Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы теории вязкоупругости

Глава 8 МЕТОДЫ ТЕОРИИ ВЯЗКОУПРУГОСТИ  [c.317]

В том случае, когда при записи физических соотношений теории вязкоупругости используется гипотеза о постоянстве коэффициента Пуассона, появление указанных трансцендентных функций не усложняет решение задачи вязкоупругости. В противном случае более целесообразными для решения поставленной задачи могут оказаться другие методы, например основанные на применении вариационных принципов.  [c.353]


В тех случаях, когда решение задачи теории вязкоупругости с помощью принципа Вольтерры невозможно или затруднено, эффективными могут оказаться методы решения, основанные на вариационных принципах.  [c.354]

Операторные принципы соответствия дают представление решения задачи вязкоупругости в виде функций интегральных операторов, воздействующих на известную функцию времени. Если функция операторов рациональна и известна в аналитической форме, то при фактической реализации решения задач теории вязкоупругости эффективны методы алгебры резольвентных операторов, развитые в трудах [397, 401], в работах [154, 419, 420, 422] и в ря-  [c.288]

Многие задачи вязкоупругости при помощи преобразования Лапласа (или Фурье) определяющих уравнений и граничных условий по истинному или приведенному времени становятся математически эквивалентными аналогичным задачам для упругих тел. Такая аналогия называется принципом соответствия и дает возможность использовать методы теории упругости для получения решений (в изображениях) задач вязкоупругости. Впервые этот принцип был установлен Био [11] для анизотропной среды.  [c.140]

Метод, излагаемый ниже (32, 37], позволяет решать широкий класс динамических задач теории вязкоупругости при произвольном виде ядер вязкоупругих операторов, определяющих связь между компонентами тензоров напряжений и деформаций. Этот метод удобен при его численной реализации на современных ЭВМ.  [c.26]

Филиппов И. Г. О некоторых математических методах решения динамических задач линейной теории вязкоупругости. — Механика твердого тела, 1978, № 5, с. 206.  [c.266]

Подробнее с линейной и нелинейной теорией вязкоупругости можно ознакомиться, например, по книгам [38, 66, 92]. Методы решения нелинейной вязкоупругости изложены в работе [78]. Вопросы определения комплексных вязкоупругих характеристик достаточно полно изложены в книге [112]. Доказательство исключительности модели Максвелла дано в [114].  [c.46]

Для решения квазистатических задач линейной теории вязкоупругости для анизотропной однородной среды (1.11), (1.12) универсальных эффективных методов нет.  [c.279]

Описанный метод представляет собой аналитический метод аппроксимации в теории вязкоупругих композитов. Если задачу теории упругости, соответствующую задаче (3.3), (3.4), аналитически решить ие удается, можно воспользоваться методом численной реализации упругого решения, который представляет собой численный метод аппроксимации в теории вязкоупругих композитов.  [c.281]


Метод осреднения к решению квазистатических и динамических задач линейной теории вязкоупругости применен в [84].  [c.288]

Рассмотрению волн в анизотропной упругой среде посвящена монография [100]. Обзор работ по динамике в теории упругих и вязкоупругих композитов имеется в [96]. Метод осреднения к динамической задаче теории вязкоупругости композитов применен в работе [84].  [c.302]

Заметим, что, хотя формально задача (1.7.), (1.8) напоминает задачу теории упругости, все же решение задачи теории вязкоупругости методом преобразования Лапласа вызывает определенные трудности из-за сложности выполнения операции обратного преобразования Лапласа.  [c.318]

Решение динамических задач теории вязкоупругости при использовании сеточных методов не вызывает заметных усложнений по сравнению с квазистатическими задачами. Более того, оказывается, что явная схема для динамической задачи теории вязкоупругости может оказаться устойчивой, в то время как аналогичная схема для соответствующей упругой задачи таковой не является [76]. Для исследования разностных схем в случае динамической задачи теории вязкоупругости может быть применено Z-преобразоваНие.  [c.321]

Существует лишь незначительное число статических задач трехмерной теории упругости, для которых известна явная зависимость от коэффициента Пуассона (или от параметра ш). Поэтому представляет интерес отыскание решения квазистатической задачи теории вязкоупругости, если при некоторых различных значениях коэффициента Пуассона либо известна численная реализация упругого решения, либо оно найдено экспериментально, например, оптическим методом исследования напряжений.  [c.323]

Для решения задач нелинейной теории вязкоупругости можно применять итерационные методы, рассмотренные в 4, 5 гл. 5.  [c.333]

Подход Кольрауша к постановке экспериментов показывает до некоторой степени мощь эмпирических методов в руках того, кто, не склоняясь в сторону предсказываемых или предполагаемых результатов, ожидает результата для анализа его. Он искал функцию, которая аппроксимировала бы результаты по крайней мере для одного временного интервала. Изменяя численные значения для каждого эмпирического приближения и затем изучая величины для двух различных функций, он пришел к заключению, что для достижения общности определяющее уравнение должно иметь вид, который ныне используется в нелинейной теории вязкоупругого тела при инфинитезимальных деформациях.  [c.119]

Приведем эффективный метод решения краевых задач линейной теории вязкоупругости типа (1.43), (1.46). Для этого запишем соотношения (1.43) в символической форме, введя обозначение интегрального оператора G  [c.52]

При решении многих краевых задач линейной теории вязкоупругости применяют принцип Вольтерра, состоящий в том, что решение таких, задач получают из соответствующих упругих решений заменой упругих постоянных временными операторами (операторами наследственной упругости). Принцип Вольтерра является в настоящее время (особенно в нашей стране) одним из основных методов в решении задач квазистатической теории вязкоупругости.  [c.68]

Последовательность изложения материала и достаточно непрерывное его развитие позволяют использовать книгу как учебник по вводному курсу механики сплошной среды. В то же время она может оказаться весьма полезной в качестве дополнительного справочника по дисциплинам, базирующимся на методах теории континуума курсы сопротивления материалов, гидромеханики, теории упругости, теории пластичности и, теории вязкоупругости тесно связаны с содержанием книги и могут быть построены на ее основе.  [c.7]

Эксплуатационные нагрузки, действующие на элементы конструкций из полимерных материалов, нередко претерпевают изменения. Отсюда возникает необходимость в разработке методов расчета деформационных и прочностных свойств полимеров при переменных напряжениях. В настоящее время достаточно полно рассмотрены возможности описания механического поведения полимеров в условиях изменяющихся нагрузок при одноосном напряженном состоянии с помощью линейной теории вязкоупругости и различных вариантов нелинейной теории вязкоупругости [71, 138]. Наибольший практический интерес представляют случаи нагружения при сложном напряженном состоянии. Однако сведений о ползучести полимеров при сложном напряженном состоянии и переменных напряжениях, а также о методах теоретического описания опытных данных в научно-технической литературе крайне мало.  [c.146]


Решение конкретных задач на основе интегральных уравнений состояния сопровождалось развитием операторных методов. Правила обращения различных интегральных операторов в зависимости от свойств ядер ползучести и релаксации для решения задач линейной теории вязкоупругости развиты в ряде работ, например в теории наследственной упругости [38] (см. Приложение II).  [c.46]

Отметим сразу же, что метод Бубнова — Галеркина переносится без изменения на тот случай, когда А является несамосопряженным оператором, а также интегро-дифференциальным оператором вида, встречающегося в наследственной теории вязкоупругости Больцмана — Вольтерра.  [c.214]

Бурное развитие современной техники неизбежно выдвигает перед механикой деформируемого тела новые, все более сложные задачи. Традиционные материалы ставятся в чрезвычайно сложные условия высоких температур и давлений, внедряются новые материалы — различные высокожаропрочные сплавы, композиционные материалы, высокопрочные и высокомодульные волокна. Это привело к необходимости, наряду с моделью упругого тела, рассматривать другие модели деформируемого тела, широко применять в инженерных расчетах уже давно сложившиеся методы теории пластичности, ползучести, вязкоупругости, статистические и вероятностные методы при переменных напря- жениях и т. д. За последнее время определилось новое направление механики твердых тел, которое получило название механики разрушения. Развитие этого направления будет опираться на перечисленные теории деформируемого тела, причем они приобретают новое, более широкое значение. Это относится и к теории упругости. В этой связи академик Ю. Н. Работнов в одной из своих статей заметил Теория упругости нашла в наши дни новую область приложения в физике кристаллов, в теории разрушения теория упругости в известном смысле переживает второе рождение и истинная ценность ее только теперь раскрылась в полной мере .  [c.6]

Теория ползучести — одно из направлений механийй дефор- мируемого твердого тела, которое сложилось за последнее время. Она занимает свое место рядом с такими разделами механики, как теория упругости и теория пластичности. Ползучесть влияет на прочность и устойчивость конструкций и деталей машин. Поэтому расчет соору кений на прочность с учетом свойств ползучести материала приобретает первостепенное значение для современной техники. Однако теория ползучести является не только основой для создания методов расчета элементов конструкций и деталей машин, работающих в сложных эксплуатационных уело- -ВИЯХ. Теория ползучести, обладая своеобразным полем зрения , служит для понимания того, как выбрать тот или Иной материал для данной конструкции, в каких условиях его нужно испытывать, какие требования необходимо предъявлять к технологии возве- дения сооружений или изготовления различных элементов конструкций и деталей машин. Бот почему за последнее время вышел в свет целый ряд фундаментальных исследований и монографий, посвященных теории ползучести и теории вязкоупругости как у нас в стране [216, 302, 307, 336, 399, 415], так и За рубежом [63,261,479,556,594,611,632].  [c.7]

Основные работы, посвященные решению задач о наращивании методами теории упругости, приведены в [5241. На основе теории упругоползучего тела в работе [494] исследовано напряженно-деформированное состояние в однородных телах при их наращивании. В более общей постановке эта задача рассматривалась в [171]. Установлению определяющих соотношений и исследованию краевых задач вязкопластических течений "твердых тел посвящены работы [208, 209]. Уравнениям деформирования не вполне упругих и вязкопластических тел посвящены работы [217—220]. Задача термоползучести для неоднородно-стареющего тела исследована в [94, 95]. Плоская задача вязкоупругости для неоднородной среды, а также влияние старения материала на напряженно-деформированное состояние около отверстий исследовались в [429, 430, 474].  [c.27]

Метод аппроксимаций, предложенный в [211], позволяет получить точное решение задачи теории вязкоупругости, если решение соответствующей задачи теории упругости можно представить в виде рациональной функции констант материала. Этот метод применим также для построения приближенного решения и в болев общем случае, когда функция упругих модулей трансцен-дентна, или задача теории упругости решается численно.  [c.289]

Метод аппроксимаций Ильюшина. Предложенный в [211] метод аппроксимаций позволяет решёние задачи теории вязкоупругости представить через решение аналогичной задачи линейной теории упругости в виде суммы однократных интегралов с известными из опытов ядрами.  [c.289]

Весь дальнейший анализ будет построен для линейно-упругих материалов или материалов с ломаной диаграммой деформирования. Такое предположение приемлемо для большинства однонаправленных материалов при кратковременном нагружении. Пластичность и вязкоупругость, свойственные некоторым связующим, благодаря превалирующей роли волокон в восприятии внешней нагрузки проявляются при нормальной температуре относительно слабо (см. рис. 5—8). Для анализа композиционных материалов можна использовать теории вязкоупругости и пластичности, однако для большинства инженерных приложений это приводит к применению численных методов. В то же время но теории упругости для большинства практических задач получают приемлемые результаты.  [c.74]


Шарафутдинов Г. 3., Решение задач линейной теории вязкоупругости поляризационно-оптическим методом, сб. Поляризационно-оптический метод и его приложение к исследованию тепловых напряжений и деформаций , Киев, Наукова Думка , 1976, 241--245.  [c.552]

Приведенные выше методы позволяют получить непрерывную функцию распределения времен релаксации. Молекулярные теории вязкоупругости, развитые Раузом [6], Зиммом [7], Бики [8, 9] и другими [1, 10], дают дискретный спектр времен релаксации. Типичная формула для р-го времени релаксации, получаемая по этим теориям для Т > Т , имеет вид  [c.56]

Метод осреднения применяется к решению квазистатически Е задач линейной теории вязкоупругости для композитов. Особое внимание уделяется теории нулевого приближения. Для слоистых-вязкоупругих композитов тензоры эффективных ядер релаксации и ползучести находятся в явном виде. Выясняются особенности строения этих тензоров в случае структурной анизотропии. Вводится понятие канонических вязкоупругих операторов и описывается схема экспериментального определения их ядер. Дается описание метода численной реализации упругого решения и на" двух конкретных задачах показывается его применение. Даются постановки связанной задачи термовязкоупругости для физичес- ки линейных композитов и квазилинейной теории вязкоупругости, для композитов.  [c.268]

Если теперь, пользуясь алгеброй операторов, мы получим формальное решение Задачи (5.9), (5.10) или (5.8), (5.6), то для получения решения задачи линейной теории вязкоупругости для однородных сред будет необходимо расшифровать , встречающиеся в решении функции от операторов. В этом и состоит принцип Вольтерры. Следует иметь, однако ввиду, что в случае ядер релаксации и ползучести неразностного типа умножение операторов не является коммутативной операцией, и поэтому при использовании принципа Вольтерры нужно проследить за методом получения аналитического решения соответствующей задачи теории упругости с тем, чтобы правильно записать произведение упругих постоянных, входящих в ее решение. Основная трудность при решении указанных задач возникает при расшифровке операторов. Для упрощения этой процедуры часто основные операторы выбираются в специальном виде, а экспериментально найденные ядра релаксации и ползучести аппроксимируются ядрами, соответствующими данному специальному виду этих операторов [99]. Лля случая ядер разностного типа часто применяется метод преобразования Лапласа [33]. При расшифровке вязкоупругих операторов большое значение имеет так называемый оператор А.А. Ильюшина др  [c.109]

Лля решения квазистатических задач теории вязкоупругости и термовязкоупругости успешно применяются методы, основанные на принципе Вольтерры и преобразовании Лапласа [33]. Об этом речь пойдет в гл. 8. Сложнее обстоит дело в том случае, когда свойства материала сильно зависят от температуры, т.е. функции релаксации и ползучести зависят от температуры. Это обстоятельство существенно усложняет задачу и делает фактически непригодными упомянутые выше методы ее реше1шя.  [c.112]

При применении преобразования Лапласа, так же как и принципа Вольтерры, рассмотренного в 5 гл. 2, большое значение имеет аналитическая форма задания ядер релаксации и ползучести. Обычно экспериментально найденные значения этих ядер задаются дискретным набором значений, соответствующих некоторым фиксированным временам, чаще всего через равные промежутки времени. По этим экспериментальным значениям строят различными методами аналитические аппроксимации ядер в специальной форме. Известны такие аналитические представления Ю.Н. Работнова, М.А. Колтунова, А.П. Вронского, А.Р. Ржани-цына [33, 90] и др. Такая аналитическая аппроксимация часто является источником дополнительных погрешностей, ибо трудно дать аналитическое выражение ядра, хорошо описывающее экспериментально найденное на достаточно большом временном интервале. В следующем параграфе указывается метод, не требующий аналитического описания ядер релаксации и ползучести. Для получения численного решения задачи теории вязкоупругости также нет необходимости производить аналитическую аппроксимацию экспериментальных значений. Пусть, например, временной  [c.318]

Рассмотрим теперь метод малого параметра для решения неоднородных задач линейной теории вязкоупругости. Пусть нам известна температура как функщ1Я координат и времени T(x,t). Тогда мы можем считать также известной универсальную функцию ат х,1) температурно-временной аналогии ( 5 гл. 2). Эта функция в достаточно большом диапазоне температур для многих полимерных материалов хорошо описывается формулой Вильямса-Л андер а-Фер ри  [c.325]

Первоначальное развитие теории вязкоупругости связано с именами Больцмана, Максвелла, Кельвина, Фойхта. Многие достижения современного ее состояния определяются работами Ильюшина, Ишлинского, Колтунова, Москвитина, Работнова, Слонимского, Ржаницына, Победри и других отечественных ученых. В частности, Ильюшиным подробно разработана общая теория термовязкоупругости, предложен эффективный метод решения частных задач — метод аппроксимаций [122].  [c.48]

Я стремился охватить широкий круг вопросов, так как наша лаборатория занималась исследованиями процессов в реальных конструкциях и аппаратах (а это всегда требует комплексного подхода). Поэтому мы имели дело с экспериментами по стагике и динамике конструкций, динамике жидкости и газа, с измерительной аппаратурой, разнообразными аналитическими и численными методами в теории вязкоупругости, тонкостенных оболочек, в гидрогазодинамике, в теории взаимодействия сред и т.д. Обычно исследователи занимаются узкой темой в одной из названных областей (и это правильно). Видя мою осведомленность во многих вопросах, некоторые английские профессора отмечали, что в СССР инженерам дается более разностороннее образование, чем в других странах.  [c.154]

Линейная теория вязкоупругости основывается, с одной стороны, на основополагающих концёпциях Больцмана и Вольтерра, с другой стороны, на теории вязко-упругих реологических моделей, восходящей к Дж. Максвеллу и В. Фойхту. Объединяя свойства упругих тел и вязких жидкостей в более общей связи, эта теория имеет дело с линейными дифференциальными или интегро-дифференциальными уравнениями, поэтому в ней открывается широкий простор для приложения эффективных математических методов. Интерес к этой теории существовал все время, но отсутствие реальных технических приложений не стимулировало ее интенсивную"разработку. Ранние исследования в этой области (А. Ю. Ишлинский, А. Н. Герасимов, А. Р. Ржаницын, Ю. Н. Работнов и др.), по существу, не имели виду решение определенных технических задач, а были направлены скорее на извлечение некоторых математических следствий из принятых моделей.  [c.122]

Одним из основных вопросов в теории вязкоупругости является выбор ядер интегральных уравнений (1.5) и (1.6), нахождение резольвент, а также достоверное определение их параметров. Анализ экспериментальных кривых ползучести показывает, что прн малых t деформация после приложения нагрузки быстро нарастает, так что вначале кривая ползучести практически сливается с осью ординат. Попытки определения фактической скорости ползучести в опыте при о — onst для очень малых t оканчиваются неудачей, так как или скорость ползучести остается больше той, какая может быть измерена применяемыми регистрирующими приборами, или не удается исключить колебательные явления. В связи с изложенным многие исследователи пришли к заключению, что функция ползучести для реального материала должна обязательно иметь слабую (интегрируемую) особенность. Поэтому заметна тенденция использовать для анализа реологических задач ядра интегральных уравнений, имеющие слабую особенность при t =0. Систематизация таких ядер" и их резольвент проведена в работе [95] (табл. 1.1). Отметим, что дробноэкспоненциальная функция Ю. Н. Работнова может использоваться не только как ядро релаксации, но и как ядро ползучести, например, когда материал обнаруживает ограниченную во времени ползучесть. Использование ядра Эа для решения практических задач представляется особенно перспективным в связи со следующими обстоятельствами. Во-первых, на их основе Ю. И. Работновым [138] и М. И. Розовским [149, 150] разработан метод решения задач линейной вязкоупругости с применением принципа Вольтерры. Этими авторами создана алгебра операторов, согласно которой можно производить математические действия умножения, деления и т. д. над выражениями, содержащими интегральные операторы. Дальнейшее развитие алгебры операторов имеется в работах [65, 155]. Во-вторых, Эа — функции протабулированы и изданы отдельной книгой [142]. В-третьих, разработан достаточно эффективный метод определения параметров Эа — функции для реального материала на ЭВМ [126, 163].  [c.21]



Смотреть страницы где упоминается термин Методы теории вязкоупругости : [c.5]    [c.369]    [c.320]    [c.151]    [c.358]    [c.311]    [c.323]    [c.46]   
Смотреть главы в:

Численные методы в теории упругости и пластичности  -> Методы теории вязкоупругости



ПОИСК



Вязкоупругость

Методы в линейной теории вязкоупругости

Методы и алгоритмы решения плоских задач теории многократного наложения больших упругих и вязкоупругих деформаций

Методы определения спектров времен и ядер релаксации и ползучести в линейной теории вязкоупругости

Теория Метод сил



© 2025 Mash-xxl.info Реклама на сайте