Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефекты технологического происхождения

Подогреватели высокого давления серии БИП первых партий имели дефекты технологического происхождения в контактных стыках трубок и местах вварки штуцеров в корпус. Эти дефекты приводили к частым выходам аппаратов из строя. Вследствие трудности подхода к сварным соединениям при данной конструкции подогревателя условия сварки при изготовлении аппарата, а также при ремонте являются затрудненными. После улучшения технологического процесса сварки выходы аппарата из строя стали единичными.  [c.207]


Трещины и другие дефекты технологического происхождения могут быть в основных сварных соединениях барабанов в швах приварки штуцеров и защитных рубашек.  [c.67]

В табл. 5.1 приведены типичные дефекты технологического происхождения в основном металле и сварных соединениях, а также причины их появления.  [c.210]

Дефекты технологического происхождения чаще всего способствуют зарождению эксплуатационных трещин. На рис. 5.1 показан пример зарождения трещины от технологического зазора в сварном соединении дымогарной трубы и трубной доски котла КВ-8 (г. Ново-полоцк).  [c.211]

В настоящее время, когда техническому диагностированию подвергаются сосуды и аппараты давления, резервуары, кожухи доменных печей и воздухонагревателей и другие ответственные конструкции, срок эксплуатации которых превысил 20 лет, следует ожидать дефектов технологического происхождения с размерами, существенно превышающими требования современной НТД.  [c.211]

Таблица 5.1 Типичные дефекты технологического происхождения в основном металле и сварных соединениях Таблица 5.1 Типичные дефекты технологического происхождения в <a href="/info/384895">основном металле</a> и сварных соединениях
Необходимо заметить, что в стальных конструкциях встречаются второстепенные детали, образующие надрез или резкое изменение контуров элементов, а также мелкие дефекты технологического происхождения, которые могут не оказывать влияния на статическую прочность конструкции, но в то же время могут существенно снижать прочность нри переменных напряжениях из-за возникающей концентрации напряжений. Можно надеяться, что распространение сведений >гипа приведенных в данной книге поможет обратить внимание конструкторов и технологов на важность правильного выполнения деталей конструкции и контроля качества изготовления в деле предотвращения усталостных разрушений стальных конструкций.  [c.276]

ДЕФЕКТЫ ТЕХНОЛОГИЧЕСКОГО ПРОИСХОЖДЕНИЯ  [c.267]

ДЕФЕКТЫ ТЕХНОЛОГИЧЕСКОГО ПРОИСХОЖДЕНИЯ (ДЕФЕКТЫ ОБРАБОТКИ)  [c.267]

Дефекты сварки - опасные дефекты технологического происхождения, резко снижающие характеристики сопротивления деталей знакопеременным нагрузкам.  [c.271]

В инженерных расчетах на прочность, при анализе причин и характера разрушения объектов сложных технических систем традиционно рассматриваются дефекты, имеющие металлургическую природу (раковина, усадочные трещины) или технологическое происхождение (сварочные, закалочные, ковочные трещины), а также дефекты (особенно опасны трещиноподобные дефекты), которые могут появиться или развиваться в результате длительной эксплуатации аппарата. Доказано, что под воздействием коррозионно-активной среды, циклического нагружения и других факторов дефекты могут увеличиваться в размерах и тогда их развитие переходит из стадии стабильного (контролируемого) в стадию спонтанного разрушения. Поэтому неслучайно, что в практике эксплуатации сварных конструкций отмечаются случаи их преждевременного разрушения.  [c.111]


Не останавливаясь на повреждениях, обусловленных дефектами технологического или металлургического происхождения, а также газовой коррозией или ползучестью при превышении тем-  [c.8]

Волокна бора характеризуются низкой плотностью (2400. .. 3000 кг/см ) прочностью при растяжении (до 3800 МПа) и модулем упругости (до 400 ООО МПа). Их получают осаждением бора из газовой смеси водорода и треххлористого бора на нагреваемую вольфрамовую проволоку (диаметром 10. .. 12 мкм). В результате осаждения образуется сердечник из бори-дов вольфрама (диаметром 15. .. 17 мкм), вокруг которого располагается слой поли-кристаллического бора. Сердечник образуется вследствие диффузии и взаимодействия бора с вольфрамовой проволокой. Поэтому в волокнах бора существует явно выраженная поверхность раздела между оболочкой и сердцевиной. Прочность волокон во многом зависит от появляющихся дефектов в процессе их получения. Снижение прочности в основном связано с появлением локальных дефектов структуры борного слоя в виде крупных кристаллов, инородных включений, трещин, пустот и др. Эти дефекты, имеющие технологическое происхождение, могут располагаться на поверхности волокон, в борном слое, в сердцевине и на границе раздела между ними.  [c.462]

Во всех материалах возможно появление трещин и трещиноподобных дефектов металлургического или технологического происхождения. В вязких материалах у вершин трещины в результате перемещения дислокаций происходит местная пластическая деформация, трещина становится менее острой, металл упрочняется. В хрупких материалах дислокации заблокированы, упрочнение в устье трещины не происходит, и трещина развивается, вызывая хрупкое разрушение при напряжениях, значительно меньших предела прочности. Именно поэтому материалы с ионным и ковалентным типами связей находят ограниченное применение в промышленности как высокопрочные материалы. Высокопрочные материалы должны иметь способность тормозить развитие трещин благодаря некоторой подвижности дислокаций. Способность тормозить развитие трещин определяется величиной критерия трещиностойкости К. Ирвина Ки. Критерий Ирвина связан простым соотношением с длиной трещины, способной вызвать хрупкое разрушение,  [c.357]

Трещиностойкостью называют свойство материалов сопротивляться развитию трещин при механических и других воздействиях. Трещины в материалах могут быть металлургического и технологического происхождения, а также возникать и развиваться в процессе эксплуатации. В случае возможности хрупкого разрушения для безопасной работы элементов конструкций и машин необходимо количественно оценивать размеры допустимых трещиноподобных дефектов. Для оценки размера допустимого дефекта необходимо знать количественную характеристику трещиностойкости материала.  [c.40]

Во время обкатки должны быть реализованы два процесса 1) износ поверхностей на вершинах волн шероховатости и на участках, где исходные технологические неточности, дефекты монтажного происхождения, силовые и тепловые деформации препятствуют распространению пятна контакта до проектного 2) ликвидация исходной шероховатости поверхности и формирование новой, с определенными параметрами и направленностью, характерными для каждой поверхности трения при работе машины на эксплуатационном режиме наибольшей длительности.  [c.371]

В книге изложена теория одного наиболее часто встречающегося типа трещин технологического происхождения, так называемых горячих трещин. Дефекты такого рода имеют первостепенное значение в сварочном и металлургическом производствах. Дан простой общий метод точного решения автомодельных динамических задач теории упругости. В качестве примеров рассмотрены некоторые контактные задачи и задачи о трещинах. Рассмотрена динамическая прочность толстостенных цилиндрических оболочек при статических, динамических и случайных нагрузках. Приведено точное решение пространственной задачи теории упругости для внешности эллипсоидального отверстия, находящегося в тяжелом полупространстве. Для наиболее интересных частных случаев получены общие условия устойчивости выработок. Предлагается теория горного удара, а на ее основе — некоторые меры, которые могут служить для управления этим явлением.  [c.4]


Конструкция сделана из достаточно надежного материала, т. е. не содержит опасных трещиноподобных дефектов металлургического или технологического происхождения, не обнаруженных методами неразрушающего контроля.  [c.6]

Количественная оценка трещиностойкости основывается на линейной механике разрушения. В соответствии с ней очагами разрушения высокопрочных материалов служат небольшие трещины эксплуатационного или технологического происхождения (могут возникать при сварке, термической обработке), а также трещиноподобные дефекты (неметаллические  [c.225]

Наличие опасных дефектов технологического и эксплуатационного происхождения как раз и объясняет обычно кажущуюся преждевременной поломку конструкции.  [c.197]

Положение осложняется еще и тем, что преждевременное разрушение натурных изделий может произойти также за счет концентраторов напряжений металлургического или технологического происхождения, коррозионного характера, абсорбционных явлений в дефектах, микротрещинах и т. д.  [c.104]

Дефекты и трещины могут появиться при изготовлении, монтаже и транспортировке конструкций. Их происхождение считают технологическим. Различают дефекты металлургического и собственно технологического происхождения.  [c.210]

Дефекты и трещины технологического происхождения  [c.210]

В общем случае с увеличением уровня напряжения в изломе увеличивается количество очагов (фокусов), однако большое количество очагов может быть также следствием наличия многих концентраторов конструктивного или технологического происхождения, наличия растягивающих остаточных напряжений или поврежденного поверхностного слоя — в результате коррозии, окисления и т. д. Поэтому необходимо учитывать не только количество, но и расположение и, главное, последовательность возникновения очагов. В том случае, когда очаги излома не совпадают с имеющимися концентраторами напряжения или дефектами материала, можно предположить действие достаточно высоких внешних нагрузок.  [c.355]

Как правило, каждый дефект прокатного происхождения может быть устранен точным выполнением технологических инструкций и правильной калибровкой и настройкой стана.  [c.248]

В крупных отливках корпусных деталей часто присутствуют дефекты технологического происхождения пористость, пузыри, загрязнения скоплениями неметаллических включений, ликвация вредных примесей, трещины. Каждый из этих дефектов может служить источником эксплуатационных трещин. Если грубые макродефекты выявляются и устраняются при контроле отливок на заводе и при входном контроле на электростанции, то микродефекты остаются в эксплуатации и влияют на повреждаемость отливок. Так, при удалении усадочной раковины в металле отливок остается зона, примыкающая к полости усадочной раковины и обогащенная углеродом и примесями (серой, фосфором). При макротравлении шлифов отливок эта зона выявляется в виде темнотравящегося участка, примыкающего к низу усадочной раковины. На микрошлифах в этих зонах обнаруживаются скопления сульфидов и оксидов.  [c.34]

Очаг хрупкого разрушения часто удается установить при ослю-тре поверхности излома это может быть очень острый надрыв или чаше — старая треи1ина или другой дефект технологического происхождения.  [c.26]

До сих пор рассматривалось влияние остаточных напряжений. Теперь расс.мотрим сосуд, не имеющий дефектов технологического происхождения, отожженный после сварки н находящийся под действием эксплуатационной нагрузки. Для сосуда без остаточных напряжений (кованый или сварной сосуд, отожженный после изготовления) дюжно определить аналогичным путем предельное напряжение а ред или предельное давление р ред, при которых возможно внезапное хрупкое разрушение стенки сосуда при низкой рабочей температуре.  [c.357]

Наряду с перечисленными выше факторадш, влияющилш иа масштабный эффект, существует еще статистический фактор, особенно заметный при хрупком разрушении серии образцов, однако проявляющийся до некоторой степени также и при вязких разрушениях. Первоначально статистический фактор выдвигался в качестве единственного объяснения масштабного эффекта. Очевидно, вероятность наличия дефектов и пустот (например, трещин) больших размеров выше для крупных деталей, чем для деталей малых размеров [201]. Это относится не только к дефектам, присущим материалу, но также и ко всем дефектам технологического происхождения, например к нарушению правильной структуры материала, повышенному уровню и неравномерному распределению остаточных напряжений, ухудшению возможности контроля качества обработки. Вероятность наличия в материале исходных трещин представляет собой только одну нз сторон задачи, при известных упрощениях допускающую математическую формулировку. Однако важное значение имеют не только закон распределения дефектов в зависимости от размеров детали и вероятность наличия в детали дефекта больших размеров, но также и другие обстоятельства, например, ориентировка дефектов относительно направления напряжения растяжения. И, наконец, необходимо учитывать отличие свойств металла в поверхностном слое, наиболее ослабленном дефектами.  [c.371]

В свою очередь появление дефектов кратерного происхождения (кристаллизационные трещины, возникающие в кратерах свариваемых валиков-слоев при обрывах сварочной дуги) связано с повышенным содержанием углерода в металле шва. Таким образом, сварочнотермическая технология выполнения сварных соединений паропроводов из такой стали является достаточно сложной и требует высокой организационно-технологической культуры выполнения.  [c.322]

A. Материал не содержит опасных трещиноподобных дефектов металлургического или технологического происхождения, не обнаруженных методами неразрушаюи его контроля.  [c.77]

Повреждение гибов происходит путем зарождения на поверхности трубы трещин, которые развиваются в процессе эксплуатации. Инициаторами зарождения трещин могут быть дефекты металлургического или технологического происхождения риски, надрывы, закаты и пр.  [c.247]


Развитие трещин под действием цнклически.х или длительных квазистатических нагрузок — одна из основных причин исчерпания ресурса высоко напряженных элементов сосудов давления, трубопроводов и т. п. Различают два источника растущих трещин начальные трещиноподобные дефекты, которые почти неизбежны при самых высоких требованиях к технологическому процессу и системе контроля качества, и дефекты, возникающие в материале в процессе эксплуатации. При определенных условиях в результате объединения этих дефектов образуется зародыш трещины, которая далее растет по тем же закономерностям, что и трещины технологического происхождения. Ответ на вопрос о том, начиная с какого размера начальный или приобретенный дефект можно рассматривать как макроскопическую трещину, неоднозначен. Естественно отнести к трещинам и трещиноподобным дефектам все нарушения непрерывности (пустоты, непровары и т. п.), которые можно обнаружить с помощью обычных средств неразрушающего контроля. Разрешающая способность приборов зависи от их характеристик, степени доступности данного элемента для осмотра, расположения и конфигурации трещины и других факторов. При прочих одинаковых условиях чем крупнее трещина, те.м выше вероятность ее обнаружения. Рассмотрим лишь трещины размеров больше 1. — ниж-дий порог обнаружения трещины или характерный размер зародышевой трещины).  [c.193]

Теперь допустим, что при технологическом процессе иди в течение предшествующей эксплуатации в конструкции могут возникнуть более опасные дефекты, чем металлургические. Для получения функций распределения согласно второму подходу требуется представительная выборка из некоторого числа п соответствующих конструкций, при этом прогноз относительно прочности одной конкретной конструкции оказывается уже вероятностным. Поэтому практически указанный подход может быть применен лишь к сравнительно малоценным изделиям массового производства, для уникальных же или дорогих конструкций его использовать невозможно. В этом случае может оказаться единственно возможным первый подход, позволяющий, например, путем анализа сравнительно небольшого числа поломок установить примерную величину и расположение дефектов, вызывающих разрушение. При этом следует подчеркнуть, что технологические и эксплуатационные дефекты могут совершенно исказить даже обычный характер масштабного эффекта (например, в более крупных изделиях прочность может быть больше). В дальнейшем эти дефекты исключаются из рассмотрения и под прочностью будет пониматься обычная металлургическая прочность. Следует отметить также условный характер разделения дефектов по происхождению. Для количественного описания стохастических закономерностей прочности предложен ряд статистических теорий. Основные принципы статистической теории прочности для микроскопически неоднородных хрупкоразрушающихся тел были сформулированы на основе экспериментальных наблюдений А. П. Александровым и С. Н. Журковым (1933). Их можно описать следующими положениями. Распространение неоднородности свойств (дефектов) по объему хрупко-разрушающейся среды равновероятно. Момент разрушения наиболее слабого элемента тела совпадает с разрушением тела в целом. Прочность образца, вырезанного из такого тела, определяется наиболее опасным дефектом из всех присутствующих в его поверхностном слое.  [c.401]


Смотреть страницы где упоминается термин Дефекты технологического происхождения : [c.239]    [c.164]    [c.19]    [c.368]    [c.189]    [c.192]    [c.192]    [c.243]    [c.526]    [c.526]    [c.526]    [c.229]    [c.199]    [c.149]    [c.17]   
Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.267 , c.268 , c.269 , c.270 , c.271 , c.272 , c.273 , c.274 , c.275 , c.276 , c.277 , c.278 , c.279 ]



ПОИСК



Дефекты технологические



© 2025 Mash-xxl.info Реклама на сайте