Солпитера для корреляционной функции. В области коротких волн ка > вычисления среднего поля производились в работах [159, 179, 1801, причем в последней работе подробно исследуется связь метода плавных возмущений с теорией возмущений в массовом операторе. Наконец, следует подробнее рассмотреть случай негауссовских флуктуаций показателя преломления, где уже невозможно использование диаграммной техники и необходимо рассматривать непосредственно уравнения с вариационными производными.  [c.497]

Как ж 1 большинстве расчетов атомных структур, вместо теории возмущений может быть использовав вариационный метод [5]. В этом случае для описания основного состояния иона в присутствии внешнжж зарядов используется видоизмененная функция ф = а( фо + ф ). Функция фо является, невозмущенной волновой функцией основного состояния иона, а — коэффициент нормировки, а ф, — пробная функция, вид которой выбирается жз рассмотрения симметрии ж также из соображений простоты. Ожидаемое значение (ф ф), где теперь включает взаимодействие внешних зарщов с ионом, минимизируется по отношению к параметрам, содержащимся в ф1. Когда ф, определена таким способом, ожидаемое значение взаимодействия иона с ядерным квадрунольным моментом вычисляется затем с помощью уточненной функции ф.  [c.164]

Упомянем также своеобразный вариант теории возмущений для уравнений гидродинамики, развитый Р. Крейчнаном (1959, 19626) и основанный на предположении, что прямые динамические взаимодействия между тройками пространственных компонент Фурье поля скорости играют значительно большую роль, чем их непрямые взаимодействия (через все остальные компоненты Фурье). Укажем еще метод описания крупномасштабных компонент турбулентности, предложенный У. Малкусом (19546) (см. также Таунсенд (19626) и Спигел (1962)) и опирающийся на использование гипотетического вариационного принципа максимума диссипации и представление гидродинамических полей в виде суперпозиций конечного  [c.26]

Как и в большинстве расчетов атомцых структур, вместо теории возмущений может быть использован вариационный метод [5]. В этом случае для описания основного состояния иона в присутствии внешних зарядов используется видоизмененная функция р = а(г о + 1). Функция г 9о является невозмущенной волновой функцией основного состояния иона, а — коэффициент нормировки, а — пробная функция, вид которой выбирается из рассмотрения симметрии и также из соображений простоты. OжидaeмoJe значение (г) г ), где 5 теперь включает взаимодействие впешйих зарядов с ионом, минимизируется по отношению к параметрам, содержащимся в яр . Когда определена таким способом, ожидаемое значение взаимодействия иона с ядерным квадрупольным моментом вычисляется затем с помощью уточненной функции г .  [c.164]


Истинную ценность результата теории возмущений, выражаемого, например, формулой (6.35), можно оценить с помощью неравенства Гиббса — Боголюбова [21]. Последняя приводит к общим вариационным принципам для оценки свободной энергии или энтропии произвольной системы, подчиняющейся законам статистической механики. Например, Ватабе и Янг [22] применили эту теорему для вывода уравнения состояния жидких металлов, которое не основывается явно на формулах для давления газа твердых шаров (6.25)—(6.27), хотя функция распределения твердых шаров (2.46) и использовалась в расчете для параметрического представления g (/ ). Указанный метод позволяет также установить соотношение между энтропией и структурным фактором для многих жидких металлов, допускающее экспериментальную проверку [23].  [c.264]

Попытки суммирования всего ряда теории возмущений, или по крайней мере ускорения его сходимости, связаны с методом перенормировок, развитым в квантовой теории поля. Здесь уместно отметить работу [28], где изложены результаты Буре, В. И. Татарского и Гериенштейна, рассматривавших процесс распространения волн в средах со случайными неоднородностями. Эффективность метода перенормировок возросла с использованием предложенного В. М. Финкельбергом разделения многочастичных взаимодействий на локальные и нелокальные. Фактически это эквивалентно выделению в каждом члене ряда возмущений некоторой его части, ответственной за взаимодействие определенного рода, и последующему суммированию всех членов такого типа. Этот подход, получивший в работах Т. Д. Шермергора [37] и Г. А. Фокина [33] название сингулярного приближения, позволил авторам рассмотреть многие задачи теории упругости микронеоднородных сред, определения эффективной диэлектрической проницаемости неоднородных диэлектриков. Было установлено, что аналогичные результаты можно получить без выписывания ряда возмущений, если отделить сингулярную и формальную производные функции Грина в основном функциональном уравнении. Это приближение, получившее название обобщенного сингулярного приближения в комбинации с модификацией метода перенормировок, позволило установить общность многих приближенных результатов, в частности метода самосогласования, метода изучения сильно изотропных сред. Была выяснена связь сингулярного приближения с методами построения вариационных границ для эффективных характеристик.  [c.107]

Достаточно общая процедура вычисления эффективной проводимости связана с применением метода возмущений или перенормировок и приводит к бесконечному ряду, суммирование которого в общем случае представляет собой трудно разрешимую задачу. В большинстве случаев остается открытым вопрос о сходимости ряда теории возмущений, если флуктуации проводимости достаточно велики. Сложность и громоздкость выражений для членов ряда возмущений затрудняют анализ его структуры и выбор методов суммирования ряда. В этом смысле определенные перспективы могут быть связаны с методом Херринга, в соответствии с которым все флуктуирующие функции представляются рядами Фурье и исходные уравнения содержат искомые амплитуды этих разложений. Редукция к нелинейной системе уравнений также приводит к ряду, но, как показано В. А. Кудиновым и Б. Я. Мойжесом [16], структура ряда относительно проста. Ее анализ позволил авторам предложить приемы приближенного суммирования итерационного ряда, приводящие к довольно простым формулам для эффективной проводимости. Этот анализ оказался полезным и для выбора пробных функций при построении вариационных оценок для эффективных характеристик. Далее излагается метод Херринга и результаты его развития в работе [16].  [c.161]

Наиболее распространенный подход к исследованию задач оптимального управления, содержащих малые параметры, состоит в применении методов асимптотического разложения решений возмущенных дифференциальных уравнений к краевой задаче принципа максимума (см., например, [11, 36, 72, 77, 82, 97, 98, 127, 129]). Такая методика позволяет строить асимптотику решения задач с открытой областью управления и гладкими управляющими воздействиями, т. е, задач классического вариационного типа. В задачах современной теории оптимального управления, имеющих прямые ограничения на значения управляющих воздействий в виде замкнутых неравенств, реализация указанного подхода встречает серьезные трудности, поскольку динамические уравнения краевой задачи принципа максимума не обладают необходимой для применения асимптотических методов гл остью. Наверное, поэтому в данном случае исследования, в основном, сводились лишь к выяснению вопроса о предельной задаче, к решению которой в той или иной топологии сходится решение возмущенной задачи при стремлении малого параметра к нулю. Что касается построения асимптотики решения в задачах с замкнутыми множествами допустимых значений управляющих воздействий, то имеющиеся здесь результаты еще далеки от того уровня, который мог бы удовлетворить запросы практики. В первую очередь, это относится к нелинейным сингулярно возмущенным задачам, для которых вопрос о построении асимптотических приближений к оптимальным управлениям за редкими исключениями остается открытым.  [c.7]

В статье дается обзор различных применений вариационных методов п теории нелинейных волн в средах с дисперсией, причем особое внимание уделяется применению этих методов для волн на воде. Сначала обсуждается вариационный принцип, соответствующий теории волн на воде затем этот принцип используется для вывода длинноволновых приближений Буссинеска и Кортевега — де Фриза. Кратко излагается теория резонансного почти линейного взаимодействия с использованием функции Лагранжа. После этого дается обзор предложенной автором теории медленно меняющихся цугов волн и ее приложений к теории волн Стокса. Приводится также теория возмущений Льюка для медленно меняющихся цугов волн. Наконец показано, как можно при помощи интегро-дифференциальных уравнений сформулировать более общие дисперсионные соотношения важное приложение этого подхода, развитое с некоторым успехом, может помочь разрешить давно стоящие трудности в понимании опрокидывания волн на воде,  [c.12]

НОВЫЙ качественный подход к анализу проблемы п тел. Позднее в гамильтоновой динамике зародились два различных направления ( ) исследование динамической сложности, возникающей в этой задаче из-за определенной гиперболичности (Алексеев, Конли), и Ш) анализ интегрируемых систем и их возмущений, который привел к КАМ-теории. Хотя и гиперболическая, и интегрируемая модели были известны еще со времен Пуанкаре, потребовался глубокий анализ Колмогорова, для того чтобы осознать, что многие качественные особенности (весьма специальных) интегрируемых систем в определенной степени сохраняются под действием возмущений, а также возникают в типичных ситуациях (например, вблизи неподвижной эллиптической точки). На развитие обоих этих направлений повлиял вопрос об устойчивости солнечной системы, который изучался в рамках гиперболического подхода в терминах устойчивости системы п тел и в рамках КАМ-теории посредством анализа возмущений, например, (интегрируемой) системы центральных сил без учета взаимодействий между планетами. В работе Конли и Цендера была установлена взаимосвязь топологических и вариационных методов, ставшая краеугольным камнем современной глобальной симплектической геометрии. Возрождение анализа вполне интегрируемых систем началось с работы Гарднера, Грина, Крускала и Миуры и открытия П. Лаксом новых методов построения интегрируемых систем. Это привело к быстрому увеличению числа новых интересных примеров конечномерных интегрируемых систем, а также к построению теории бесконечномерных гамильтоновых систем. Применение этой теории к изучению нелинейных дифференциальных уравнений в частных производных стало крупным достижением впервые в ситуациях, когда асимптотическое поведение уже не может быть названо тривиальным, появились средства для законченного качественного анализа.  [c.24]


Если коэффициенты в задаче зависят от времени (или нелинейные), то в строгой теории Галёркина матрицы М и К должны пересчитываться на каждом шаге. Весьма вероятно, что для получения матрицы жесткости, приближенно правильной, без пе-ресчитывания каждого интеграла, обязательно найдется возмущенный вариационный принцип, приводящий к некоторому гибридному методу конечных элементов и конечных разностей. В больших задачах точный процесс отыскания <3 + может оказаться слишком дорогим итерационный подход к построению приближения для Q + (возможно, исходящий из как из начального приближения) может быть более эффективным. Дуглас и Дюпон [Д8, ДИ] предложили для нелинейных задач несколько итерационных способов, позволяющих решать на каж-, дом временном щаге большую нелинейную систему. Их анализ  [c.283]


Смотреть страницы где упоминается термин Методы вариационные в теории возмущений : [c.424]    [c.228]   
Регулярная и стохастическая динамика (0) -- [ c.168 , c.174 ]



ПОИСК



Возмущение

Метод вариационный

Метод возмущений

Недостаточность теории возмущений Вариационный метод. Метод Ритца. Метод самосогласованного поля. Статистический метод Электронные конфигурации н идеальная схема заполнения оболочек

Ряд вариационный

СОПРЯЖЕННОЕ УРАВНЕНИЕ, ТЕОРИЯ ВОЗМУЩЕНИЯ И ВАРИАЦИОННЫЕ МЕТОДЫ Сопряженная функция и ее применение

Теория Метод сил

Теория возмущений

Теория возмущений вариационная с ч. Вариационные методы

Теория возмущений вариационная с ч. Вариационные методы



© 2025 Mash-xxl.info Реклама на сайте