Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы в линейной теории вязкоупругости

ПРИЛОЖЕНИЕ II. МЕТОДЫ ОПРЕДЕЛЕНИЯ СПЕКТРОВ ВРЕМЕН И ЯДЕР РЕЛАКСАЦИИ И ПОЛЗУЧЕСТИ В ЛИНЕЙНОЙ ТЕОРИИ ВЯЗКОУПРУГОСТИ  [c.344]

Известные соотношения между модулями и податливостями, существующие для изотропных макроскопически гомогенных материалов в линейной теории упругости, применимы также к вязкоупругим функциям — модулям и податливостям. Кроме того, существуют формально точные соотношения между вязкоупругими функциями, зависящими от времени и частоты, а также приближенные методы их взаимного пересчета. Эти соотношения и примеры сравнения различных вязкоупругих функций типичных полимеров даны в книге Ферри [1].  [c.150]


Метод осреднения к решению квазистатических и динамических задач линейной теории вязкоупругости применен в [84].  [c.288]

Приведем эффективный метод решения краевых задач линейной теории вязкоупругости типа (1.43), (1.46). Для этого запишем соотношения (1.43) в символической форме, введя обозначение интегрального оператора G  [c.52]

При решении многих краевых задач линейной теории вязкоупругости применяют принцип Вольтерра, состоящий в том, что решение таких, задач получают из соответствующих упругих решений заменой упругих постоянных временными операторами (операторами наследственной упругости). Принцип Вольтерра является в настоящее время (особенно в нашей стране) одним из основных методов в решении задач квазистатической теории вязкоупругости.  [c.68]

Эксплуатационные нагрузки, действующие на элементы конструкций из полимерных материалов, нередко претерпевают изменения. Отсюда возникает необходимость в разработке методов расчета деформационных и прочностных свойств полимеров при переменных напряжениях. В настоящее время достаточно полно рассмотрены возможности описания механического поведения полимеров в условиях изменяющихся нагрузок при одноосном напряженном состоянии с помощью линейной теории вязкоупругости и различных вариантов нелинейной теории вязкоупругости [71, 138]. Наибольший практический интерес представляют случаи нагружения при сложном напряженном состоянии. Однако сведений о ползучести полимеров при сложном напряженном состоянии и переменных напряжениях, а также о методах теоретического описания опытных данных в научно-технической литературе крайне мало.  [c.146]

Решение конкретных задач на основе интегральных уравнений состояния сопровождалось развитием операторных методов. Правила обращения различных интегральных операторов в зависимости от свойств ядер ползучести и релаксации для решения задач линейной теории вязкоупругости развиты в ряде работ, например в теории наследственной упругости [38] (см. Приложение II).  [c.46]

Временная зависимость деформационных свойств вязкоупругого тела в линейной теории описывается тремя методами.  [c.24]

А. А. Ильюшиным и И. И. Поспеловым [2, 13] разработан метод последовательных приближений в решении задач неустановившейся ползучести по теории течения. В этом методе нелинейная задача неустановившейся ползучести по теории течения сводится к последовательности задач линейной теории вязкоупругости с нестационарными (фиктивными) внешними силами.  [c.347]


Подробнее с линейной и нелинейной теорией вязкоупругости можно ознакомиться, например, по книгам [38, 66, 92]. Методы решения нелинейной вязкоупругости изложены в работе [78]. Вопросы определения комплексных вязкоупругих характеристик достаточно полно изложены в книге [112]. Доказательство исключительности модели Максвелла дано в [114].  [c.46]

В работах [17, 55, 66, 73] приводятся решения некоторых плоских и осесимметричных контактных задач о вдавливании без трения жесткого штампа в двухслойное стареющее вязкоупругое основание. Предполагается, что верхний слой тонкий относительно области контакта, неоднородно-стареющий реологические свойства нижнего слоя описываются уравнениями линейной теории ползучести стареющих материалов слои жестко сцеплены между собой область контакта не изменяется с течением времени. В зависимости от соотношений между модулями упругомгновенных деформаций слоев смешанные задачи сводятся к интегральным уравнениям первого или второго рода, содержащим операторы Фредгольма и Вольтерра. Используемый для их решения аналитический метод (см. 9, гл. 1) позволил построить разложения для основных характеристик контактного взаимодействия при произвольным образом меня-  [c.465]

В настоящее время для расчета теплообразования (внутреннего источника тепла) [370, 409—426] используются упрощенные соотношения (1.3.13), (1.3.14) модельные представления (линейная вязкоупругость) [414, 415] наследственная теория вязкоупругости [38] с дробно-экспоненциальными ядрами, определяемыми на основании анализа экспериментальных исследований [416—420] другие методы анализа линейной вязкоупругости [5, 296, 298, 422, 423], а также обработки экспериментальных данных в предположении о линейности соотношений а — е [4, 425].  [c.165]

Поведение вязкоупругих материалов несколько иное. В предыдущем параграфе было показано, как можно проанализировать сопротивление качению простого линейного вязкоупругого материала. К сожалению, большинство вязкоупругих материалов нелинейно и, кроме того, их релаксация обычно не может быть описана в терминах одного времени релаксации, как в моделях, показанных на рис. 6.20. Однако возможен обычный эмпирический подход с использованием выражений (9.2) и (9.3) для сопротивления качению и привлечением коэффициента гистерезисных потерь ос. Наиболее общий метод измерения гистерезисных свойств вязкоупругих материалов состоит в измерении диссипации за цикл деформаций как функции частоты. Результаты этих измерений обычно выражаются через тангенс угла потерь 6, где 6 — фазовый угол между напряжениями и деформациями. Сопоставляя значения tg6 с сопротивлением качению, можно сравнить гистерезисную теорию с полным анализом ( 9.4) для простого материала с функцией релаксации (9.25). Для такого материала тангенс угла потерь равен  [c.353]

Практические методы расчета тонких оболочек из вязкоупругих материалов на устойчивость [1] основаны иа полуэмпирических зависимостях, не учитывающих вязкоупругие свойства материалов, а следовательно, и зависимость критической нагрузки от времени t. Более обоснованным подходом к решению этой проблемы является применение линейной наследственной теории. Однако известные решения, построенные на этой теории, например [2], основаны на использовании экспоненциального представления функций времени, недостаточно полно характеризующего вязкоупругие свойства материала. Кроме того, эти решения довольно громоздки и трудно применимы на практике. В данной работе предлагается решение задачи устойчивости изгибаемой замкнутой круговой цилиндрической оболочки из вязкоупругого материала методом параметров [3] при аппроксимаций функций ползучести II(f) и коэффициента поперечной деформации v(f) линейным сплайном.  [c.43]

Если в выражении (3.32) зафиксировать один из параметров р, например Рь оставив плавающим только Рг, то в системе (3.33) будет только 6 неизвестных, и она является линейной. Если же оставить плавающими оба параметра Р1 и Рг, то система (3.33) удет нелинейной, и ее можно решать методом итераций. На рис. 67 и 68 показаны графики изменения со временем максимальных напряжений Ое/р в вязкоупругом слое (рис. 67) и в упругом слое (рис. 68) слоистой трубы, состоящей из 5 пакетов (у= = 1/2) при различных значениях параметра М (3.19). Буквой э помечены кривые, соответствующие решению по теории эффективного модуля, буквой т — кривые, соответствующие точному решению, нулем — кривые, соответствующие решению по теории нулевого приближения. Штриховой линией показаны асимптоты соответствующих кривых при t-> oo.  [c.285]


Рассмотрим метод решения задач линейной вязкоупругости, который основан на решении соответствуюш ей задачи теории упругости и применении некоторых, дополнительно определяемых экспериментально функций gj3 t). Анализируя аналитические формы решений задач идеальной упругости, Ильюшин сформулировал теорему, которая утверждает, что решение задачи идеальной упругости может быть представлено в следующей символической форме [122]  [c.55]

Обзоры методов решения краевых задач механики полимеров на основе имеющихся теорий линейной и нелинейной вязкоупругости, а также отдельные методы решений приводятся в ряде работ [5, 16, 24, 33, 36-38, 72, 92, 94-96, 98, 99].  [c.51]

Метод осреднения применяется к решению квазистатически Е задач линейной теории вязкоупругости для композитов. Особое внимание уделяется теории нулевого приближения. Для слоистых-вязкоупругих композитов тензоры эффективных ядер релаксации и ползучести находятся в явном виде. Выясняются особенности строения этих тензоров в случае структурной анизотропии. Вводится понятие канонических вязкоупругих операторов и описывается схема экспериментального определения их ядер. Дается описание метода численной реализации упругого решения и на" двух конкретных задачах показывается его применение. Даются постановки связанной задачи термовязкоупругости для физичес- ки линейных композитов и квазилинейной теории вязкоупругости, для композитов.  [c.268]

Если теперь, пользуясь алгеброй операторов, мы получим формальное решение Задачи (5.9), (5.10) или (5.8), (5.6), то для получения решения задачи линейной теории вязкоупругости для однородных сред будет необходимо расшифровать , встречающиеся в решении функции от операторов. В этом и состоит принцип Вольтерры. Следует иметь, однако ввиду, что в случае ядер релаксации и ползучести неразностного типа умножение операторов не является коммутативной операцией, и поэтому при использовании принципа Вольтерры нужно проследить за методом получения аналитического решения соответствующей задачи теории упругости с тем, чтобы правильно записать произведение упругих постоянных, входящих в ее решение. Основная трудность при решении указанных задач возникает при расшифровке операторов. Для упрощения этой процедуры часто основные операторы выбираются в специальном виде, а экспериментально найденные ядра релаксации и ползучести аппроксимируются ядрами, соответствующими данному специальному виду этих операторов [99]. Лля случая ядер разностного типа часто применяется метод преобразования Лапласа [33]. При расшифровке вязкоупругих операторов большое значение имеет так называемый оператор А.А. Ильюшина др  [c.109]

Рассмотрим теперь метод малого параметра для решения неоднородных задач линейной теории вязкоупругости. Пусть нам известна температура как функщ1Я координат и времени T(x,t). Тогда мы можем считать также известной универсальную функцию ат х,1) температурно-временной аналогии ( 5 гл. 2). Эта функция в достаточно большом диапазоне температур для многих полимерных материалов хорошо описывается формулой Вильямса-Л андер а-Фер ри  [c.325]

Линейная теория вязкоупругости основывается, с одной стороны, на основополагающих концёпциях Больцмана и Вольтерра, с другой стороны, на теории вязко-упругих реологических моделей, восходящей к Дж. Максвеллу и В. Фойхту. Объединяя свойства упругих тел и вязких жидкостей в более общей связи, эта теория имеет дело с линейными дифференциальными или интегро-дифференциальными уравнениями, поэтому в ней открывается широкий простор для приложения эффективных математических методов. Интерес к этой теории существовал все время, но отсутствие реальных технических приложений не стимулировало ее интенсивную"разработку. Ранние исследования в этой области (А. Ю. Ишлинский, А. Н. Герасимов, А. Р. Ржаницын, Ю. Н. Работнов и др.), по существу, не имели виду решение определенных технических задач, а были направлены скорее на извлечение некоторых математических следствий из принятых моделей.  [c.122]

В настоящее время наиболее распространенным методом аппроксимации кривых релаксации напряжения в нелинейной области механического поведения является способ, основанный на главной кубитаой теории Ильюшина [73]. Согласно [73], сначала проводится аппроксимация релаксационного моду ля ЕХО = о(/)/ео в линейной области вязкоупругости, а затем, пу тем вве-  [c.316]

При решении задач линейной теории вязкоупругости в последнее время получил интенсивное развитие интегрально-операторный метод. Решение широкого класса квазистатических задач с постоянной областью контакта наиболее эффективно осуществляется посредством применения принципа Вольтерра (см. 2), который позволяет принципиально выразить решение вязкоупругой задачи как функцию вольтерровых операторов.  [c.357]

Метод аппроксимаций Ильюшина. Предложенный в [211] метод аппроксимаций позволяет решёние задачи теории вязкоупругости представить через решение аналогичной задачи линейной теории упругости в виде суммы однократных интегралов с известными из опытов ядрами.  [c.289]

Весь дальнейший анализ будет построен для линейно-упругих материалов или материалов с ломаной диаграммой деформирования. Такое предположение приемлемо для большинства однонаправленных материалов при кратковременном нагружении. Пластичность и вязкоупругость, свойственные некоторым связующим, благодаря превалирующей роли волокон в восприятии внешней нагрузки проявляются при нормальной температуре относительно слабо (см. рис. 5—8). Для анализа композиционных материалов можна использовать теории вязкоупругости и пластичности, однако для большинства инженерных приложений это приводит к применению численных методов. В то же время но теории упругости для большинства практических задач получают приемлемые результаты.  [c.74]


В данном томе излагаются методы определения характеристик материала по характеристикам его компонентов (теория эффективных модулей), анализируется линейно упругое, вязкоупругое и упругопластическое поведение композ1Щионных материалов, рассматриваются конечные деформации идеальных волокнистых композитов, описывается применение статистических теорий для определения свойств неоднородных материалов. Далее приводятся решения задач о колебаниях в слоистых композитах и о распространении в них воли, критерии разрушения анизотропных сред, описание исследования композиционных материалов методом фотоупругости.  [c.4]

Продольный изгиб стержня из вязкоупругого материала в условиях ползучести в рамках линейной теории можно исследовать при помощи принципа соответствия. Найти этим методом величину прогпба гп шарнирно закрепленного на концах  [c.305]

Одним из основных вопросов в теории вязкоупругости является выбор ядер интегральных уравнений (1.5) и (1.6), нахождение резольвент, а также достоверное определение их параметров. Анализ экспериментальных кривых ползучести показывает, что прн малых t деформация после приложения нагрузки быстро нарастает, так что вначале кривая ползучести практически сливается с осью ординат. Попытки определения фактической скорости ползучести в опыте при о — onst для очень малых t оканчиваются неудачей, так как или скорость ползучести остается больше той, какая может быть измерена применяемыми регистрирующими приборами, или не удается исключить колебательные явления. В связи с изложенным многие исследователи пришли к заключению, что функция ползучести для реального материала должна обязательно иметь слабую (интегрируемую) особенность. Поэтому заметна тенденция использовать для анализа реологических задач ядра интегральных уравнений, имеющие слабую особенность при t =0. Систематизация таких ядер" и их резольвент проведена в работе [95] (табл. 1.1). Отметим, что дробноэкспоненциальная функция Ю. Н. Работнова может использоваться не только как ядро релаксации, но и как ядро ползучести, например, когда материал обнаруживает ограниченную во времени ползучесть. Использование ядра Эа для решения практических задач представляется особенно перспективным в связи со следующими обстоятельствами. Во-первых, на их основе Ю. И. Работновым [138] и М. И. Розовским [149, 150] разработан метод решения задач линейной вязкоупругости с применением принципа Вольтерры. Этими авторами создана алгебра операторов, согласно которой можно производить математические действия умножения, деления и т. д. над выражениями, содержащими интегральные операторы. Дальнейшее развитие алгебры операторов имеется в работах [65, 155]. Во-вторых, Эа — функции протабулированы и изданы отдельной книгой [142]. В-третьих, разработан достаточно эффективный метод определения параметров Эа — функции для реального материала на ЭВМ [126, 163].  [c.21]

В работе Хантера [71] решена двумерная задача о качении жесткого цилиндра с постоянной скоростью по вязкоупругому полупространству, причем рассмотрен случай, когда можно пренебречь инерционными силами. Исследование выполнено в рамках линейной теории, деформации считаются малыми, и граничные условия на поверхности относятся к недеформированному состоянию среды. Подход, примененный в работе, заключался в представлений нормальной составляющей поверхностного смещения в виде интеграла от существующего решения задачи о движении распределенной линейной нагрузки, что привело к сингулярному интегральному уравнению отцосительно искомой функции поверхностного давления (вязкоупругий аналог формулы Буссинеска). Решение задачи осуществлялось путем эквивалентного преобразования интегрального уравнения в уравнение с обычным логарифмическим ядром относительно дифференциального оператора давления. Замкнутый вид решения был получен для материала, физические свойства которого описываются одной функцией ползучести и одним временем ретордации. Однако при обобщении результатов этого исследования и распространении их на более общий случай вязкоупругого тела, у которого ползучесть характеризуется конечным числом времен релаксации, метод при-  [c.401]

Для произвольного линейного вязкоупругого оператора метод экономии оперативной памяти при численном счете указан в работе Б. Е. Победри Численные методы в теории вязкоупругости , Механика полимеров,. N 8 6, 1973.— Прим. рек  [c.423]

До недавнего времени основное содержание работ по механике композиционных материалов состояло в сведении задачи неоднородной (чаще всего изотропной) теории упругости к задаче однородной анизотропной теории. Это достигалось введением так называемых эффективных модулей, которые либо вычислялись различными методами (как стохастическими, так и детерминированными), либо определялись экспериментально как средние модули материала в целом. В данной книге этому вопросу посиящены главы 1—3. Понятно, что описание поведения композиционных материалов при помощи эффективных модулей пригодно только для решения задач об упругих композитах, Б некоторых случаях принцип Вольтерры (или, как его еще называю г, принцип соответствия) позволяет распространить теорию эффективных модулей и на линейные вязкоупругие композиты (глава 4), В настоящее время в отечественной литературе появились работы, в которых неоднородная задача теории упругости (вязкоупругости) сведена к последовательности задач анизотропной однородной моментной теории упру-  [c.6]

Первая из этих проблем теоретически исследована в работе Стройка [113], в которой получены удобные для применения приближенные уравнения для вычисления комплексных модулей по характеристикам свободных колебаний в произвольных линейных вязкоупругих образцах. Предлагается также метод оценки точности полученного решения. Один из важных результатов относится к точности самих уравнений, обычно используемых для определения комплексных модулей эти уравнения выводятся из элементарного дифференциального уравнения свободных. колебаний, получающегося из соответствующего уравнения для упругого материала при замене упругих постоянных комплексными модулями и податливостями. Хотя в большинстве случаев такое уравнение не является точным, Стройк установил, что для вязкоупругих материалов с малыми тангенсами углов потерь, таких, например, как аморфные полимеры при температуре ниже Tg, эта элементарная теория дает результаты, хорошо согласующиеся с истинными характеристиками.  [c.181]

Влияние предварительного нагружения на динамические свойства материалов было показано на рис. 3.8. Во многих случаях, например для опор двигателя, этот эффект довольно важен, особенно когда требуется достичь хороших изолирующих характеристик при высоких частотах колебаний. Здесь также учитывается влияние температуры окружающей двигатель среды. Так, для того чтобы изготовить резиноподобные материалы с разнообразными изолирующими и демпфирующими характеристиками, необходимо изучить их свойства как функции динамических и статических деформаций. Однако, поскольку здесь возможно большое число комбинаций параметров, становится трудным организовать испытания материалов. С другой стороны, можно использовать подход, при котором влияние различных внешних условий можно разграничить так, что будет достаточно провести испытания заданного материала для определения как статических, так и динамических характеристик порознь, а затем воспользоваться аналитическими методами для оценки их совместного влияния. В работе [3.11] была предложена общая теория комбинированного линейного динамического и нелинейного статического поведения вязкоупругих материалов. Аналогичный подход, дающий более простые результаты и основанный на уравнении Муни — Ривлина [3.12, 3.13], обсуждается ниже. Сначала рассматривается нелинейное статическое представление на основе уравнения Муни — Ривлина, а затем оно распространяется на динамическое поведение  [c.124]


Методы граничных элементов можно использовать для решения нестационарных задач, таких, как задачи о неустановившемся тепловом потоке, задачи линейной вязкоупругости и динамические задачи теории упругости. Примеры подобных приложений можно найти в статьях 19, 39] для теплового потока, [41] для вязкоупругости и [11, 16, 19] для эластодинамики.  [c.14]

Г. л. Слонимский и др.), теория применялась для описания тех аспектов поведения различных тел, которые не соответствуют обычным моделям. Значительное развитие теории в пятидесятых годах связано с существенным распшрением области ее применения. При не слишком высоком уровне напряжений уравнения линейной вязкоупругости хорошо описывают ползучесть бетона (с учетом старения), а также большинства полимерных материалов. Эта теория успешно применяется в механике горных пород, ледяного покрова и пр. Постановка новых прикладных задач стимулировала развитие общих методов и поиски многочисленных частных решений.  [c.132]


Смотреть страницы где упоминается термин Методы в линейной теории вязкоупругости : [c.151]    [c.7]    [c.304]    [c.46]   
Основы прогнозирования механического поведения каучуков и резин (1975) -- [ c.344 , c.345 ]



ПОИСК



Вязкоупругость

Вязкоупругость линейная

Линейная теория

Методы линейного

Методы теории вязкоупругости

Теория Метод сил

Теория линейной вязкоупругости



© 2025 Mash-xxl.info Реклама на сайте