Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Граничные условия в задачах второго рода

Уравнения, определяющие оба поля, в безразмерном виде будут, очевидно, совершенно тождественны. Безразмерные граничные условия будут тождественны только в том случае, если ими непосредственно определяется поле искомой величины на границах системы, т. е. в случае, если тепловая задача поставлена в граничных условиях первого или второго родов. Электрическая аналогия является очень эффективным средством экспериментального исследования. Замещение исследуемого процесса его электрической аналогией, как правило, создает существенные преимущества. Электрическая модель с заданными геометрическими и физическими свойствами, а также режимные условия, обычно легко реализуются. Все необходимые измерения осуществляются сравнительно просто и с очень высокой степенью точности. Особенно важное значение электрическое моделирование приобретает при исследовании сложных нестационарных процессов.  [c.138]


В [Л. 6-45, 6-47] был решен ряд задач для тел классической формы (неограниченная пластина, шар, цилиндр) при граничных условиях первого и второго рода, а также при граничных условиях четвертого рода (сложные тела). Эти решения могут быть с успехом использованы для исследования механизма массопереноса в пористых телах.  [c.532]

При решении отдельных конкретных задач интегратор выполняется на специализированных стойках с жесткой коммутацией задачи. В качестве наборного поля сопротивлений используются те же кассеты, что и для универсальной сетки. Задание граничных условий при решении задач производится с помощью делителей граничных условий первого и второго рода. Делитель граничных условий первого рода (ДГУ-1) представляет собой автотрансформатор, позволяющий задавать напряжение в пределах от О до 100% через каждые 0,5%. Задание граничных условий производится на переменном токе промышленной частоты 50 гц с панели выхода ДГУ-1 в узлы сетки через коммутационную панель. Граничные условия второго рода задаются с панели выхода ДГУ-2 через панель сопротивления скважин и дополнительных сопротивлений в узловые точки сетки также через панель.  [c.64]

Нетрудно убедиться, что решения одномерных задач теплопроводности с пространственной координатой, изменяющейся в конечном интервале, с граничными условиями первого и второго родов на концах этого интервала могут быть выражены в виде линейных комбинаций интегралов и производных от следующих рядов, играющих важную роль в теории теплопроводности и других разделах анализа и имеющих специальное название тэта-функции  [c.570]

В связи с тем, что при моделировании температурных полей в поршнях двигателей внутреннего сгорания кольцо рассматривается, как правило, в виде отдельного элементарного блока, практически невозможно детально изучить движение тепловых потоков как в самом кольце, так и в прилегающих к нему областях поршня. Для этой цели на поршне был выделен в районе первого и второго колец уточняемый участок (рис. 3), температурные поля которого определялись с помощью ЭЦВМ. Значения температур на границах участка со стороны тела поршня задавались в соответствии с полями температур, полученными на сеточной модели (граничные условия I рода). По контуру поршневой канавки и боковой поверхности поршня и колец задавались граничные условия в соответствии с рекомендациями, изложенными в работе [4] и принятыми при моделировании поля температур на электрической сетке. При этом для большей достоверности граничные условия по всем поверхностям поршня уточнялись по данным натурных испытаний путем решения обратных задач.  [c.252]


В результате задача сводится к интегрированию уравнения для эквивалентной пластины с переменными коэффициентами и функцией распределенного источника теплоты, а также с заданием граничных условий на ее противоположных поверхностях. Граничные условия в общем случае формулируются как функции времени и для каждой стороны пластины могут быть первого, второго или третьего рода, т. е. задано изменение либо температуры поверхности, либо плотности теплового потока, либо температуры окружающей среды (теплоносителя) и коэффициента теплоотдачи во времени.  [c.191]

Исследованию задач управления упругими колебаниями посвящено большое число работ (см., например, [11, 29, 31, 53, 54, 72, 101]). Однако в этих исследованиях не дается исчерпывающего решения задач управляемости упругими колебаниями с помощью граничных управлений при различных типах граничных условий. В предлагаемой вниманию читателей книге эти вопросы рассмотрены с достаточной полнотой для колебаний, описываемых одномерным волновым уравнением с линейными граничными условиями первого, второго и третьего рода, а также смешанных краевых условий, т. е. когда на границе заданы краевые условия разных родов.  [c.3]

При построении тепловой модели шпинделя принимаются следующие допущения основной источник теплообразования — энергия, которая выделяется от трения в опорах теплота поступаем через торцовые поверхности шпинделя в местах закрепления подшипников задача рассматривается как одномерная, и температура изменяется только по длине шпинделя теплофизические параметры являются постоянными теплоотдача с боковых поверхностей шпинделя незначительна. При таких допущениях уравнение теплопроводности шпинделя с граничными условиями второго рода имеет вид  [c.53]

Значительно проще и с достаточной для технических расчетов точностью коэффициент теплоотдачи при кипении в трубах и в кольцевых каналах можно определить по формуле, в которой в качестве определяющей скорости принята, скорость парожидкостной смеси W M = Wo +Wo", всегда заданная по условию, если задача решается в граничных условиях второго рода. Формула имеет вид [182]  [c.245]

Покажем теперь, что рассматриваемая задача сводится к решению системы интегральных уравнений второго рода. Пусть для области V известен тензор перемещений Грина (х, ) от действия единичной сосредоточенной силы в точке F, удовлетворяющий граничным условиям  [c.76]

В том случае, если в среде или на граничной поверхности задаются плотности результирующего излучения (граничные условия второго рода), задача также легко решается путем использования обобщения (Л. М9]. При этом уравнение ( 11-4) приводится к-виду  [c.324]

В монографии излагается приближенный метод расчета процессов теплопроводности, основанный на предварительном исключении из соответствующих дифференциальных уравнений теплового баланса одной или нескольких независимых переменных (например, пространственных координат). Этим методом решены задачи с граничными условиями первого, второго, третьего и четвертого рода, т. е. все основные задачи теории теплопроводности (в том числе рассмотрены процессы распространения теплоты в телах сложной конфигурации, а также в телах, где имеет место изменение агрегатного состояния вещества). Особенностью метода является его исключительная простота (при решении задач приходится использовать лишь хорошо известные табличные интегралы).  [c.2]

Постановка задачи. Однородный шар радиуса Хо нагревается постоянным по величине удельным тепловым потоком (граничное условие второго рода). В момент т = 0 (начальное условие) температура шара равна о- Необходимо найти температурное поле шара и количество переданной теплоты.  [c.104]

Для проектировочных расчетов теплоизоляции в нестационарных условиях физическая модель процесса может быть еще упрощена. Если учесть, что теплопроводность и температуропроводность первого слоя значительно выше, чем второго, то рассматриваемая задача может быть сведена к задаче теплопередачи в однослойной стенке. Действительно, вследствие высоких теплопроводящих свойств материала первого слоя градиенты температуры в нем будут малыми и распределение температуры можно не учитывать, а принять ее равной температуре раздела слоев. В этом случае физическая модель состоит из одного второго слоя, а наличие первого слоя следует учесть в граничных условиях третьего рода. Математическое описание процесса теплопередачи в данном случае имеет вид  [c.33]


В качестве второго примера приведем результаты из работы [Л. 1-39], в которой рассматривалась задача конвективного теплообмена при полностью развитом ламинарном течении в цилиндрической трубе при граничных условиях второго рода (поток теплоты на поверхности трубы постоянный). Классическое решение этой задачи дает для числа Нуссельта Nu постоянное значение  [c.78]

Считалось, что второй прием более эффективный при моделировании постоянных, а первый — переменных во времени граничных условий, однако наиболее целесообразным является использование в обоих случаях комбинированного метода реализации граничных условий III рода (гл. VII), когда Ra выполняется в виде двух составляющих одной, состоящей из полосок электропроводной бумаги (непосредственно стыкуется с границей модели — непрерывный подвод), и второй, представляющей собой дискретное переменное сопротивление, которое может меняться в процессе решения. Такая реализация граничных условий III рода устраняет искажения, вызываемые в поле потенциалов дискретностью подвода граничных условий и в то же время позволяет эффективно решать задачи теплопроводности с изменяющимися во времени коэффициентами теплообмена.  [c.50]

Параграф 5.1 посвящен развитию метода однородных решений в контактных задачах для тел конечных размеров сложной неканонической формы. Дается общая постановка задач, приводится описание схемы метода. Показывается, что метод однородных решений может быть с успехом применен к широкому классу существенно смешанных задач для тел, часть границы которых совпадает с парой координатных поверхностей канонической системы координат, на которой задаются смешанные граничные условия, а другая часть границы задается достаточно произвольно, и на ней ставятся несмешанные граничные условия. Дается сравнительная характеристика эффективности и границ применимости различных численных методов для удовлетворения краевым условиям при помощи однородных решений, отмечаются трудности, возникающие при использовании методов коллокации и наименьших квадратов, показываются преимущества использования методов Ремеза первого и второго рода.  [c.18]

Одним из эффективных методов составления исходных дифференциальных уравнений и решения соответствующих краевых задач теплопроводности и термоупругости для кусочно-однородных тел (многослойных, армированных, со сквозными и с несквозными включениями) в случае выполнения на поверхностях сопряжения их однородных элементов условий идеального термомеханического контакта, для многоступенчатых тонкостенных элементов, локально нагреваемых путем конвективного теплообмена тел, тел е зависящими от температуры свойствами, с непрерывной неоднородностью является метод [52], основанный на применении обобщенных функций [7, 18,22, 50,87] и позволяющий получать единые решения для всей области их определения. В этих случаях физико-механические характеристики и их комбинации кусочно-однородных тел, толщина (диаметр) многоступенчатых оболочек, пластин, стержней, коэффициент теплоотдачи с поверхности тела могут быть описаны для всего тела (поверхности) как единого целого с помощью единичных, характеристических функций, а физико-механические характеристики тел с непрерывной неоднородностью с зависящими от температуры физико-механическими характеристиками могут быть аппроксимированы с помощью единичных функций. В результате подстановки представленных таким образом характеристик в дифференциальные уравнения второго порядка теплопроводности и термоупругости неоднородных тел, дифференциальные уравнения оболочек, пластин, стержней переменной толщины (диаметра), дифференциальные уравнения теплопроводности или условие теплообмена третьего рода с переменными коэффициентами теплоотдачи приходим к дифференциальным уравнениям или граничным условиям, содержащим коэффициентами ступенчатые функции, дельта-функцию Дирака и ее производную [52]. При получении дифференциальных ура,внений термоупругости для тел одномерной кусочно-однородной структуры наряду с вышеописанным методом эффективным является метод [67, 128], основанный на постановке обобщенной задачи сопряжения для соответствующих дифференциальных уравнений с постоянными коэффициентами. Здесь за исход-  [c.7]

Решение задачи типа Дирихле ищется в виде обобщенного потенциала двойного слоя, а задачи типа Неймана — в виде потенциала простого слоя. Из граничных условий получаются ИУ второго рода по границе области относительно неизвестных плотностей потенциалов.  [c.186]

В задаче (4.13), (4.14) используются и начальные, и граничные условия. Такие задачи называют начально-краевыми или смешанными (их называют также нестационарными, поскольку искомая величина и есть функция времени). При этом, если в начальнокраевой задаче используется краевое условие I (П или П1) рода, то ее называют первой (второй или третьей) начально-краевой задачей.  [c.126]

Интегральные представления комплексных потенциалов Ф (г) и Y (г) (1.145) являются общим решением двумерной бигармони-ческой задачи, содержащим две произвольные комплексные функции g (/) и q (/) (или четыре действительные функции), что позволяет с их помощью изучать самые разные краевые задачи для областей с разрезали . В частности, удовлетворив с помощью представления (1.145) и формул (1.26), (1.30), (1.42) граничным условиям плоской задачи теории упругости для бесконечной плоскости с разрезами, когда на одном берегу разреза заданы смещения, а на другом — напряжения, найдем сингулярные интегральные уравнения второго рода. При использовании условий неидеального контакта упругих тел, когда напряжения и смещения берегов разреза связаны линейными зависимостями (см. [40, 172, 175, 261]), легко получить сингулярные интегро-дифференциальные уравнения типа Прандтля для тел с тонкостенными упругими включениями 238]. Интегральные представления могут быть использованы при решении различных смешанных задач для тел с разрезами, задач о полосах пластичности, моделируемых скачками перемещений [23], и др.  [c.38]


Впервые этот метод применил Г. В. Колосов Он показал, что интеграл бигармопического уравнения для функции напряжений, а также граничные условия в напряжениях или смещениях могут быть выражены через функции комплексного переменного. Ряд важных результатов получил Н. И. Мусхелишвили С помощью функций комплексного переменного можно легко получить решение плоской задачи теории упругости для внутренности круга. Если же задана некоторая односвязная область, отличная от круга, то в этом случае надо воспользоваться конформным отображением области на круг. Кроме того, использование интеграла тина Коши позволяет свести плоскую задачу теории упругости к интегральному уравнению Фредгольма второго рода, для решения которого существуют хорошо разработанные приближенные методы. В некоторых случаях (например, для  [c.252]

Принцип Вольтерра. При решении статических задач вязкоупругости основную роль играет принцип, сформулированный Вольтерра и основанный на том, что линейные операции дифференцирования и интегрирования по координатам и умножения на временной оператор Вольтерра коммутативны. Поэтому любое решение статической задачи классической теории упругости трансформируется в решение соответствующей задачи линейной вязкоупругости путем замены в окончательном результате упругих постоянных соответствующими операторами. Если в решении классической задачи упругие постоянные фигурируют в качестве множителя, представляющего собою их рациональную комбинацию, расшифровка рациональной фунгщии операторов сводится к последовательному решению интегральных уравнений Вольтерра второго рода. Для экспоненциальных и дробно-экспоненциальных операторов эти вычисления производятся по стандартным правилам. Более сложное положение возникает тогда, когда в решении задачи теории упругости упругие константы не образуют рациональных комбинаций, а также если тип граничных условий в разных точках поверхности тела меняется.  [c.151]

Условия на идеальных границах (1.20а) и (1.19а) иногда назьшаютграничными условиями, соответственно, первого и второго рода. Кроме граничных условий, в постановку задачи определения звукового поля входят начальные условия. Если звуковая волна создается источниками, начавшими работу в момент t = (о,то начальные условия заключаются в равенстве нулюр и Эр/Эг в момент iq во всем пространстве.  [c.13]

Условие (2.38) иногда называют граничным условием третьего рода или имледансным граничным условием. (Условия первого и второго рода рассматривались в п. 1.2). Для задачи об отражении плоской волны переход от двух граничных условий к одному не имеет особой важности, так как формула (2.25), получетгаая довольно простым способом, справедлива и без предположения о постоянстве Z,. В более сложных дифракционных задачах, когда граница или фронт волны не плоские, переход к импедансно-му условию может сильно упростить задачу.  [c.33]

Для расчета второй части ошибки, как правило, требуется проведение дополнительных исследований с целью определения оптимальных условий проведения эксперимента. Так, подавляющее большинство методов основано на решении одномерной задачи, в то время как на практике, естественно, используются образцы конечных размеров. В этом случае необходим ппедварительный анализ соответствующих двумерных задач, в результате которого можно найти такие соотношения между линейными размерами образца, при которых условия одномерности теплового потока удовлетворялись бы с требуемой точностью. Необходимо принять и ряд других мер для получения достоверных данных. В частности, при подготовке образцов для теплофизического эксперимента необходима тщательная обработка поверхностей для соблюдения граничных условий четвертого рода, так как термические сопротивления являются серьезным источником погрешности. К сожалению, не существует каких-либо общих критериев, позволяющих определить  [c.128]

Аналогично, подставляя ряд (13-43) в (13-37) н выполняя все обходимые математические операции, получаем сх1ожую систему алгебра1ич0оких ура1В нений, которая совместно с граничными условия ми (13-41) и (13-4 2) дает решение задачи для граничных условий второго рода.  [c.378]

Из оценок следует, что влияние джоулева нагрева при течении жидких металлов может стать заметным при На 10 . Результаты воздействия магнитного поля на теплоперенос при ламинарном движении жидкости между плоскими пластинами можно проследить на примере гартмановского течения. Из аналитического решения задачи о теплообмене [46] для двух типов граничных условий на непроводящих стенках (заданы постоянная температура или тепловой поток) в области теплового и гидродинамического установления видно, что увеличение На от нуля до бесконечности приводит к росту числа Nu примерно на 31% (от 7,55 до 9,87) для граничных условий первого рода и на 46% (от 8,24 ло 12) для условий второго рода (рис. 3.17). Очевидно, что с ростом На течение переходит от пуазейлевского к стержневому и процесс теплообмена идет так же, как в случае нагрева или охлаждения плоской пластины конечной толщины. При этом, однако, становится необходимым учет джоулева тепла.  [c.82]

Постановка задачи. Дана ллоская стенка (плита) толщиной 2Хо длина и ширина стенки неограниченно большие. В начальный момент (при т = 0) температура плиты равна to. Удельный тепловой поток, поступающий в плиту, постоянен и равен q (граничное условие второго рода).  [c.95]

Однако в некоторых случаях предпочитают выражать решение через плотность теплового потока j"o, а не использовать упрощенную постановку задачи массопереноса. Так поступают, когда свойства вдуваемого газа и основного потока не позволяют принимать допущения, упрощающие уравнение энергии, энтальпия не является сохраняемым свойством второго рода и стандартная постановка задачи не верна. В этом случае для того, чтобы прав1Ильно записать граничное условие та поверхности, необходимо вернуться к уравнению (14-126) и рис. 14-S.  [c.403]

Отдельные решения системы уравнений тепло- и массопереноса при граничных условиях второго рода были получены Н. И. Гамаюновым, М. С. Козловой, А. В. Лыковым, Ю. А. Михайловым, Ш. Н. Плят, А. П. Прудниковым. Решения системы уравнений при отсутствии термоградиентного переноса дал М. С. Смирнов. Различные случаи несвязанного переноса были рассмотрены многими советскими и зарубежными авторами. Некоторые задачи такого рода будут рассмотрены в 5-5,  [c.156]

ВОЗМОЖНОСТЬ решать нелинейную задачу (см. параграф 3 гл. XIII). Во-вторых, в качестве пассивной модели вместо R- er-ки используется С-сетка, что позволяет решать задачу нестационарной теплопроводности. В-третьих, для осуш,ествления на модели переменных во времени граничных условий, а также для задания изменяющейся во времени функции 0, с которой сравниваются потенциалы, полу-чаюш,иеся в узловых точках модели, вместо ПДН используются ФФ и блоки граничных условий I рода ГУ-1. Эти блоки обычно входят в комплект / С-сетки (см., например, [223]). Решение задачи происходит аналогично тому, как это описано в параграфе 3 данной главы. Только на индикаторе С-сетки регистрируются изменения коэффициента теплообмена во времени.  [c.176]

В большинстве методов опыт начинается при равномерном начальном распределении температуры внутри образца. Основные задачи этой группы рассмотрены А. В. Лыковым [25. В частности, им подробно изучены закономерности разогрева (охлаждения) пластины, цилиндра и шара при простейших граничных условиях первого, второго и третьего рода (см. 2, 3, 4 в гл. 5 и 1, 2, 3 в гл. 7 монографии А. В. Лыкова Теория теплопроводности , 1967 г.). Указанные аналитические соотношения дают возможность рассчитать перепад температуры внутри тела на любой стадии разогрева и по степени отклонения этого перепада (R, т) от квазистационарного (R, оо) = рдг (R) анализировать длительность Трег начальной стадии теплового процесса.  [c.13]


Единственным путем произвольного, принудительного введения тепла через поверхность твердого тела является бомбардировка его электронами (электронный нагрев), при которой могут быть обеспечены граничные условия второго рода, заданные любой функцией времени. Если к этому добавить широкие пределы возможного увеличения интенсивности тепловых потоков (недоступные при других способах нагрева твердого тела при поверхностном подведении тепла), то становится очевидной необходимость точного количественного изучения метода электронного нагрева с целью превра[цения его в метод эталонирования теплового потока. Это позволило бы по-новому подойти к решению ряда старых задач и поставить много других. Например, в теплотехнических экспериментах обеспечивается исследование моделей произвольной формы при любых тепловых потоках, вводимых через поверхность в метрологии могут быть исследованы тепловые характеристики различных материалов в предельно возможном диапазоне температур и тепловых потоков в теории нестационарного теплообмена могут быть опробованы любые аналитические методы расчета температурных полей по заданным условиям на границе и, что еще важнее, могут быть развиты методы отыскания краевых функций по известному пространственно-временному температурному полю. Особенно трудной последняя задача становится в условиях фазовых превращений и при наличии химических источников тепла, участвующих в процессе теплообмена. В этом случае, помимо перемещения границ, становятся существенно непостоянными физические параметры тела и возникает необходимость отделить тепловые потоки, поступающие в тело со стороны среды, от независимых источников тепла (скрытой теплоты, теплоты химических реакций и т. д.).  [c.140]

Для расчетов температурного поля и оценок погрешностей изыеренин температур и плотностей тепловых потоков на облучаемой поверхности термоэлектрического калориметра необходимо решение одномерной (по х. ) линейной краевой задачи теплопроводности для неограниченной пластины (контактного слоя), находящейся в идеальном тепловой контакте (граничные условия четвертого рода) с полуограниченньш телом (телом калориметра). Для времен 10 сек и непропускающего излучение контактного слоя поглощение можно считать поверхностным, чему соответствуют граничные условия второго рода на облучаемой поверхности. Для времен 10 сек следует учитывать закон поглощения излучения и пользоваться внутренним источником тепла в контактном сдое (см. 5.3). Если же контактный слой пропускает излучение, то задача теплопроводности должна решаться с учетом источников тепла в контактном слое и в теле калориметра. Однако, по данным [Юз,lto], подобные слои очень ТОНКИ и обладают значительным электрическим сопротивлением (порядка сотен ом), что делает их пригодными, главным образом, в качестве термометров сопротивления.  [c.686]

При решении неизотермических задач в их математической постановке наряду с уравнетием (1.4.61) рассматриваются температурные кра ые условия. В зависимости от типа решаемой задачи это могут быть граничные условия первого, второго, третьего или четвертого рода, рассматриваемые для нестационарных задач вместе с начальными температурными условиями. Последние, как и ранее, означают распределение рассматриваемого параметра, в данном случае - температуры, в начальный момент времени  [c.134]

Метод конечных разностей П] — родоначальник первого подхода, и до последних пятнадцати лет, когда его стали заменять методами второго рода, он наиболее широко использовался. Методы конечных разностей привлекательны тем, что их в принципе можно приложить к любой системе дифференциальных уравнений, но, к несчастью, учет граничных условий задачи очень часто явля-  [c.12]

Типичная схема использовапия этого метода заключается в следуюш,ем в результате разделения переменных при удовлетворении прочих граничных условий выполнение смешанных граничных условий, заданных на одной из ограничиваю-Ш.ИХ упругое тело координатных поверхностей, сводит исходную краевую задачу к паре связанных функциональных уравнений это может быть пара интегральных уравнений в случае сплошного спектра или пара сумматорных уравнений, если спектр задачи на собственные значения оказывается дискретным. Далее с помо-ш,ью различных приемов эти парные уравнения сводятся к удобным для исследования и проведения вычислений функциональным уравнениям интегральным (первого или второго рода,сингулярным или регулярным), к системам алгебраических уравнений и т.д.  [c.116]

В работе А. И. Златина [12], посвященной периодической задаче о дискообразных трещинах в цилиндре, рассмотрены сумматорные уравнения по однородным решениям, оставляющим цилиндрическую поверхность свободной от напряжений. Особенность проблемы заключается в том, что к парным уравнениям, отвечающим за смешанные граничные условия на торце, добавляется еще дополнительное сумматорное уравнение, выражающее условие отсутствия на торце цилиндра касательных напряжений кроме того, сами однородные решения не являются ортогональными. С помощью схемы доопределения и при использовании соотношения обобщенной ортогональности однородных решений сумматорные уравнения удалось свести к одному регулярному интегральному уравнению Фредгольма второго рода. Формальные выкладки, характерные для метода парных уравнений, обосновываются, опираясь на соответствующие теоремы разложения по однородным решениям для цилиндра (см. работу автора [13]).  [c.117]


Смотреть страницы где упоминается термин Граничные условия в задачах второго рода : [c.223]    [c.373]    [c.455]    [c.45]    [c.240]    [c.216]    [c.135]    [c.74]    [c.294]    [c.379]    [c.348]    [c.645]   
Методы и задачи тепломассообмена (1987) -- [ c.27 ]



ПОИСК



I рода

I рода II рода

Граничные условия

Граничные условия 1 рода

Родан

Родиан

Родий

Родит



© 2025 Mash-xxl.info Реклама на сайте