Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение вращения твердого тела динамики

С помощью дифференциального уравнения вращения твердого тела вокруг неподвижной оси можно решать как прямые, так и обратные задачи динамики.  [c.208]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]


Применяя общие теоремы динамики, дифференциальное уравнение вращения твердого тела вокруг неподвижной оси, дифференциальные уравнения плоского движения твердого тела, динамические уравнения Эйлера, уравнения Лагранжа, часто в число рассматриваемых сил ошибочно включают силы инерции. Следует помнить, что силами инерции следует пользоваться только в случае применения  [c.544]

При решении задач с помощью общих теорем динамики, а также при применении дифференциального уравнения вращения твердого тела вокруг неподвижной оси, дифференциальных уравнений плоского движения твердого тела и динамических уравнений Эйлера силы разделяются на внешние и внутренние.  [c.545]

Внешние силовые или моментные характеристики преобразователей удобно использовать также при составлении уравнений динамики. Рассмотрим наиболее часто встречающийся в современных следящих приводах электромеханический преобразователь с поворотным якорем. Применив уравнение вращения твердого тела вокруг неподвижной оси, будем иметь  [c.361]

Абсолютно твердое тело, не стесненное связями, имеет шесть степеней свободы, поскольку возможны поступательные перемещения тела вместе с точкой А по любым трем независимым направлениям в пространстве и, кроме того, возможны произвольные вращения твердого тела вокруг точки А, принадлежащие группе 80(3) (см. 2.4). Таким образом, имеется ровно шесть независимых параметров, определяющих пространство допустимых скоростей точек тела. Для этих параметров (квазискоростей) можно составить шесть уравнений динамики в форме уравнений Аппеля (см. 5.6). Вместе с тем отметим, что и общие теоремы динамики об изменении количества движения (теорема 5.1.3) и об изменении кинетического момента (теорема 5.1.5) также дают шесть дифференциальных уравнений движения. Для простоты изложения воспользуемся этими теоремами.  [c.448]

Уравнение динамики вращения твердого тела (ось вращения неподвижна). Это уравнение легко получить как следствие (5.15), если продифференцировать (5.27) по времени,тогда  [c.152]

Эти знаменитые уравнения описывают изменение со временем положения мгновенной угловой скорости вращения П относительно системы координат, связанной с телом. Они решают лишь часть динамической задачи о свободном вращении твердого тела и должны быть дополнены описанием движения системы координат, связанной с телом относительно системы неподвижных осей. Эта задача, как и ряд других задач динамики твердого тела, выходит за рамки данной книги, посвященной основным принципам механики и обращающейся к приложениям лишь для иллюстрации применения этих основных принципов. Для дальнейшего изучения этой темы читатель отсылается к учебникам, указанным в библиографии.  [c.130]


Методика изучения курса учитывает разницу в распределении учебных часов между лекциями и упражнениями. В связи с этим некоторые темы курса на упражнениях не рассматриваются, а целиком изучаются на лекциях с подробным решением необходимых задач. Например, в разделе Статика не выносится для изучения на занятиях тема Определение положения центра тяжести твердого тела в разделе Кинематика — темы Сферическое движение твердого тела , Сложное движение твердого тела в разделе Динамика — темы Колебательное движение материальной точки , Определение динамических реакций подшипников при вращении твердого тела относительно неподвижной оси , Составление дифференциальных уравнений движения системы материальных точек с помощью уравнений Лагранжа второго рода .  [c.12]

Динамика абсолютно твердого тела. Уравнение поступательного движения и уравнение моментов. Вращение твердого тела вокруг неподвижной оси. Центр удара. Динамика плоского движения твердого тела. Движение аксиально симметричного твердого тела, закрепленного в центре масс. Уравнения Эйлера.  [c.37]

Уравнение (14.37) называется основным уравнением динамики для вращательного движения твердого тела. Оно похоже по форме на основное уравнение динамики точки та = Г. При вращении момент инерции тела играет роль, аналогичную той, которую играет масса точки в уравнении Ньютона, угловое ускорение — роль ускорения точки, а сум.ма моментов внешних сил — роль силы, действующей на точку.  [c.172]

Это основное уравнение динамики для вращательного движения твердого тела. Оно устанавливает, что произведение момента инерции тела на его угловое ускорение равно сумме моментов всех сил относительно оси вращения..  [c.170]

Свободное тело случай осевой симметрии. Одной из классических задач динамики твердого тела является задача о свободном движении твердого тела, т. е. о движении тела при отсутствии сил. Центр тяжести в этом случае движется прямолинейно и равномерно, а вращение тела описывается уравнениями  [c.234]

Уравнения (3.35), (3.37) являются основными уравнениями динамики движения твердого тела. Одно из этих уравнений описывает движение центра масс тела, другое — вращение тела около центра моментов (вернее, около оси, проходящей через этот центр). Если центр моментов выбрать совпадающим с центром масс тела и в качестве осей координат взять свободные  [c.253]

Там рассматривается задача о вращении Земли около ее центра масс под воздействием сил притяжения к Солнцу и Луне. Оперируя моментами инерции, Даламбер вводит главные оси инерции тела, выявляет в рассматриваемой им астрономической задаче наличие малых колебаний (нутационного движения) тела (Земли) около движущейся но конусу прецессии оси вращения и дает полное динамическое объяснение известного со времен Гиппарха явления предварения равноденствий. Все это — результаты первостепенной важности, и все-таки это еще не общая теория вращательного движения твердого тела. Кинематика и динамика проблемы у Даламбера не отделены друг от друга. В 60-е годы Даламбер в работе О движении тела произвольной формы под действием любых сил ставит перед собой задачу дать общую теорию, но по сути добавляет только более систематизированное изложение вопроса о малых колебательных движениях твердого тела относительно центра инерции (на основе линеаризованных уравнений).  [c.154]

Магистерская диссертация И. В. Мещерского Динамика точки переменной массы и работа Уравнения движения точки переменной массы в общем случае являются высшими достижениями его научного творчества. Следует отметить еще две работы Ивана Всеволодовича, посвященные задачам механики тел переменной массы. В работе О вращении тяжелого твердого тела с развертывающеюся тяжелою нитью около горизонтальной оси исследуется движение вала переменной массы, причем отделение или присоединение частиц к валу происходит без ударов, т. е. с относительной скоростью, равной нулю. В этом частном случае уравнение вращения не будет отличаться по форме от уравнения вращения тела постоянной массы только момент инерции тела относительно оси вращения будет величиной переменной.  [c.120]


Векторное уравнение вращательного движения применяется в динамике только в случае тел, имеющих динамическую симметрию. Уравнению вращения произвольного твердого тела также может быть придана векторная форма, если ввести в рассмотрение вектор, который целесообразно назвать центробежным моментом, так как его проекции на оси, перпендикулярные оси вращения, равны обычным скалярным центробежным моментам.  [c.26]

Далее в этой лекции мы рассмотрим уравнения динамики для трех частных случаев движения твердого тела вращения вокруг неподвижной оси, плоского движения и, наконец, движения твердого тела, имеющего ось симметрии и закрепленного в центре масс.  [c.40]

Оказывается, что интеграл типа Лагранжа существует для почти всех задач динамики твердого тела, представляющих теоретический интерес, а его наличие приводит к интегрируемым случаям, как правило, имеющим важное прикладное значение. Например, аналог случая Лагранжа для уравнений Кирхгофа был указан самим Кирхгофом, который также проинтегрировал его и указал наиболее простые движения. Для уравнений Пуанкаре-Жуковского (на во(4)) аналог случая Лагранжа указал Пуанкаре для обоснования своих теоретических выводов относительно прецессии оси вращения Земли. В двух указанных случаях, как и в классической задаче Лагранжа, можно получить явную (эллиптическую) квадратуру для угла нутации в, определяемую гироскопической функцией, а также использовать все результаты качественного анализа движения, приведенные нами в 3 гл. 2.  [c.232]

В технике находят применение оболочки в форме составных многослойных тел вращения, испытывающие разнообразные силовые воздействия, в том числе и импульсного характера. Сложность геометрии оболочки, локальность нагрузки могут привести к необходимости проведения расчетов на основе трехмерных нелинейных динамических уравнений механики твердого деформируемого тела. Слои могут быть выполнены из металлов, полимеров, композиционных материалов, характеризоваться неоднородностью структуры, анизотропией. Возможны большие деформации, проявление пластических свойств материалов. Все это необходимо учитывать при динамическом расчете. Однако автору неизвестны примеры подобных расчетов. Даже в линейной постановке нестационарная динамика тел вращения изучена недостаточно [18, 23, 34, 102, 103, 112, 233]. Видимо, наиболее полное рассмотрение линейных трехмерных волн в телах вращения проведено в монографии [49], а также в [15, 16, 45, 46, 71]. Двухмерные и трехмерные нелинейные волны, распространяющиеся в оболочках, рассчитывались в [51, 69, 70, 140].  [c.222]

При чисто вращательном движении твердого тела нелинейные члены содержатся в уравнениях Эйлера, описывающих динамику вращения  [c.130]

Численным методом изучается течение вязкой несжимаемой жидкости между соосными цилиндрами, которые совершают равноускоренное вращение вокруг своей оси как твердое тело. Аналитическим методом строится одномерное нестационарное решение уравнений Навье - Стокса для случая, когда движение начинается из состояния покоя. На начальном участке времени одномерное нестационарное движение жидкости является неустойчивым. Вносимые в поток малые возмущения вызывают образование вторичных вихревых течений с компонентой скорости вдоль оси. Численным методом исследуется динамика возникающих неустойчивостей и их диссипация. Формулируется условие, определяющее размеры нестационарной области вторичных течений. Неустойчивый режим течения является переходным и с некоторого момента времени течение становится устойчивым.  [c.52]

Применяя общие теоремы динамики в абсолютном движении, дифференциальное уравнение вращения твердого тела вокруг неподвижной оси, дифференциальные уравнения плоского движения твердого тела, уравнения Лагранжа, часто в число рассматриваемых сил ошибочно включают силы инерции. Следует помнить, что силами инерции следует пользоваться только в случае применения а) метода кинетостати> ч, б) общего уравнения динамики, в) уравнений и общих теорем в относительном (либо переносном) движении материальной точки или материальной системы.  [c.581]

Глубокое изучение закономерностей, которым подчиняется вращательное движение твердого тела, началось лишь в XVIII в. и было обусловлено прежде всего задачами астрономии. Заслуга создания динамики движения твердого тела принадлежит, как известно, великому математику и механику XVIII в. Л. Эйлеру. Выведенные им кинематические и особенно динамические уравнения, описывающие вращение твердого тела около центра масс либо около неподвижной точки, имели решающее значение для понимания гироскопических явлений и положили начало дальнейшим исследованиям в этой области.  [c.138]

Введение. Твердое тело представляет собой частный случай механической системы точек, когда расстояния между любыми двумя точками системы остаются постоянными во все время движения. Одним из наиболее эффективных методов изу-чершя движения твердого тела под действием приложенных к нему сил является метод, основанный на применении основных теорем динамики системы. Для изучения поступательного движения тела мы будем исходить из теоремы о движении центра масс при изучении вращения твердого тела около неподвижной оси наиболее рационально пользоваться теоремой об изменении кинетического момента. На примерах изучения простейших движений твердого тела под действием приложенных сил весьма отчетливо выявляется значение основных теорем динамики системы, позволяющих исследовать свойства движений систем ма-териальных точек, подчиненных некоторым дополнительным условиям (связям). Основные теоремы динамики системы были исторически первым, наиболее простым и естественным методом изучения движения несвободных механических систем точек, и в частности изучения динамики твердого тела В последующем развитии механики Лагранжем был создан метод обобщенных координат, позволяющий свести составление дифференциальных уравнений движения системы с 5 степенями свободы к ясной, логически безупречной последовательности алгебраических преобразований, однако физическая наглядность рассуждений была в значительной мере утрачена  [c.400]


В некоторых задачах принцип Даламбера оказывается даже более гибким, чем более развитый принцип наименьшего действия. Дифференциальные уравнения движения, определяющие ускорения движущейся системы, являются уравнениями второго порядка. Ускорение qi — это вторые производные координат qi или первые производные скоростей qi. Может, однако, оказаться более удобным — и такая ситуация встречается, в частности, в динамике твердого тела — характеризовать движение при помощи некоторых скоростей, не являющихся производными действительных координат. Такие величины называют кинематическими переменными . Хорошим примером является вращение волчка вокруг оси симметрии. Его можно охарактеризовать угловой скоростью вращения со = defi it, где d p — просто бесконечно малый угол поворота, а не дифференциал от какого-либо угла ф, так как такой угол ф существует лишь в случае, если ось симметрии закреплена. Тем не менее и при незакрепленной оси удобно использовать d(f/dt как величину, характеризующую движение волчка. В принципе наименьшего действия нельзя использовать кинематические переменные, а в принципе Даламбера можно.  [c.117]

В работах А. Г. Горшкова и М. И. Мартиросова [29], М. И. Мартиросова [51-53] проведен численный анализ динамического поведения упругих сферических оболочек, связанных с твердым телом, при несимметричном входе в полупространство, занятое идеальной несжимаемой жидкостью. Гидродинамические нагрузки, действующие на оболочку со стороны жидкости, определяются как суперпозиция нагрузок от вертикального проникания оболочки и горизонтального движения изменяющейся во времени ее погруженной части. Для исследования напряженно-деформированного состояния тонкой упругой оболочки используется один из вариантов геометрически нелинейных уравнений движения, учитывающих инерцию вращения и деформацию поперечного сдвига. К ним добавляются уравнения движения всей конструкции как твердого тела. Задача решается методом конечных разностей с применением явной схемы типа крест . Анализируется влияние на динамическое поведение конструкции начальной скорости и угла входа, начальной угловой скорости вращения, сжимаемости жидкости, подъема ее свободной поверхности (эффект Г. Вагнера), толщины оболочки, массы твердого тела и ряда других факторов. Исследуется также влияние гидроупругого взаимодействия между оболочкой и жидкостью на динамику входа. Показано, что при углах тангажа ч ) 60° задачу о наклонном входе конструкции в жидкость можно заменить задачей о вертикальном входе с начальной скоростью, равной вертикальной составляющей при несимметричном погружении. Кроме того, установлено, что до скоростей Уо 100 м/с сжимаемость жидкости (воды) практически не влияет на напряженно-деформированное состояние сферической оболочки.  [c.402]

Отметим в заключение, что вековое множество задачи о вращении тяжелого несимметричного твердого тела вокруг неподвижной точки играет важную роль при доказательстве отсутствия действительного аналитического интеграла (гл. III), при исследовании рождения изолированных периодических решений ( 2 гл. IV) и, наконец, при решении задачи Пенлеве о ветвлении решений и несуществовании однозначных интегралов ( 3-4 гл. V). Это позволяет с разных сторон рассмотреть классическую задачу об интегрируемости уравнений динамики твердого тела.  [c.129]

Уравнения движения многих важных задач динамики имеют квазиоднородную форму. Примерами могут служить задача многих гравитирующих частиц, задача о вращении тяжелого твердого тела вокруг неподвижной точки, а также задача Кирхгофа о движении твердого тела в неограниченной идеальной жидкости.  [c.338]

Полное решение проблемы выбора надлежащей модели материала даже в такой упрощенной форме далеко от завершения, однако имеются примеры удачных частных решений. Так, при сверхвысоких (порядка модуля упругости) давлениях, развивающихся при гиперскоростных соударениях, успешно используется модель идеальной жидкости (М. А. Лаврентьев, 1949). Для материалов типа полимеров, для которых существенны эффекты несовершенной упругости, иногда используется модель вязкоупругого тела (см., например, А. Ю. Ишлинский, 1940). Что касается материалов типа металлов, находящихся под действием умеренно высоких напряжений порядка предела текучести (которым, в основном, и посвящен данный обзор), то для их изучения могут использоваться два подхода. В основе первого из них лежит допущение, что за пределами упругости материал переходит в вязко-пластическое состояние и его определяющее уравнение зависит от времени. Начало этому направлению подолбили работы А. А. Ильюшина (1940, 1941), в которых в качестве определяющих уравнений использованы уравнения вязко-пластического течения, не учитывающие упругих деформаций. В этих работах дано решение нескольких теоретических задач (удар по цилиндрическому образцу твердым телом, деформирование полого цилиндра под действием внутреннего давления) и описан сконструированный автором первый пневматический копер, позволявший достигать скоростей деформаций порядка 10 Исек (с помощью его были определены коэффициенты вязкости некоторых металлов). Сразу вслед за тем учениками А. А. Ильюшина были решены задачи о вращении цилиндра в вязко-пластической среде (П. М. Огибалов, 1941) и об ударе цилиндра по вязко-пластической пластинке (Ф. А. Бахшиян, 1948 — опубликование этой работы задержалось на ряд лет). С математической точки зрения уравнения динамики одноосного вязко-пластического тела принадлежат к классу уравнений параболического типа.  [c.303]

Функции Рг и Р2 являются интегралами уравнений (1.6) с любым гамильтонианом Н. Для уравнений Эйлера-Пуассона они имеют естественное физическое и геометрическое происхождение. Интеграл Р представляет собой проекцию кинетического момента на неподвижную вертикальную ось и называется в динамике твердого тела интегралом площадей, он связан с симметрией относительно вращений вокруг неподвижной вертикальной оси. Происхождение интеграла Р2 = onst чисто геометрическое — это квадрат модуля единичного орта вертикали. Для действительных движений значение константы этого интеграла равно единице 2 = 7 = 1-  [c.86]


Смотреть страницы где упоминается термин Уравнение вращения твердого тела динамики : [c.186]    [c.161]    [c.314]    [c.2]   
Курс теоретической механики. Т.2 (1983) -- [ c.376 ]



ПОИСК



124 — Уравнение с вращением

70 - Уравнение динамики

Вращение твердого тела

Вращение твердых тел

Динамика твердого тела

Динамика твердых тел

Тело вращения

Уравнение вращения тела



© 2025 Mash-xxl.info Реклама на сайте