Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамические уравнения механики

Динамические уравнения механики сплошной среды  [c.16]

Динамические уравнения механики сплошной среды 16 сл. Динамический гистерезис 164, 259 Динамический модуль  [c.351]

В технике находят применение оболочки в форме составных многослойных тел вращения, испытывающие разнообразные силовые воздействия, в том числе и импульсного характера. Сложность геометрии оболочки, локальность нагрузки могут привести к необходимости проведения расчетов на основе трехмерных нелинейных динамических уравнений механики твердого деформируемого тела. Слои могут быть выполнены из металлов, полимеров, композиционных материалов, характеризоваться неоднородностью структуры, анизотропией. Возможны большие деформации, проявление пластических свойств материалов. Все это необходимо учитывать при динамическом расчете. Однако автору неизвестны примеры подобных расчетов. Даже в линейной постановке нестационарная динамика тел вращения изучена недостаточно [18, 23, 34, 102, 103, 112, 233]. Видимо, наиболее полное рассмотрение линейных трехмерных волн в телах вращения проведено в монографии [49], а также в [15, 16, 45, 46, 71]. Двухмерные и трехмерные нелинейные волны, распространяющиеся в оболочках, рассчитывались в [51, 69, 70, 140].  [c.222]


ДИНАМИЧЕСКИЕ ПОНЯТИЯ И ДИНАМИЧЕСКИЕ УРАВНЕНИЯ МЕХАНИКИ СПЛОШНОЙ СРЕДЫ  [c.124]

Функция Гамильтона системы. Динамические уравнения механики, основанные на законах Ньютона, приводят к первым интегралам движения или к законам сохранения энергии, импульса, момента импульса системы материальных точек (глава IV). Также обстоит дело и с уравнениями Лагранжа, описывающими движение системы в обобщенных координатах они приводят к сохранению некоторых величин, носящих название обобщенной энергии и обобщенных импульсов.  [c.193]

В классической гидромеханике общепринято рассматривать так называемое уравнение механической энергии. Разумеется, не существует принципа сохранения механической энергии уравнение механической энергии получается при помощи почленного скалярного умножения динамического уравнения на вектор скорости [8]. Уравнение механической энергии не содержит информации, дополнительной к той, которую содержит динамическое уравнение, и фактически содержит даже меньшую информацию, ибо оно является скалярным уравнением, в то время как динамическое уравнение векторное. Тем не менее уравнение механической энергии весьма полезно в классической гидродинамике, где девиатор-пая часть напряжения т предполагается равной нулю. Оно имеет ограниченное применение в ньютоновской гидромеханике и почти бесполезно в механике неньютоновских жидкостей.  [c.46]

Может оказаться полезным упомянуть в заключение о известных проблемах, связанных с логическим обоснованием принципов сохранения. Классическая точка зрения состоит в том, что четыре принципа сохранения массы, импульса, момента импульса и энергии логически не зависят один от другого. В некоторых недавних работах [9—И] по основаниям механики сплошной среды эти классические предположения заменяются постулатом о независимости механической мощности от выбора системы отсчета, т. е. один из членов в уравнении энергии предполагается не зави-сяш,им от системы отсчета. С использованием этого постулата динамическое уравнение и принцип сохранения момента импульса могут быть выведены из уравнения энергии. Ясно, что этот новый подход с использованием в качестве отправной точки трех постулатов позволяет получить в точности те же самые окончательные уравнения, что и классический подход, который опирается на четыре исходных постулата.  [c.53]


Глава 18 ДИНАМИЧЕСКИЕ УРАВНЕНИЯ РЕЛЯТИВИСТСКОЙ МЕХАНИКИ  [c.287]

При выводе релятивистского динамического уравнения движения точки необходимо потребовать, чтобы оно было ковариантно (сохраняло свой характер) или инвариантно (оставалось неизменным), так как выбор координатных систем произволен у, не должен влиять на физические факты и основные законы, отражающие их. Переход от одной системы координат к другой в релятивистской механике сопровождается преобразованиями Лоренца. Следовательно, искомый динамический закон должен быть ковариантен относительно преобразований Лоренца, Заметим, что в  [c.287]

Вариационное уравнение для решения динамических задач механики трещин  [c.323]

Равенство (4.2.3) является основным постулируемым динамическим соотношением механики сплошной среды [87]. Как второй закон Ньютона является исходным в механике точки, так и уравнение (4.2.3) лежит в основе механики сплошной среды и является исходным для исследования любых движений сплошной среды. Подробно вопросы, связанные с законом сохранения количества движения, рассмотрены в [87].  [c.182]

Применительно к механике сплошной среды, которая строится на основе ньютоновской механики, законы сохранения приводят к существенным результатам. Из закона сохранения массы следует уравнение неразрывности, т. е. необходимое условие существования движущейся и деформирующейся среды именно как сплошной. Из закона сохранения импульса следуют дифференциальные уравнения движения сплошной среды, которые являются основой расчета ее движения и деформации. Из закона сохранения момента импульса следует симметрия тензора напряжения, что существенно упрощает динамические уравнения сплошной среды. Закон сохранения энергии лежит в основе экстремальных принципов сплошной среды и энергетических методов расчета напряженно-дефор-мированного состояния.  [c.134]

Это и есть основное постулируемое динамическое соотношение механики сплошной среды, или уравнение количества движения конечного объема сплошной среды. Можно показать, что  [c.141]

Второй период охватывает в основном первую четверть XX столетия. В этот период появляется много работ по линейной неголономной механике, в которых исследователи обобщали динамические уравнения и вариационные принципы голономной механики на случай неголономных связей.  [c.86]

Следующими первоочередными проблемами были построение уравнений для неконсервативных неголономных систем с линейными реономными и неоднородными связями при отсутствии ограничений для выражений энергии в голономной и неголономной системах референции, исследование связей между динамическими уравнениями и принципами неголономной механики, построение теории преобразования и интегрирования этих уравнений. Эти проблемы в значительной степени были решены в XX в.  [c.93]

Представляют интерес различные новые формы динамических уравнений нелинейной неголономной механики в голономных и линейных неголономных координатах, предложенные в работах последних двух десятилетий.  [c.99]

Как и в динамике голономных систем, в неголономной механике представляют большой интерес проблема преобразования динамических уравнений к канонической форме.  [c.100]

В. Вольтерра Пользуясь установленными им уравнениями неголономной механики (уравнениями Вольтерра), он доказал ряд теорем, в которых рассматривается возможность снизить порядок этой системы уравнений в случае спонтанного движения неголономной системы в независимых характеристиках с помощью известных линейных и квадратичных относительно квазискоростей интегралов соответствующих динамических уравнений движения. Вольтерра рассмотрел частные случаи, когда дифференциальные уравнения неголономной динамики полностью интегрируются. Наконец, он указал необходимые и достаточные условия существования квадратичного интеграла системы с независимыми характеристиками в случае спонтанного движения.  [c.100]


B. B. Добронравов. Об интегралах динамических уравнений как условиях неголономных связей.— В сб. Вопросы аналитической и прикладной механики. М., Оборонгиз, 1963, етр. 49—51.  [c.102]

Большая часть сделанных добавлений связана с включением в курс параграфов, содержащих дополнительные сведения о движении твердого тела вокруг неподвижной точки (кинематические и динамические уравнения Эйлера), и главы, где излагаются основы метода обобщенных координат (уравнения Лагранжа) разнообразие требований, предъявляемых к курсу теоретической механики при подготовке специалистов разных профилей, заставляет уделить какое-то место этому материалу и в кратком курсе. Изложение в минимальном объеме элементарной теории гироскопа и таких актуальных в наши дни вопросов, как движение в поле тяготения (эллиптические траектории и космические полеты) и движение тела переменной массы (движение ракеты), в книге сохранено дополнительно написан параграф, посвященный понятию о невесомости. Представление о содержании книги в целом и порядке изложения материала дает оглавление.  [c.9]

При исследовании гидравлических явлений и расчетах в гидравлике применяются аналитический и экспериментальный методы. В аналитическом методе применяют уравнения механики и получают уравнения движения и равновесия жидкости, устанавливающие зависимости между кинематическими и динамическими характеристиками движущейся жидкости. Ввиду сложности строения жидкостей аналитические исследования проводятся для модельных жидкостей, облегчающих применение уравнений механики. Например, применяется модель невязкой жидкости, которая в отличие от всех имеющихся в природе и в технике жидкостей лишена свойства вязкости.  [c.9]

Период развития механики после Ньютона в значительной мере связан с именем Л. Эйлера (1707— 1783), отдавшего большую часть своей исключительно плодотворной деятельности Петербургской Академии наук, членом которой он стал в 1727 г. Эйлер развил динамику точки (им была дана естественная форма дифференциальных уравнений движения материальной точки) и заложил основы динамики твердого тела, имеющего одну неподвижную точку ( динамические уравнения Эйлера ), нашел решения этих уравнений при движении тела по инерции. Он же является основателем гидродинамики (дифференциальные уравнения движения идеальной жидкости), теории корабля и теории упругой устойчивости стержней. Эйлер получил ряд важных результатов и в кинематике (достаточно вспомнить углы и кинематические уравнения Эйлера, теорему о распределении скоростей в твердом теле). Ему принадлежит заслуга создания первого курса механики в аналитическом изложении.  [c.11]

Обычно в механике сплошных сред уравнения течения делятся на общие динамические уравнения, описывающие течения всех сплошных сред, и реологические уравнения, связывающие компоненты тензора напряжения в точках данной среды с компонентами тензора скоростей деформации в этих же точках. Реологические уравнения характеризуют течение конкретной исследуемой среды и, как правило, дают неоднозначные соотношения, обусловленные присутствием в этих уравнениях второго инварианта тензора скоростей деформации. Поэтому в дальнейшем под неоднозначностью уравнений понимается неоднозначность именно такого вида, т. е. связанная с неопределенностью знака компонент напряжения или скоростей деформации. Достаточно подробно проблема подобного рода неоднозначности, но применительно к исследованиям течений пластических сред, рассмотрена в работе Л.М. Качанова [50]. Применительно к задачам исследования пластических течений она решена в работах Б. Сен-Венана (1871 г.) [76] и М. Леви (1871 г.) [54] таким образом, что неоднозначность сохраняется только в одном уравнении (обобщенное уравнение деформирования или условие пластичности).  [c.54]

Введение в механику понятия квазикоординат и обобщение уравнений Лагранжа на квазикоординаты интересно тем, что оно позволило объединить в одной и той же форме обычные уравнения Лагранжа, уравнения движения неголономных систем и такие уравнения, как, например, динамические уравнения Эйлера движения твердого тела с закрепленной точкой ). Чтобы сделать очевидным важность этого обобщения не только с формальной стороны, заметим, что при исследовании движения конкретных механических систем существенную роль играет удачный выбор неизвестных параметров (обобщенных координат и квазикоординат), определяющих движение. Как известно, с использованием квазикоординат была поставлена и исследована задача Эйлера о движении по инерции твердого тела с закрепленной точкой. В квази-координатах же исследованы С. А. Чаплыгиным задача о плоском неголономном движении и трудная задача о качении неоднородного шара по плоскости. Квазикоординаты как некоторые кинематические характеристики движения, определяющие скорости движения точек системы, употреблялись в механике очень давно. Однако лишь на рубеже двадцатого века обобщенные координаты и эти кинематические параметры были объединены в одном общем понятии квазикоординат, а в подытоживающей работе Гамеля были получены уравнения движения в квазикоординатах, по форме написания близкие к уравнениям Лагранжа и применимые как к голономным, так и к неголономным системам ). Хотя по своему  [c.123]

Аналитические решения такого рода уравнений получены для задач в идеализированной постановке (плоскость с полу-бесконечной или конечной трещиной, пространство с дисковидной трещиной и т. д.) при воздействии гармонических и ударных нагрузок (достаточно полный их обзор дан в работах [148, 177, 178, 199, 220, 271]. Однако эти решения дают представления о реальном поведении конструкции конечных размеров только в начальный период времени (до прихода в вершину трещины волн напряжений, отраженных от границ тела). Кроме того, они не учитывают разнородности материала конструкции по механическим свойствам, изменения граничных условий по-берегам трещины в процессе ее продвижения траектория трещины считается прямолинейной, а удельная эффективная энергия, затрачиваемая на образование новых поверхностей yf, принимается постоянной и не зависящей от скорости деформирования. Очевидно, что с помощью методов, имеющих указанные ограничения, навряд ли можно дать надежные оценки работоспособности элементов конструкций сложной формы и характера нагружения. Поэтому широкое распространение получили численные методы расчета динамических параметров механики разрушения [177, 178].  [c.241]


Чтобы максимально облегчить понимание проблем, которые возникают при конструировании разностных схем для уравнений механики сплошной среды, ограничимся рассмотрением законов сохранения массы, количества дви зкения и энергии в одномерном случае в виде (1.131) — (1.133). Система трех уравнений (1.131) — (1.133) содержит семь искомых функций (Р, V, Е, 17, 8, 82, д) от двух независимых аргументов (t — время, г — эйлерова координата). Динамические процессы в твердых телах протекают за времена настолько малые, что теплопроводность не успевает повлиять на термодинамические характеристики вещества. Поэтому в урав-  [c.217]

В изложенной постановке формулируются как статическая, так й динамическая задачи механики кристаллов с дефектами. В последнем случае нужно использовать уравнение равновесия в форме (5). Естественно также, что при Q = со и т = 0 все соотношения теории дефектов, выписанные выше, сводятся к классическим уравнениям для силовых сред со стесненными поворотами, как в [61]. Иначе говоря, в качестве частного случая, развитая теория допус- кает переход к обычной континуальной теории дисклинаций и дислокаций. Например, все уравнения теории трансляционных дислокаций получаются при 0 = 0, Q = со, г = 0. Кроме того, если вектор Франка всюду считать параллельным вектору Бюргерса, то, как установлено в [143], получается полная система уравнений теории диснираций.  [c.124]

Таким образом, мы полностью присоединяемся к той группе физиков (к ней принадлежат, в частности, Толмен и Ландау), которые считают, что эргодическая теорема является любопытным свойством динамических систем, но не имеет отношения к обоснованию статистической механики. Выход из обсуждавпшхся выше трудностей заключается в том, чтобы рассматривать средние по ансамблю (П.7.2) как первичное определение макроскопических динамических функций, не вводя какой-либо более фундаментальной концепции. Эргодическая теорема, таким образом, отходит на второй план. Более того, отпадает упомянутая выше главная трудность. Теперь макроскопическая величина В в (П.7.2) уже может быть функцией времени. В самом деле, соответствующую функцию Ь можно считать зависяш ей от времени и при этом усреднять ее по ансамблю тогда ожидаемое значение будет, очевидно, зависеть от времени. Не нужно вводить какого-либо немеханического предположения для определения закона эволюции во времени он задается самими уравнениями механики b t) = U t)b [см. (1.2.24)]. В силу соотношения (П.7.2) данный механический закон эволюции индуцирует закон эволюции макроскопических величин B t) [см. (2.2.9)].  [c.386]

В начале развития динамики неголономных систем дифференциальные 93 уравнения движения были выведены в различном виде Остроградским, Феррерсом и Раусом. Общая методика интегрирования этих уравнений не была разработана, а их структура, связанная с наличием декартовых координат или множителей неголономных связей, создавала значительные трудности при решении конйретных задач (о качении твердых тел). Таким образом,в конце XIX в. проблема составления динамических уравнений неголономной механики в лагранжевых координатах без множителей связей типа уравнений Лагранжа второго рода была вполне актуальной.  [c.93]

Глубокое изучение закономерностей, которым подчиняется вращательное движение твердого тела, началось лишь в XVIII в. и было обусловлено прежде всего задачами астрономии. Заслуга создания динамики движения твердого тела принадлежит, как известно, великому математику и механику XVIII в. Л. Эйлеру. Выведенные им кинематические и особенно динамические уравнения, описывающие вращение твердого тела около центра масс либо около неподвижной точки, имели решающее значение для понимания гироскопических явлений и положили начало дальнейшим исследованиям в этой области.  [c.138]

Введение в анализ новых гиперреактивных сил потребовало и качественно нового структурного подхода к основным динамическим принципам механики, их детализации и модернизации. В этом смысле результаты теории Меш ерского-Леви-Чивита по выводу уравнений реактивного движения, а также расчетная схема Циолковского не могут в целом считаться вполне удовлетворительными.  [c.141]

Емельянова И.С. Динамические симметрии уравнений механики голоном-ных и неголономных систем. Горький, Горьк. ун , 1984.  [c.80]

В опубликованных за последние 20 лет статьях по динамике полета аэропланов и ракет методы вариационного исчисления нашли широкую область приложений- При помощи вариационного исчисления мы выявляем такие классы движений, при реализации которых некоторые интегральные характеристики будут наилучшими (например, время полета до цели — минимально дальность полета при заданном запасе топлива — максимальна). Более того, в ряде нелинейных динамических задач методы вариационного исчисления позволяют получить простые аналитические зависимости ( опорные решения), так как для оптимальных режимов полета уравнения движения интегрируются в конечном виде. Как эмпирический факт можно отметить, что для классов оптимальных движений нелинейные дифференциальные уравнения становятся более податливыми и в большом числе задач допускают интеграцию в квадратурах. Мы уверены в том, что семейства аналитических решений нелинейных уравнений механики в конечном виде внутренне тесно связаны с условиями оптимальности и играют в задачах динамики ракет и самолетов роль невозмущенных движений, аналогичных кеплеровым движениям в задачах небесной механики [25].  [c.15]


Смотреть страницы где упоминается термин Динамические уравнения механики : [c.86]    [c.39]    [c.104]    [c.219]    [c.237]    [c.94]    [c.94]    [c.100]    [c.524]    [c.7]    [c.483]    [c.218]    [c.502]    [c.508]   
Основы прогнозирования механического поведения каучуков и резин (1975) -- [ c.0 ]



ПОИСК



Уравнение динамическое



© 2025 Mash-xxl.info Реклама на сайте