Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О методах решения упруго-пластических задач

О МЕТОДАХ РЕШЕНИЯ УПРУГО-ПЛАСТИЧЕСКИХ ЗАДАЧ  [c.18]

Ф е д о р о в А. П. Решение упруго-пластических задач методом оптически активных покрытий. Сб. Поляризационно-оптический метод исследования напряжений , изд. ЛГУ, 1966.  [c.201]

Г.П. Черепанов [54] дал метод решения в квадратурах задач о сложном сдвиге идеально упругопластического тела для любого контура, образованного отрезками прямых и кривых линий в том случае, когда отрезки прямых свободны от напряжений, а отрезки кривых дуг, произвольно нагруженные, целиком охвачены пластической зоной. Решения этих задач существенно основаны на решении одной нелинейной краевой задачи [55 ]. Любопытно, что решение упругой задачи для тел соответствующей формы не выражается в квадратурах, так что принципиально упругопластическая задача оказывается проще чисто упругой.  [c.149]


Оптический метод исследования напряжений применяется для решения задач о деформациях в пределах упругости. Однако имеются возможности расширения метода на упруго-пластические деформации, и такая работа сейчас ведется. Основная возможность состоит в том, что зависимости (8.13) между главными показателями преломления и главными удлинениями сохраняют силу и в некотором диапазоне пластических деформаций. Кроме того, имеются косвенные пути, один из которых — метод наклеенных пластинок. На исследуемую модель из металла в виде плоской пластинки с одной отшлифованной поверхностью наклеивается тонкая пластинка из оптически активного материала, предел упругих деформаций которого выше предельной упругой деформации испытуемого материала. Оптическая картина наблюдается в отраженном от зеркальной поверхности образца свете, дважды прошедшем слой оптически активного материала. При этом пластическим деформациям в металле до некоторого предела будут соответствовать упругие деформации в оптически активном слое. Этот метод также находится в стадии разработки.  [c.360]

В настоящее время круг задач о напряженной посадке, решаемых методами теории упругости, значительно расширился. Можно получить решения задач посадки для многосвязных областей, в отверстия которых частично или полностью запрессованы диски, ограниченные различными кривыми. Для некоторых практически важных задач можно получить решение, когда сопрягаемые детали неоднородны и анизотропны. В случае необходимости можно учесть при решении задач посадки и смещение центров дисков относительно центров отверстий и овальность отверстий и дисков. Наконец, используя метод упругих решений, предложенный А. А. Ильюшиным, можно рассмотреть упруго-пластические задачи посадки.  [c.4]

Гораздо более трудны упруго-пластические задачи при условии идеальной пластичности или изотропного упрочнения. Здесь трудно рассчитывать на успех, ориентируясь на аналитические методы. На первый план выдвигаются вычислительные методы, с помощью которых можно построить решения многих важных задач. В частности, целесообразно отметить цикл задач о концентрации напряжений, представляющий большой интерес для оценки прочности.  [c.118]


Приведенные вьппе рассуждения совершенно аналогично могут быть использованы в общем случае произвольного числа трещин, расположенных вдоль одной прямой в бесконечной пластине, если к берегам трещины приложены лишь нормальные нагрузки, так что и в этом случае пластические области в решении соответствующей упруго-пластической задачи (при условие Треска — Сен-Венана) могут представлять собой отрезки на продолжении трещин. Решение строится методом Н. И. Мусхелишвили линейные размеры зон определяются из условий разрешимости краевой задачи в классе ограниченных функций (напряжений). Нужно следить, однако, за тем, чтобы в упругой области выполнялось еще условие loi —0г1 < <о, для главных напряжений. При некоторых значениях параметров нагружения оно начинает нарушаться, тогда вблизи концов трещин возникают вторичные пластические области, скольжение в которых происходит по плоскостям, нормальным к плоскости пластины.  [c.194]

Расчеты на прочность изделий сложной формы. Излагая в предыдущей главе теорию сложного напряженного состояния, мы совершенно обошли молчанием вопрос о том, каким образом определить напряженное состояние в телах, подверженных действию сил. Общая задача об определении напряжений и деформаций в упругом теле произвольной формы, подверженном действию произвольных внешних сил, является предметом теории упругости, которая представляет собою раздел механики сплошной среды и развивается в направлении создания и усовершенствования методов решения соответствующих краевых задач для некоторых систем дифференциальных уравнений в частных производных. Несмотря на огромные успехи математической теории упругости, далеко не все задачи, представляющие практический интерес, удается решить во многих случаях, даже когда точное решение или метод его отыскания известны, практическое использование этого решения для расчета на прочность затруднительно ввиду чрезвычайной сложности и громоздкости вычислений. с другой стороны, знания распределения напряжений в теле в упругой стадии его работы еще недостаточно для суждения о прочности. Как мы убедились на примере статически неопределимых стержневых систем, переход некоторых элементов в состояние текучести еще не означает разрушения системы в целом. Тем более это относится к телу, находящемуся в условиях сложного напряженного состояния. Достижение состояния текучести в одной или нескольких точках само по себе не является опасным окруженный упругими областями, материал не имеет фактической возможности течь. В то же время, после того как состояние текучести где-та достигнуто, дальнейшее увеличение нагрузки приводит к образованию пластических зон конечных размеров.  [c.104]

Более точные количественные соотношения при решении задач о сварочных деформациях и напряжениях могут быть получены лишь при помощи теории пластичности в условиях переменных температур. Математический аппарат теории пластичности основан на нелинейных зависимостях между компонентами напряжений и деформаций в пластической области. Поэтому здесь уже нельзя непосредственно пользоваться методом решения температурных задач в теории упругости, основанным на суммировании напряжений.  [c.418]

Новые и важные результаты, достигнутые по общим методам теории малых упруго-пластических деформаций и решение конкретных задач о напряженных состояниях за пределами упругости (Н. М. Беляев, А. А. Ильюшин), предопределили успешное их применение в практике расчета высоконапряженных деталей турбин, химических и энергетических агрегатов высокого давления, а также при проектировании технологического оборудования. Это способствовало более полному использованию материала в деталях и обеспечивало более правильное определение запасов прочности.  [c.37]

Коротких Ю. Г. О некоторых проблемах численного Исследования упруго-пластических волн в твёрдых телах.— В сб. Методы решения задач упругости и пластичности. Уч. зап. ГГУ, вып. 134. Горький, 1971.  [c.128]


Таким образом, для решения конкретной задачи необходимо выбрать значения Ф таким образом, чтобы = О во всех упруго-напряженных областях и Фр = О в пластической области. Частные дифференциалы определяются из конечных разностей, как указано выше. Перемещения должны быть получены из деформаций путем решения уравнений типа (199). Этот метод был использован для расчета распределения упруго-пластических деформаций в областях с надрезом и трещиной при плоской деформации и при плоском напряженном состоянии предсказанная форма зоны текучести в образце с трещиной в условиях плоско-напряженного состояния показана на рис. 39 [21 ].  [c.80]

Решение задач о концентрации напряжений при упруго-пластическом деформировании связано с существенными трудностями, поэтому получили распространение Приближенные методы, экспериментальные методы (с помощью оптически активных покрытий, метода муара и малобазных тензорезисторов) и методы решения краевых задач (вариационно-разностный различных модификаций и конечных элементов) с помощью ЭЦВМ 14,11, 14]. Дальнейший прогресс будет, по-видимому, достигнут на пути сочетания расчетных и экспериментальных  [c.65]

В теории пластичности изучаются законы, связывающие напряжения с упругопластическими деформациями, и разрабатываются методы решения задач о равновесии и движении деформируемых твердых тел. Теория пластичности, являющаяся основой современных расчетов конструкций, технологических процессов ковки, прокатки, штамповки и других, а также природных процессов (например, горообразования), позволяет выявить прочностные и деформационные ресурсы материалов. Пластические деформации до разрушения достигают значений 10 20%, в то время как упругие —0,3-0,5 %. Поэтому расчеты на прочность, основанные на допустимости только упругих деформаций, часто нецелесообразны технически и экономически.  [c.41]

Строго говоря, классические методы расчета теории пластичности, которые применяются в данной работе, не учитывают ряда важных особенностей, свойственных знакопеременной деформации, и дают, по-видимому, лишь оценочный результат. Как показывают эксперименты, у большинства металлов после каждого циклического изменения пластических деформаций наблюдается изменение некоторых упруго-пластических характеристик, изменяется зависимость между напряжением и деформацией. Чтобы учесть эту особенность при решении ряда технологических задач обработки металлов давлением, необходим соответствующий аппарат. Вероятно, он может быть создан путем обобщения результатов, опубликованных в книге (В. В. М о с к в и т и н. Пластичность при переменных нагружениях. Изд-во Московского университета, 1965).  [c.56]

Схожесть задач о контактном взаимодействии и задач механики разрушения состоит прежде всего в наличии точек с особенностями напряженного состояния. Это позволяет применять методы решения контактных задач теории упругости для решения отдельных задач механики разрушения, таких как определение поля напряжений у вершины трещин. Вместе с тем заметим, что нахождение коэффициентов интенсивности напряжений не есть механика разрушения, подобно тому как нахождение напряжений еще не определяет прочности изделия. И только формулировка и использование критериев разрушения, т.е. условий страгивания и роста магистральных трещин, составляет предмет механики разрушения. Некоторые приемы механики разрушения можно использовать при решении контактных задач. Например, корневую особенность в угловых точках штампа можно снизить (не прибегая к закруглению краев штампа), предполагая пластическое течение вдоль определенных линий скольжения. Допуская несколько таких линий или сплошной их веер можно устранить особенность вообще, как это описано в статьях В. 1У[. Александрова и Л. А. Кип-ниса [1, 2].  [c.624]

Цикл работ Д.Д. Ивлева посвящен линеаризированным задачам упругопластического состояния тел. Метод малого параметра, развитый в работах Д.Д. Ивлева, позволил получить решение ряда плоских, осесимметричных, пространственных задач упругопластического состояния тел и определить неизвестную границу, отделяющую область пластического состояния материала, описываемую уравнениями гиперболического типа, от области упругого состояния тела, описываемой уравнениями эллиптического типа. На примере разложения в ряд классических решений Л.А. Галина и Г.П. Черепанова было установлено их совпадение с решениями, полученными непосредственно методом малого параметра, и показана достаточно быстрая сходимость приближений. Дальнейшее развитие получили линеаризированные методы решения задач жесткопластического анализа, в том числе линеаризированные задачи о вдавливании жестких тел в идеально пластическую среду.  [c.8]

Приращения упругих деформаций йг ] вычисляются по закону Гука. Напряжения удовлетворяют условию пластичности Мизеса (3.3). В пластических зонах справедливы уравнения (3.23) в упругих зонах дХ = О и соотношения (3.23) переходят в закон Гука. На границе этих зон пластические деформации равны нулю и выполняются условия непрерывности напряжений, деформаций и смещений. Решение таких смешанных задач является чрезвычайно трудным и доступно в принципе лишь с помощью вычислительных машин. Обычный прием заключается в прослеживании развития ( шаг за шагом ) упруго-пластического состояния по мере роста параметра нагрузки для определения текущего состояния могут быть использованы различные варианты метода сеток или вариационных методов.  [c.111]


В работах Г. П. Черепанова (1963, 1964) также применяются методы теории функций комплексного переменного, но предположение о том, что на неизвестной границе раздела упругой и пластической зон напряжения являются соответствующими вторыми производными от бигармонической функции, уже снято. Считается, что указанные напряжения — известные функции координат. Развитый метод решения применен к анализу упругопластической задачи о двухосном растяжении тонкой пластинки с круговым вырезом (плоское напряженное состояние) при условии пластичности Треска — Сен-Венана в случае, когда  [c.113]

Получение достаточно строгих решений для динамического нагружения упруго-пластических балок встречает серьезные трудности, которые удается преодолеть только в отдельных случаях нагружения и опирания балок. В работе И. Л. Диковича (1962) описано решение для движения свободно опертой балки под действием внезапно приложенной равномерной нагрузки, постоянной во времени и не превышаюш ей. по величине предельную статическую нагрузку. В некоторый момент времени в середине балки образуется пластический шарнир, после чего рассматривается движение двух половинок балки, из анализа которого получается выражение для перемеш ений, которое остается справедливым до тех пор, пока угловая деформация в пластическом шарнире не изменит знака. Для упро-щ ения И. Л. Диковичем предложены приближенные методы, например метод Бубнова — Галеркина. Как это часто делается в нелинейных задачах, удерживайся один член аппроксимирующего ряда. При этом приходилось вводить допущение о стационарности пластических шарниров, которое, как известно, с ростом интенсивности внезапной нагрузки перестает оправдываться и может привести к серьезным погрешностям. Весьма перспективно применение ЭВМ к расчету балок. Так, В. К. Кабулов (1963) для представления изгибных колебаний консольной балки переменной жесткости воспользовался системой неравных сосредоточенных масс, подвешенных к невесомому упруго-пластическому элементу.  [c.317]

Состояние численных методов и вычислительной техники до середины шестидесятых годов не позволяло использовать упруго-пластическую модель для анализа динамического поведения пластинок, исключая случай осесимметричной задачи. В силу этого для конструкций более сложного очертания в плане (в частности, для прямоугольных пластинок) был предложен ряд решений, в основе которых лежит представление о линиях пластических шарниров, т. е. о некотором обобщении понятия пластического шарнира в изгибаемой балке.  [c.321]

При помощи приведенного выше метода решения задачи об отражении волн в ограниченном стержне в работе [55] решена задача о так называемом пластическом резонансе для упруго/вязкопластической среды без упрочнения (для модели среды Соколовского).  [c.143]

Рассматривается развитие метода малого параметра применительно к упруго-пластическим задачам теории идеальной пластичности. В настоящее время имеется сравнительно небольшое число точных и приближенных решений упруго-пластических задач теории идеальной пластичности, поскольку возникаюш,ие здесь математические трудности весьма велики. Впервые задачу о распространении пластической области от выреза, вызываюш,его концентрацию напряжений в сечении скручиваемого стержня, решил Треффтц [1]. Он рассматривал уголковый контур и при решении задачи использовал метод конформного отображения. Несколько ранее Надаи [2] была предложена песчаная аналогия, позволившая в соединении с мембранной аналогией Прандтля осуш ествить моделирование задач упруго-пластического кручения стержней. В. В. Соколовский [3] рассмотрел задачу об упруго-пластическом кручении стержня овального сечения ряд решений задач о кручении стержней полигонального сечения был дан Л. А. Галиным [4, 5]. Большая литература посвящена одномерным упруго-пластическим задачам отметим работы [2, 3, 6-8]. Точное решение неодномерной задачи о двуосном растяжении толстой пластины с круговым отверстием было дано Л. А. Галиным [9], использовавшим то обстоятельство, что функция напряжений в пластической области является бигармониче-ской. Там же Л. А. Галин рассмотрел случай более общих условий на бесконечности. Впоследствии Г. Н. Савин и О. С. Парасюк [10-12 рассмотрели некоторые другие задачи об образовании пластических областей вокруг круглых отверстий.  [c.189]

Для решения упруго-пластической задачи по методу переменных параметров упругости используют процесс последовательных приближений [2]. В исх одном (нулевом) приближении принимают, что переменные параметры упругости равны параметрам упругости и решают упругую задачу, в результате чего определяют напряжения и деформации нулевого приближения (а /)о, гц)а- По этим величи-136  [c.136]

Результаты исследований в области теории малых упруго-пластических деформаций, а также обобщение теорем о работе сил упруго-пластических деформирующихся систем позволили рассмотреть предельные состояния конструкций и их элементов по критерию допустимых перемещений и допустимых нагрузок. Применение метода переменных параметров упругости и итерации для составления и решения соответствующих уравнений в ряде случаев в интегральной форме дало возможность решить большой круг конкретных задач расчета по предельным состояниям для брусьев, пластинок, дисков, оболочек, толстостенных резервуаров. Тем самым была найдена возможность использования резервов несущей способности детален и конструкций, связанных с уируго-нластическим нерераспределением напряжений и параметрами диаграммы деформирования материала.  [c.41]

Н. В. Баничук, В. М. Петров, Ф. Л. Черноусько методом локальных вариаций решили упруго-пластическую задачу в случае квадратного сечения, а также для одного многоугольника частного шда [11]. Указанный метод применялся также для решения упру- о-пластических задач в работах [10, 15].  [c.62]

Р. Саусвелл и Д. Аллен рассмотрели полосу с симметричными полукругами и угловыми выточками [88]. Е. И. Теплицкий решил плоскую задачу о давлении жесткого штампа на упруго-пластическое полупространство [63]. Н. Б. Баничук методом локальных ва-риащ1Й получил решение задачи о штампе, внедряемом в идеально упруго-пластическое тело [7]. В работах [82, 89] также рассматривалась задача о давлении жесткого штампа в идеальную упругопластическую среду. Решение в [89] получено релаксационным методом, а в [82] применялся метод, конечных элементов. В работах [23, 83] были численно решены упруго-пластические задачи для щели. В. Л.. Фомин [64], В. М. Мирсалимов [30] рассмотрели упруго-пластическую задачу с учетом стационарного температурного поля для плоскости с круговым отверстием, когда в пластической зоне бигармоническое напряженное состояние, а на бесконечности действуют постоянные напряжения.  [c.111]


Родионов В. К., Шишмарев О. Д., Щербо А. Г. Экспериментальное исследование некоторых закономерностей пластического деформирования ста-лей//Прикладные проблемы прочности и пластичности. Методы решения задач упругости и пластичности,— Горький Изд-во ГГУ, 1983,— Вып. 23,—  [c.374]

В разд. III, наибольшем по объему из всех разделов этой главы, изучаются задачи о плоской конечной деформации. Здесь поясняются некоторые подробности методов решения. Краевые задачи в перемещениях можно решать чисто кинематически, не пользуясь ни развернутыми гипотезами относительно связи напряжений с деформациями, ни даже уравнениями равновесия. В краевых задачах в напряжениях и в смешанных краевых задачах необходимо постулировать определенные зависимости, описывающие поведение материала под действием касательных напряжений. Для простоты мы ограничимся исследованием упругого сдвига или квазиупругого поведения пластических или вязкоупругих материалов. Основы теории разд. III заимствованы из работы Пиикина и Роджерса [26].  [c.290]

Рассмотрим задачу о распространении волны в полубеско-нечном стержне из уируго-вязко-пластичного материала с линейным упрочнением и постоянным коэффициентом вязкости как наиболее простой модели материала, обладающего вязко-пла-стичностью. Для решения используем метод одностороннего преобразования Лапласа. Будем рассматривать распространение упруго-пластической волны в стержне, предварительно нагруженном до статического предела текучести. За пределом текучести (Тт сопротивление материала статическому деформированию  [c.147]

При больших нагрузках в зонах концентрации напряжений появляются пластические деформации. На рис. 7.8 показано изменение напряжений Оу в МПа и интенсивности деформаций gi в наиболее нагруженном сечении пластинки 30X30 мм с отверстием, а также изменение нормальных напряжений ае в МПа и интенсивность деформаций вгв на контуре отверстия (материал пластины — сталь 45, От = 650 МПа). Расчет произведен вариационно-разност-ным методом. Штриховыми линиями показано решение упругой задачи, сплошными — расчет по деформационной теории пластичности.  [c.134]

Сначала на примере неоднородного стержня показывается техника применения методики осреднения к нелинейным краевым задачам. С помощью этой методики задача о стержне решается точно. Затем подробно описывается решение квазистатической задачи неоднородной и анизотропной теории пластичности. Рассматриваются теория эффективного модуля и теория нулевого приближения. Большое место в главе уделяется построению теории малых упруго-пластических деформаций для анизотропной однородной среды. Для такой среды доказываются теорема единственности решения квазистатической задачи в перемещениях и напряжениях, теоремы о минимуме лагранжиана и максимума кастильяниана, теоремы о простом нагружении. Описывается схема экспериментов, необходимых для определения материальных функций исследуемой теории. Показано, как исходя из теории малых упруго-пластических деформаций А. А. Ильюшина для изотропной среды получить методом осреднения соотношения анизотропной теории пластичности.  [c.219]

Сближение различных разделов механики сплошной среды и даже стирание граней между ними привело к выработке общих методов решения задач (и, в свою очередь, стимулировалось этим процессом). Ярким примером служит теория распространения разрывов в сплошных средах, математические основы которой разрабатывал в начале XX в, Ж. Адамар. В настоящее время теория ударных волн охватывает многие модели сплошных сред (см., например, монографию Я. Б. Зельдовича и Ю. П. Райзера ). С. А. Христиановичем и другими была установлена близкая аналогия между задачами о плоском установившемся течении в газовой динамике, задачами о распространении упруго-пластических волн в стержнях, задачами о неустановившемся течении воды в каналах и реках, задачами о предельном равновесии идеально-пластической или сыпучей среды (во всех случаях приходится иметь дело с некоторыми системами квазилинейных уравнений гиперболического типа). Общими для всей механики становятся методы подобия и размерностей, асимптотические методы и методы линеаризаций.  [c.279]

Из работ, связанных с изучением распространения возмущений в средах, обладающих различными свойствами, следует отметить работы X. А. Рахматулнна. Им решен ряд задач о распространении волн в стержнях и некоторых других телах, обладающих упруго-пластическими свойствами. При этом им была открыта волна разгрузки и даны методы ее определения.  [c.15]

В теории пластичности изучаются законы, связываюгцие напряжения с унругопластическими деформациями, и разрабатываются методы решения задач о равновесии и движении деформируемых твердых тел. Теория пластичности, являюгцаяся основой современных расчетов конструкций, технологических процессов ковки, прокатки, штамповки и других, а также природных процессов (например, горообразования), позволяет выявить прочностные и деформационные ресурсы материалов. Пластические деформации до разрушения достигают значений 10-20 %, в то время как упругие — 0,3-0,5 %. Поэтому расчеты на прочность, основанные на допустимости только упругих деформаций, часто нецелесообразны технически и экономически. Учитывая пластические деформации, можно снизить концентрацию напряжений в конструкциях, повысить сопротивляемость тел ударным нагрузкам, определить запасы прочности, жесткости и устойчивости, тем самым обеспечить наиболее рациональное функционирование, надежность и безопасность конструкций.  [c.151]

За пределами упругости зависимость а = а (е) для упруго-пластиче-ских сред имеет различный вид при нагружении и разгрузке. Задача о распространении упруго-пластических волн в полубесконечной среде при d alde < О и в предположении, что разгрузка совершается по линейно упругому закону, впервые рассмотрена X. А. Рахматулиным (1945). Если X — продольная координата, t — время, то в случае полубесконечной среды область (х, t) делится на две части. В одной из них происходит нагружение, в другой — разгрузка. Трудность решения соответствующей систе->1Ы двух гиперболических уравнений связана с тем, что граница между названными зонами, называемая волной разгрузки, заранее неизвестна. Э случае, когда волна разгрузки представляет собой волну слабого разрыва, предлагались различные способы решения метод степенных рядов <Х. А. Рахматулин, 1945), метод характеристик (Г. С. Шапиро 1946  [c.308]

Впервые задачи о сложном сдвиге рассмотрел Треффтц в 1922 г. Им дано рещение задачи о сложном сдвиге для идеального упруго-пластического тела в случае профиля уголкового сечения с прямым углом раствора, а также аналогичной задачи для внешности кругового отверстия [29, 30]. При этом были использованы плоскость годографа и методы теории функций комплексного переменного, аналогичные методам плоской гидродинамики идеальной несжимаемой жидкости. Впоследствии Я. Халт и Ф. Мак-Клинток [4, 14, 15], М. Коскинен [23], и Райс [25, 26] этим же методом получили решение, для полуплоскости с угловым вырезом. В работе  [c.22]


Смотреть страницы где упоминается термин О методах решения упруго-пластических задач : [c.168]    [c.177]    [c.247]    [c.203]    [c.22]    [c.87]    [c.114]    [c.193]    [c.81]    [c.268]    [c.151]    [c.332]    [c.237]   
Смотреть главы в:

Упруго-пластическая задача  -> О методах решения упруго-пластических задач



ПОИСК



Задача и метод

Задача упруго-пластическая

Задача упругости

Задачи и методы их решения

К упругих решений

Метод обратный решения упруго-пластических задач

Метод упругих решений

О приближенном решении осесимметричных упруго-пластических задач методом малого параметра

Решение задач упруго-пластического деформирования в перемещениях. Метод упругих решений

Решение задачи упругости

Решения метод



© 2025 Mash-xxl.info Реклама на сайте