Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения Зависимость от размеров дефект

Рис. 8.4. Зависимость критического напряжения <г от размера дефекта / для двух материалов (/ и II) с разным значением Ki КЦ > К1 ) Рис. 8.4. Зависимость <a href="/info/5967">критического напряжения</a> <г от размера дефекта / для двух материалов (/ и II) с разным значением Ki КЦ > К1 )

Изделия из фарфоровой массы получают различными способами обточкой, прессовкой, отливкой в гипсовые формы, выдавливанием через отверстие нужной конфигурации. После оформления изделия производится сушка полуфабриката для удаления воды, вводимой в массу для придания ей пластичности. Следующая операция — глазурование фарфоровых изоляторов — производится для предохранения от загрязнения и создания поверхности, легко очищаемой в условиях эксплуатации. При обжиге глазурное покрытие плавится и покрывает поверхность изолятора тонким стекловидным слоем. Глазурь увеличивает механическую прочность, заглаживая трещины и другие дефекты, уменьшает ток утечки по поверхности изоляторов и повышает их напряжение перекрытия. Обжиг фарфоровых изоляторов в зависимости от размеров длится от 20 до 70 ч по соответствующему режиму. Максимальная температура обжига в зависимости от ида фарфора от 1300 до 1410 С. Фарфоровые изделия помещаются в печь в специальных коробках капселях, изготовляемых из огнеупорных глин, чтобы предохранить из-  [c.239]

Так как различные виды дефектов могут вести себя по-разному, такие диаграммы следует рассматривать только с качественной стороны. Например, температура перехода при инициировании может меняться в зависимости от характера дефекта (сквозные трещины, поверхностные трещины, вмятины и т. д.), даже если они и находятся в материалах с одинаковой вязкостью. Кроме того, зависимость разрушающего напряжения от критического размера трещины для других дефектов может отличаться от зависимостей, показанных на рис. 26 для сквозных трещин.  [c.196]

ИЛИ концентратор напряжения начинает распространяться неустойчиво. Установлено, что разрушающее напряжение уменьшается в зависимости от размера и степени остроты дефекта,, а также с уменьшением показателя вязкости разрушения материала. Хрупкое разрушение в сталях является особым случаем разрушения, происходяш,им в результате уменьшения показателя вязкости разрушения некоторых сталей с повышением температуры.  [c.238]

Зависимость номинальных разрушающих напряжений от размера дефекта 4 (при ано <. 1) может быть получена также на основе деформационного критерия разрушения в форме критического раскрытия трещины (S = 6с) с использованием (206)  [c.63]

Магнитные частицы повторяют силовые линии магнитного поля и в случае искривления цепочки магнитных частиц или ее нарушения непосредственно указывают на наличие дефекта в детали. Величина тока для этих испытаний колеблется от 500 до 2000 А в зависимости от размера проверяемой детали при напряжении 24 В. В связи с нагревом деталей при непосредственном прохождении по ним тока их необходимо непрерывно охлаждать водой.  [c.160]


Пьезокерамика является хрупким материалом с большим количеством случайных дефектов, образующихся при спекании. Эти особенности определяют большой разброс прочностных характеристик пьезоэлементов, их зависимость от размеров (масштабный эффект прочности), а также более высокое их сопротивление сжатию, чем разрыву (предел прочности при сжатии примерно в 16 раз больше предела прочности при растяжении). При длительном действии как статических. так и циклические изменяющихся напряжений в объемах пьезокерамики накапливаются случайные повреждения, зависящие от действующих в этих объемах напряжений и случайных значений их пределов прочности.  [c.80]

Кроме того, влияние исходных трещин или дефектов, понижающих прочность, в зависимости от их размера может быть учтено применением формулы (3.8). Таким образом, запас прочности п по напряжениям при квазихрупком состоянии составляет  [c.62]

Дефектоскоп ВД-80Н предназначен для обнаружения поверхностных трещин в объектах из ферромагнитных сталей и алюминиевых сплавов. Он имеет автоматическую компенсацию начального напряжения ВТП и автоматическую установку режима работы в зависимости от материала объекта. В приборе предусмотрены два канала, построенных по схеме рис. 67, б, один из которых измерительный, а второй предназначен для сигнализации о превышении допустимых пределов мешающими факторами (зазор, наклон оси ВТП к поверхности объекта, край объекта). Прибор позволяет обнаруживать дефекты в деталях из алюминиевых сплавов под слоем плакировочного слоя толщиной до 0,2 мм. Частота тока возбуждения 60 кГц. Размеры выявляемых дефектов глубина — более 0,3 мм,ширина 0,02—0,2 длина более 2 мм. Дефектоскоп имеет автономное питание и может быть использован для ручного контроля Б цеховых условиях.  [c.147]

Зарождение разрушения сколом связано с образованием в материале внутренних или наружных дефектов типа трещин, если таковых не имеется в готовом виде. Связь между длиной дефекта и разрушающим напряжением устанавливается соотношением Гриффитса (5.1). Размер дефекта — трещины, предшествующей сколу — зависит от температуры. Температурную зависимость размера с таких трещин, как показывают измерения, выполненные в работе [3801, можно представить в виде  [c.192]

Рис. 1.20. Литейный дефект (а) в алюминиевом сплаве, (б) зависимость амплитуды напряжения от размера этого дефекта для разных уровней прочности материала (точки), (в) зависимость амплитуды напряжения от комплекса a Nf аля двух размеров дефекта при разном среднем напряжении и (г) сопоставление результатов прогноза долговечности образцов с дефектами путем расчета длительности роста трещины Np по формулам механики разрушения с экспериментально полученной долговечностью [102] Рис. 1.20. <a href="/info/704157">Литейный дефект</a> (а) в <a href="/info/29899">алюминиевом сплаве</a>, (б) зависимость <a href="/info/491">амплитуды напряжения</a> от размера этого дефекта для разных уровней <a href="/info/74870">прочности материала</a> (точки), (в) зависимость <a href="/info/491">амплитуды напряжения</a> от комплекса a Nf аля двух размеров дефекта при разном <a href="/info/7313">среднем напряжении</a> и (г) <a href="/info/723771">сопоставление результатов</a> прогноза долговечности образцов с дефектами <a href="/info/655891">путем расчета</a> <a href="/info/188302">длительности роста трещины</a> Np по формулам <a href="/info/28771">механики разрушения</a> с экспериментально полученной долговечностью [102]
Представленное соотношение оценивалось на плоских образцах толщиной 20 мм со сварным швом. Образцы были изготовлены из нормализованной стали St 52-3N с пределом текучести 375 и 408 МПа в основном металле и в зоне сварки соответственно. Постоянная деформация соответствовала асимметрии цикла - 1 и скорость деформации — 1,2-4,2 цикл/мин. Полная деформация менялась в интервале 0,5-1,3 %. При падении уровня напряжения и достижении остаточной деформации 20 % испытания прекращали и осуществляли искусственный долом образца. Трещины зарождались от различных дефектов сварки внутри образцов, поэтому о скорости роста трещины судили по параметру рельефа излома в виде шага усталостных бороздок. Показано [103], что в зависимости от использования начального и конечного размеров трещины коэф-  [c.245]


Предложены способы экспериментального определения величин J , Уи и Ьс, однако расчет этими способами элементов конструкций пока затруднителен из-за сложности решения соответствующих краевых упругопластических задач с учетом упрочнения. Зависимость критических деформаций 6k, e/ii и показателя упрочнения материала т от основных факторов — температур (, скоростей деформирования е, исходных свойств металла т, ekt позволяет связать критические напряжения Qh для элемента конструкции с размером дефекта I с помощью критического значения коэффициента интенсивности деформаций Ки -  [c.21]

В зависимости от условий облучения (температуры, дозы, вида излучения, энергетического спектра излучения) в материалах возникают различные типы дефектов, изменяется их плотность и распределение по размерам. Особую роль в радиационном упрочнении кристаллов играют механизмы взаимодействия радиационных дефектов с имеющимися в объеме дислокациями. Под воздействием поля упругих напряжений, существуюш,их вокруг дислокаций, точечные дефекты диффундируют к ним и образуют атмосферы , ступеньки, вакансионные и газонаполненные поры и другие вторичные дефекты. Все они могут быть центрами закрепления дислокаций или стопорами для движуш,ихся дислокаций.  [c.61]

Для железа, молибдена, стали облучение также заметно увеличивает сг и незначительно влияет на величину К при сравнительно малых размерах зерен. Как и для ГЦК-металлов, у облученных образцов поликристаллического железа почти полностью подавляется температурная зависимость параметра К. Поликристаллические металлы с большим размером зерен склонны к радиационному упрочнению за счет увеличения параметра К- При этом К уменьшается и стремится к нулю с ростом размеров зерен облученных образцов. Экспериментально независимость предела текучести от размера зерен крупнозернистых образцов наблюдалась различными авторами (см,, например, [38]) после облучения до доз, превышающих W — 10 н/см . Это дает основание считать, что она достигается, когда внутренние напряжения от радиационных дефектов, противодействующие движению дислокаций, становятся сравнимыми или превосходят дальнодействующие поля от границ зерен. В этом случае, как и для монокристаллов, только факторы, влияющие на параметр  [c.75]

Рис. 89. Зависимость разрушающего напряжения от глубины дефектов поверхности незакаленных образцов стекла ЛК-5 с размерами, мм Рис. 89. Зависимость разрушающего напряжения от глубины <a href="/info/166621">дефектов поверхности</a> незакаленных образцов стекла ЛК-5 с размерами, мм
Можно также сопоставить общий вид переходных кривых с уровнями напряжений, необходимых для развития дефектов в процессе эксплуатации. Главным образом эти соотношения основаны на опыте. Из практики известно, что критические размеры дефектов, вызывающих хрупкое разрушение, обычно такие, при которых оно начинается скорее в статических, чем в динамических условиях. Отсюда следует, что ценность испытаний на динамическое раздирание не столь уж высока. На рис. 122 представлена суммарная информация в виде зависимостей напряжения от  [c.210]

Шуман [107], анализируя последовательность образования мартенситных фаз в марганцевых сплавах, построил качественную концентрационную зависимость энергии д. у., свидетельствующую о ее немонотонном ходе. Анализ результатов исследований [1, 4, 31, 39] показывает, что увеличение содержания марганца в аустените приводит к изменению количества д. у., находящемуся в строгом соответствии с количеством е-мартенсита, образующегося при охлаждении или деформации. Количественные измерения энергии д. у. на основании изучения тонкой структуры отдельных дефектов и их комплексов в сплавах системы Fe—Ni и Fe—Мп в зависимости от содержания углерода и температуры испытания были проведены в работах Ю. Н. Петрова [102, 108, 109], Так как энергия д. у. марганцовистого аустенита низка, проводили измерения на основании статистического анализа распределения по размерам тройных дислокационных узлов, как наиболее равновесной дислокационной конфигурации. Надежных измерений величины энергии д. у. по расщепленным дислокациям провести не удавалось из-за сильного влияния поверхностей фольги, локальных внутренних напряжений. на равновесное расстояние между частичными дислокациями.  [c.65]

Дефекты в зависимости от состояния материала, температуры, цикличности нагружения, наличия в конструкции остаточных напряжений, свойств рабочей среды, количества растворенного в металле водорода, могут постепенно развиваться и при достижении критических размеров привести к разрушению конструкции.  [c.114]

Исследование литейного алюминиевого сплава СР601 с содержанием Si — 7,0 Mg — 0,43 Fe — 0,13 Ti — 0,032 Sr — 0,025 % при разной термообработке показало, что при наличии в материале литейных пор и раковин почти вся долговечность определяется периодом роста усталостной трещины [102]. С уменьшением размера раковины в направлении оси дендрита для разного уровня напряжения и асимметрии цикла имеет место совпадение определяемой расчетным путем длительности роста трещины и реализованного периода нагружения образца (рис. 1.20). Предложено рассматривать результаты испытаний образцов с дефектами в виде зависимости произведения размера дефекта на долговечность образца от напряжения. В рассматриваемых координатах усталостная кривая едина до момента перехода к пределу усталости. Его величина зависит от размера дефекта.  [c.59]


Некоторые из своеобразных характеристик распространения области разрушения у композитов имеют неносредствен-ное отношение к концепции предварительного неразрушающего нагружения (под которым понимается нагружение элемента конструкции, не приводящее к исчерпанию его несущей способности). Имеется в виду такая особенность композитов, как рост трещины в одном из нескольких возможных нанравлений в зависимости от размеров концентратора напряжения и условий нагружения (статическое или циклическое). Основные принципы метода предварительного нераз-рушающего нагружения можно сформулировать следующим образом. Если задан некоторый элемент конструкции, обладающий определенным статистическим распределением дефектов, то можно изменить это распределение, используя неразрушающее нагружение. Таким образом, по существу, можно обеспечить отсутствие в конструкции дефектов, превышающих своими характерными размерами некоторый предел. После такого нагружения, основываясь на максимальных начальных размерах дефекта, можно предсказывать время усталостного нагружения конструкции, когда трещина будет расти устойчиво.  [c.98]

Один из способов связи этих данных [71] приведен на рис. 22, на котором пороговое напряжение сгкр для гладких образцов и пороговый коэффициент интенсивности /Схкр для образцов с трещиной представлены в виде зависимости от размера трещины (дефекта). Обобщающее уравнение К=о(ла) , выражающее связь коэффициента интенсивности Кь напряжения о и размера трещины 2а, было использовано для построения линии Кткр на рис. 22. Можно сделать два вывода из этого графика. Во-первых,  [c.176]

КОГО течения воспринимается как изменение в характере порождаемых дефектов, связанное с изменением механизмов скольжения. Отмечено [З], что исходя из критических температур упорядочения фаз NijX, титан, ниобий и тантал не должны существенно увеличить энергию АРВ. Однако титан и, возможно, тантал, могли бы увеличивать энергию дефектов другого типа. В результате анализа серии данных с целью расчета энергии АРВ в зависимости от содержания легирующего элемента было установлено [22], что энергию этих дефектов можно изменять в достаточно широких пределах (табл.3.2, ее анализ приводится ниже при обсуждении принципов проектирования сплавов). Упрочнение за счет размерного несоответствия. Сделанные ранее [l] попытки объяснить зависимость приведенного критического напряжения сдвига от размеров частиц влиянием на него когерентных напряжений оказались неудачными. Согласно модели Герольда и Хаберкорна [31] главная роль принадлежит взаимному влиянию дислокаций и деформации, а перерезание частиц — следствие этого влияния. Расчеты в общем виде  [c.101]

Кнотт (1966 г.) разработал другую методику анализа хрупкого разрушения, которая в основном похожа на предыдущую, но отличается от нее некоторыми специфическими деталями. В частности, в ней используется параметр критического раскрытия трещины, заимствованный из механики хрупкого разрушения, для определения зависимости между размером дефекта и напряжением для материалов, применяемых для изготовления турбогенераторного оборудования.  [c.137]

ДЛЯ функции распределения зародышей дефектов приводит к выводу о разном поведении зависимости компоненты тензора Pzz от приложенного напряжения (Jzz при различных значениях некоторого безразмерного параметра 5. Анализ [70] показал, что сугцествуют три разных области решений, разделенных асимптотиками и (5 и определяюгцих качественно различные реакции поликристалла на рост концентрации дефектов при нагружении в зависимости от размеров зерен. Согласно [70], область значений > (5 с устойчивым распределением зернограничных дефектов соответствует реакции нанокристаллических материалов. В частности, изменение размеров зерен в окрестности (5 может проявляться в различном по величине и знаку наклоне зависимостей Холла-Петча, в резком изменении модулей упругости (см., например, рис. 5.1, 5.6).  [c.161]

Наряду с перечисленными выше факторадш, влияющилш иа масштабный эффект, существует еще статистический фактор, особенно заметный при хрупком разрушении серии образцов, однако проявляющийся до некоторой степени также и при вязких разрушениях. Первоначально статистический фактор выдвигался в качестве единственного объяснения масштабного эффекта. Очевидно, вероятность наличия дефектов и пустот (например, трещин) больших размеров выше для крупных деталей, чем для деталей малых размеров [201]. Это относится не только к дефектам, присущим материалу, но также и ко всем дефектам технологического происхождения, например к нарушению правильной структуры материала, повышенному уровню и неравномерному распределению остаточных напряжений, ухудшению возможности контроля качества обработки. Вероятность наличия в материале исходных трещин представляет собой только одну нз сторон задачи, при известных упрощениях допускающую математическую формулировку. Однако важное значение имеют не только закон распределения дефектов в зависимости от размеров детали и вероятность наличия в детали дефекта больших размеров, но также и другие обстоятельства, например, ориентировка дефектов относительно направления напряжения растяжения. И, наконец, необходимо учитывать отличие свойств металла в поверхностном слое, наиболее ослабленном дефектами.  [c.371]

Для неплоских дефектов категорию качества устанавливают в зависимости от размера щлакового включения или процента пористости в соответствии с табл. 10.4.3. Если обнаруженный дефект соответствует, например, категории качества СЗ, а категория рассматриваемой конструкции (25, то дефект считается допустимым. Можно видеть, что сравнительно небольшое увеличение размаха напряжений может потребовать перехода от отсутствия ограничений на размеры дефектов к необходимости устранения даже весьма мальк дефектов.  [c.388]

Практическое значение параметра /(i состоит в том, что, зная его, можно определить неличину разрушающих напряжений а (рис. 50) в зависимости от формулы и размера дефекта (/Х и). и наоборот, зная рабочее напряжение в детали, можно предсказать размер трещин, при достижении которого произойдет разрушение.  [c.76]

Более подробно следует остановиться на значениях прочностных характеристик, которые в дальнейшем будут фигурировать в зависимостях для расчета статической прочности механически неоднородных соединений. Ранее, в работе /9/, для бездефектных соединений с мягкими прослойками нами была принята на основе многочисленных зкспериментальнььх данных идеально-жестко-пластическая диаграмма мягкого металла М. При этом, в расчетных формулах данную диаграмму в условиях общей текучести аппроксимировали на уровне значений временного сопротивления металла М (ст ). Для соединений с плоскостными дефектами такой подход применим не всегда. Последнее связано с ростом вблизи вершины дефекта показателя напряженного состояния П = Oq/T (здесь Од — гидростатическое давление, Т— интенсивность касательных напряжений, которая равна пределу текучести мягкого или /с твердого металлов при чистом сдвиге). Предельную (предшествующую разрушению) интенсивность пластических деформаций можно определить из диаграмм пластичности, отражающих связь предельной степени деформации сдвига Лр с показателем напрязкенного состояния П для конкретных материалов сварных соединений /9, 24/. Для этого необходимо знать показатель напряженного состояния П, величина которого зависит только от геометрических характеристик сварного соединения, степени его механической неоднородности и размеров дефекта П = (as, 1/В, f )Honpe-деляется из теоретического анализа. Определив значение предельной интенсивности пластических деформаций, по реальной диаграмме деформирования рассматриваемого металла СТ, =/(Е ) находим величину интенсивности напряжений в пластической области. Интервалы изменения а следующие Q.J, < а . Для плоской деформации та -кая подстановка в получаемые формулы означает замену временного сопротивления на данную величину.  [c.50]


На рис. 3.16 представлена зависимость средних критических напряжений ст р сварных соединений от относительной протяженности дефекта 1/В. Как видно из aнaл зa полученных результатов, при уменьшении размера дефекта 1/В, увеличении радиуса в вершине дефекта р и повьппении характеристик материалов Е, 5 , Х.р наблюдается повышение несущей способности сварных соединений в условиях квазихрупкого разрушения.  [c.102]

Затем определяют минимально допустимую толщину стенки, выбираемую в зависимости от материала отливки, его механических и технологических свойств, от способа литья, конфигурации, размеров и назначения отливки. Необходимо стремиться к минимальной толщине стенок.Если толщина стенок завышена,это может привести к появлению усадочных рыхлот, пористости и других дефектов. В конечном итоге по этой причине прочность стенок снижается и увеличивается расход металла. Требуемую прочность и жесткость стенок отливки следует обеспечивать за счет использования ребер жесткости. Если толщина стенок занижена, то отливку трудно получить технологически (возможно незаполнение формы, неслитины, трещины и т. п.). Кроме того, в отливках сложной конфигурации с тонкими стенками за счет усадочных напряжений могут появиться коробления и трещины.  [c.56]

Слюду добывают из недр земли в виде кристаллов разных размеров с неровными краями, с разными загрязнениями и дефектами. После первичной очень трудоемкой обработки кристаллов, заключаюш,ейся в расколке, обрезке неровных краев, удалении посторонних минеральных включений, от первоначально крупных кристаллов часто остается лишь немного мелких. Этим объясняется повышенная стоимость крупной слюды. Полученные после первичной обработки кристаллов слюды подборы рассортировывают для дальнейшей обработки по преимущественному использованию на изготовление конденсаторной слюды, деталей электронных приборов, различных видов обрезной и щепаной слюды. Тонкие пластинки слюды режутся ножницами, штампуются на вырубных штампах, если требуется, с различными отверстиями. Конденсаторная слюда в виде прямоугольных пластинок применяется преимущественно в высокочастотных конденсаторах постоянной емкости. В качестве основного диэлектрика используется только мусковит, флогопит — только для наружных обкладок (защитных). Размеры пластинок слюды всех марок укладываются в следующий диапазон длина 7—60 мм, ширина 4—50 мм, толщина 0,1—0,3 мм. Количество пятен и других природных дефектов регламентируется для разных марок в зависимости от требований к конденсаторам. Требования по tg б для разных марок укладываются в пределы 0,0003—0,0006 при 10 Гц и 0,0004—0,0010 при 10 Гц, а по удельному объемному сопротивлению (средние значения) 5-10 - 2-10 Ом-м. Пластинки слюды, применяемой как основной диэлектрик, при толщине 20—46 мкм и выше ДОЛЖНЫ выдерживать в течение 10 с напряжение в пределах 1,5— 3,0 кВ.  [c.218]

Применяются гладкие образцы размером 2x8x55 мм с покрытием. Образцы устанавливаются на опоры таким образом, чтобы удар бойка приходился на сторону, обратную покрытию. На покрытие наносятся две риски на расстоянии 3 мм по обе стороны от середины образца. Этим выделяется для наблюдения зона максимальных растягивающих напряжений при пластической деформации. Результат испытания представляется в виде графика зависимости суммарной длины дефектов покрытия от энергии деформации (при упругой деформации) или от величины деформации и затраченной энергии (при пластической деформации). Для определения хладостойко-сти покрытия фиксируется его состояние после динамического нагружения при каждой из выбранных температур. Строится график зависимости суммарной длины дефектов ( д) от энергии деформирования К) при всех температурах (рис. 4.22).  [c.76]

В окрестности дефекта на поверхности раздела в нагруженном композиционном теле локальные напряжения резко возрастают, особенно около границ дефекта. Если уровень локальных напряжений достаточно высок, то дефект становится неустойчивым и может развиться до столь больших размеров, что тело разрушится. При исследовании динамических задач теории упругости было установлено, что динамическая концентрация напряжений выше концентрации, рассчитанной для соответ-ствуюш,ей статической задачи. Вследствие этого может оказаться, что дефект на поверхности раздела будет развиваться или нет в зависимости от того, прикладывается ли внешняя нагрузка внезапно, скачком, или же возрастает постепенно. Распространение дефекта вдоль поверхности раздела двух соединенных упругих тел с различными упругими константами и различными плотностями изучалось в работе Брока и Ахенбаха [17]. Было установлено, что развитие дефекта вызвано концентрацией напряжений, возникающей в тот момент, когда система горизонтально поляризованных волн достигает границы дефекта. Предполагалось, что разрыву адгезионных связей предшествует течение в слое, связывающем тела в единую систему. Была вычислена скорость перемещения переднего фронта зоны течения для различных значений параметров, определяющих свойства материала, и различных систем волн. Оказалось, что по достижении критического уровня пластической деформации происходит разрыв материала на заднем фронте зоны течения.  [c.387]

Расчет строительных конструкций осуществляется в соответствии со строительными нормами и правилами [1]. Получаемый при этом уровень номинальной нагруженности сварных элементов и уровень концентрации напряжений свидетельствуют о возникновении в зонах концентрации локальных пластических деформаций, которые при повторном характере внешней нагрузки приводят к образованию трещины малоцикловой усталости. Так, при обследовании воздухонагревателей доменных печей появление трещин в кожухе было зафиксировано после 2—3 лет эксплуатации, что соответствовало 5 — 6 тыс. циклов. В подкрановых балках тяжелого режима работы повреждения в виде поверхностных трещин вдоль угловых швов приварки верхнего пояса к стенке наблюдались при числах циклов до 2 х 10 , или после 4 лет эксплуатации, в газгольдерах аэродинамических станций — после 4 X 10 циклов нагружения. Опасность появления трещин малоцикловой усталости в сварных конструкциях связана с тем, что трещина данной длины может при определенном соотношении уровня 4нагрузки, климатической температуры эксплуатации, скорости нагружения и других факторов оказаться критической, что приводит к катастрофическому хрупкому разрушению. Раз-рушение может наступить в разный период эксплуатации в зависимости от наступления критического сочетания инициирующих факторов. В этом заключается определенное отличие в разрушении циклически нагруженных конструкций по сравнению со статически нагруженными, основная масса аварий которых приходится на период эксплуатации с первыми похолоданиями при дальнейшей эксплуатации таких конструкций число хрупких разрушений резко сокращается (рис. 9.1). Для циклически нагруженных конструкций в первую зиму и во время испытаний разрушается только 34% конструкций от общего числа зарегистрированных разрушений. При последующей эксплуатации в течение примерно трех лет разрушения отсутствуют, и затем число разрушений начинает увеличиваться с 4 до 10% в год. Такой характер распределения разрушений конструкций под воздействием повторных нагрузок связан с необходимым периодом подрастания дефектов до критических размеров, и поэтому в течение определенного периода разрушения не наблюдаются. При дальнейшей эксплуатации идет накопление повреждений и развитие трещин усталости до образования полного разрушения.  [c.170]

Анализ экспериментальных данных показал, что при образовании поверхности методом среза величина нормальных и ка сательных напряжений, действующих на металл, превышает предел текучести в 1,5—5 раз. При этом не только разрываются атомные связи в плоскости среза или в направлении сдвига слоя металла, но и происходит всесторонняя упруго-пластическая деформация. Поэтому вид, количество и размер поверхностных дефектов (величина выступов и впадин) после механической обработки зависят от соотношения пластической деформаций Ттах И напряжений хрупкости Отах. Специальными исследова- ниями было установлено, что если Ттах>сТтах, то более вероятна пластическая деформация, если 0тах >Ттах, происходит хрупкое разрушение материала. Поэтому в зависимости от вида и режима механической обработки (точения, фрезерования, шлифования) схема напряженного состояния материала может быть различной и, следовательно, будут изменяться текстура деформированных слоев металла, вид, размер и характер макро- п микрогеометрии поверхности (рис. 78, 79). В соответствии с современными представлениями, механизм образования поверхности кристаллических тел методом среза имеет свои особенности. Энергия кристаллов, находящихся на поверхности, превышает энергию кристаллов в объеме. Дело в том, что под воздействием тангенциальных напряжений поверхностный слой сжимается, а глубинные слои оказывают ему сопротивление. Поскольку поверхностный слой очень тонкий, во многих случаях он не выдерживает и разрывается. Кроме того, на вновь образованной поверхности имеются некомпенсированные химические связи, компенсация которых идет за счет адсорбции, образования плен и др. Вот почему поверхность, образованная механической обработкой, всегда имеет повышенное количество суб-микроскоппческих двумерных и точечных дефектов — вакансий, дислокаций, примесных атомов, микротрещин и др. (рис. 80, а).  [c.117]


В зависимости от взаимного расположения дислокаций вызываемые ими напряжения могут либо складываться, образуя макронапряжения, убывающие на расстояниях порядка размеров кристалла, либо компенсировать друг друга и убывать на расстояниях порядка расстояния между дислокациями, образуя микронапряжения. По мере приближения к дефекту напряжения возрастают по величине и могут достигать значений порядка предела прочности материала. На расстояниях, близких к центру дефекта, в области очень сильных искажений кристаллич. решётки смещения атомов настолько велики, что деформации достигают величины порядка единицы, понятие напряжений теряет определ. физ. смысл и для описания искажения возникает необходимость учёта дискретности среды, её конкретной атомарной структуры. М. определяют ряд физ. свойств кристаллов, и прежде всего закономерности их пластич. деформирования и разрушения. МИКРОНЕУСТОЙЧИВОСТИ ПЛАЗМЫ -- мелкомасштабные плазменные неустойчивости, опасные для удержания плазмы, к-рые не приводят к немедленному разрушению равновесного состояния плазмы, а оказывают влияние на её удержание через процессы переноса — диффузию частиц и теплопроводность. Именно в результате развития М. п. появляются мелкомасштабные пульсации электрич., мага, полей и концентрации плазмы, к-рые увеличивают потоки частиц и тепла поперёк магн. поля, удерживающего плазму.  [c.138]

Моделирование деформации наноматериалов методами молекулярной динамики показало, что пластическая деформация реализуется по границам зерен в виде большого числа небольших по размеру сдвигов, когда небольшое количество атомов перемещаются друг относительно друга и зависимость деформирующего напряжения и предела текучести от размера зерен имеет вид обратного соотношения Холла —Петча (И. Шиотц, Е.Ван Свиген-гоген). На рис. 3.29 приведены компьютерные изображения нанокристаллической меди ( й 5,2 нм) до и после деформации со степенью 10%. Расчет был выполнен для системы из 16 зерен, содержащей примерно 10 атомов. Заметно уширение межзеренных границ стрелкой показаны две частичные дислокации, движение которых приводит к возникновению дефекта упаковки.  [c.91]

Отжиг чаще всего является предварительной операцией термической обработки, осуществляемой в целях устранения дефектов предыдущих операций (литья, ковки и др.) либо подготовки структуры для последующей обработки резанием или закалки. Путем отжига можно изменить форму и размеры зерен структуры стали уменьшить вредные внутренние напряжения, устранить неодно родность ее химического состава, а также наклеп и таким обра зом значительно улучшить свойства стали. В зависимости от того с какой целью проводится отжиг, устанавливают его режим, тем пературу нагрева, время выдержки, скорость охлаждения.  [c.188]

V Для приближенной оценки влияния размера дефектов при различных температурах и напряжениях служит так называемая диаграмма анализа разрушения (ДАР) или, как ее чаще называют, диаграмма Пеллини (рис. 13.22) [16, с. 229]. Нижняя кривая характеризует зависимость напряжений от температуры, при которой движущаяся трещина останавливается, т. е. материал в этих условиях способен противостоять развитию дефектов любого размера.  [c.221]

Возникновение микроскопических пор, кроме того, связано с образованием скоплений вакансий при кристаллизации стали. Источником зародыша поры критического размера (Б. Я-Любов, А. П. Семенов [88, с. 233— 240]) в растущем кристалле служат вакансии и пересы-щенность растворенными атомами газа. Примесные атомы, дислокации, области напряжений сдвига и другие дефекты могут ускорять или замедлять в зависимости от скорости направленного роста кристалла перенос вакансий и избыточных газовых атомов к поре. Скорость диффузии вакансий к поре вдоль дислокаций и границ зерен увеличивается. При незначительных пересыщениях атомы газа диффундируют через раствор из маленьких пор в большие. Возникновение напряжения вследствие градиента температур способствует перемещению пор малых размеров и их коагуляции. Скорость передвижения поры обратно пропорциональна ее радиусу. При некоторой оптимальной для данного вещества скорости передвижения форма пор изменяется из сферической в эллипсоидальную.  [c.101]


Смотреть страницы где упоминается термин Напряжения Зависимость от размеров дефект : [c.74]    [c.80]    [c.26]    [c.45]    [c.216]    [c.123]    [c.136]    [c.105]    [c.107]    [c.302]   
Разрушение Том5 Расчет конструкций на хрупкую прочность (1977) -- [ c.195 , c.196 ]



ПОИСК



Напряжения 5 — Зависимости

Размеры в зависимости



© 2025 Mash-xxl.info Реклама на сайте