Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационные методы исследования основных краевых задач

Вариационные методы исследования основных краевых задач  [c.108]

Интенсивное исследование численных методов решения вариационных задач оптимального управления и применение для этой цели ЭВМ началось в пятидесятых годах и развивалось, как уже отмечалось выше, параллельно с развитием общей математической теории оптимальных процессов. Основные усилия прежде всего были направлены на создание методов, использующих необходимые условия оптимальности в форме уравнений Эйлера — Лагранжа. Основные трудности, возникающие здесь, были уже кратко охарактеризованы выше в 8. Напомним их здесь еще раз, остановившись подробнее на примере краевой задачи (6.6) — (6.7). На основании принципа максимума дело сводится к следующей двухточечной задаче  [c.198]


При выводе уравнения (XIV.50) использованы дифференциальные уравнения движения, уравнение неразрывности, связи между скоростями деформаций и скоростями перемещений, начальные условия, кинематические и динамические граничные условия, включая условия трения, а также уравнения состояния. Методами вариационного исчисления можно показать, что из уравнения (XIV.50) следует краевая задача теории пластичности. Действительно, осуществим варьирование в уравнении (XIV.50), учитывая все ограничения, накладываемые на вариации, и приведем его к независимым вариациям. После этого на основании основной леммы вариационного исчисления можно получить все уравнения и условия, перечисленные выше. Таким образом, решение краевой задачи в дифференциальной форме эквивалентно исследованию на стационарное состояние функционала I, заклю ченногов фигурные скобки в (XIV.50).  [c.315]

Наиболее распространенный подход к исследованию задач оптимального управления, содержащих малые параметры, состоит в применении методов асимптотического разложения решений возмущенных дифференциальных уравнений к краевой задаче принципа максимума (см., например, [11, 36, 72, 77, 82, 97, 98, 127, 129]). Такая методика позволяет строить асимптотику решения задач с открытой областью управления и гладкими управляющими воздействиями, т. е, задач классического вариационного типа. В задачах современной теории оптимального управления, имеющих прямые ограничения на значения управляющих воздействий в виде замкнутых неравенств, реализация указанного подхода встречает серьезные трудности, поскольку динамические уравнения краевой задачи принципа максимума не обладают необходимой для применения асимптотических методов гл остью. Наверное, поэтому в данном случае исследования, в основном, сводились лишь к выяснению вопроса о предельной задаче, к решению которой в той или иной топологии сходится решение возмущенной задачи при стремлении малого параметра к нулю. Что касается построения асимптотики решения в задачах с замкнутыми множествами допустимых значений управляющих воздействий, то имеющиеся здесь результаты еще далеки от того уровня, который мог бы удовлетворить запросы практики. В первую очередь, это относится к нелинейным сингулярно возмущенным задачам, для которых вопрос о построении асимптотических приближений к оптимальным управлениям за редкими исключениями остается открытым.  [c.7]



Смотреть главы в:

Прикладная механика деформируемого твердого тела  -> Вариационные методы исследования основных краевых задач



ПОИСК



I краевые

Задача вариационная (задача

Задача и метод

Задача краевая

Задача основная

Краевой задачи основное

Метод вариационный

Методы исследования

Основные задачи

Основные задачи и методы

Основные задачи исследования

Основные краевые задачи

Основные методы исследования

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте