Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предмет механики разрушения

Предмет механики разрушения  [c.651]

Заметим в заключение, что большие усилия и большие успехи в области механики распространения трещин привели к тому, что зачастую к ней сводится вся механика разрушения. На самом деле предмет механики разрушения гораздо шире. В ряде случаев, например, в металлах под действием нагрузки при высокой температуре, разрушение носит рассеянный характер, во всем объеме на границах зерен накапливаются поры, сливаются между собой и наконец объединяются в макротрещину. Здесь макротрещина — это лишь последний, видимый результат скрытого от невооруженного глаза, но хорошо видного даже под оптическим микроскопом процесса накопления повреждений. По-видимому, аналогичный характер разрушения наблюдается в некоторых полимерах, по здесь для обнаружения микроповреждений необходимы более тонкие методы.  [c.12]


Схожесть задач о контактном взаимодействии и задач механики разрушения состоит прежде всего в наличии точек с особенностями напряженного состояния. Это позволяет применять методы решения контактных задач теории упругости для решения отдельных задач механики разрушения, таких как определение поля напряжений у вершины трещин. Вместе с тем заметим, что нахождение коэффициентов интенсивности напряжений не есть механика разрушения, подобно тому как нахождение напряжений еще не определяет прочности изделия. И только формулировка и использование критериев разрушения, т.е. условий страгивания и роста магистральных трещин, составляет предмет механики разрушения. Некоторые приемы механики разрушения можно использовать при решении контактных задач. Например, корневую особенность в угловых точках штампа можно снизить (не прибегая к закруглению краев штампа), предполагая пластическое течение вдоль определенных линий скольжения. Допуская несколько таких линий или сплошной их веер можно устранить особенность вообще, как это описано в статьях В. 1У[. Александрова и Л. А. Кип-ниса [1, 2].  [c.624]

Обычная (классическая) формулировка предмета механики разрушения предполагает изучение процессов разрушения твердого тела в результате распространения магистральной трещины под действием тех или  [c.624]

В большинстве случаев коррозионного роста трещин процессы адсорбции, водородного охрупчивания и коррозионного растворения взаимосвязаны между собой и протекание одних обуславливает проявление других. Взаимосвязь этих процессов усложнена еще и влиянием структуры металла, вида напряженного состояния, внешних условий нагружения. Изучение этой взаимосвязи составляет предмет коррозионной механики разрушения — научного направления на стыке механики разрушения, металловедения и химического сопротивления материалов.  [c.370]

Партоном и Борисовским [248] проведен анализ экспериментальных данных последних лет по динамике трещин, выявивший колебательный характер движения трещины в различных твердых телах (в том числе в металлах и полимерах), ветвление трещин на различных масштабных уровнях, скачкообразное изменение скорости роста трещин, опережающее зарождение микротрещин, и другие дефекты. Это позволило авторам развить новую концепцию динамического разрушения, сформулировать задачи динамической механики разрушения и установить отличие ее подходов от квазистатической механики. Предмет динамической механики разрушения включает решение следующих задач [248]  [c.145]


Понимание сути динамики разрушения представляется необходимым при разработке надежных методик, направленных на обеспечение целостности конструкций. В широком плане можно считать, что предмет динамики разрушения совпадает с предметом механики твердого тела, содержащего стационарную или развивающуюся трещины, в условиях, когда существенную роль начинают играть инерционность материала и взаимодействие волн напряжений. Классификацию задач динамики разрушения можно осуществить по следующему принципу  [c.267]

Для многих отраслей техники характерны конструкции, работающие в условиях интенсивных тепловых и силовых воздействий. Работоспособность и долговечность таких теплонапряженных конструкций зависят от взаимосвязанных факторов, которые являются предметом изучения различных разделов механики теорий теплопроводности, термоупругости, пластичности и ползучести, механики разрушения и др. Однако особенности работы теплонапряженных конструкций требуют, как правило, совместного рассмотрения упомянутых разделов механики и их изложения с единых позиций. Такой путь позволяет инженеру-расчетчику ориентироваться во взаимосвязанных вопросах и квалифицированно подойти к решению достаточно сложных прикладных задач термопрочности. К таким вопросам прежде всего следует отнести постановку, методы и алгоритмы решения задач по определению температурного и напряженно-деформированного состояний элементов конструкций с учетом неупругого поведения материалов при переменных режимах тепловых й силовых воздействий с целью оценки работоспособности и долговечности теплонапряженных конструкций.  [c.5]

Основу механики тел, содержащих трещины, обычно образуют два допущения трещину представляют в виде математического разреза в однородной сплошной среде среду полагают линейно упругой вплоть до разрушения. Это направление теории называют также линейной механикой разрушения (в отличие от нелинейной механики разрушения, где учитывают нелинейные свойства материала, в частности, пластические деформации у фронта трещин). Название линейная механика разрушения не вполне точно передает содержание ее предмета, поскольку все задачи механики разрушения, по существу, нелинейные (нахождение полей упругих напряжений вблизи трещин —предмет теории упругости, а не механики разрушения). В связи с этим употребляем, как правило, термины механика хрупкого разрушения и механика квазихрупкого разрушения в зависимости от того, считаем материал линейно упругим вплоть до разрушения или нет.  [c.105]

Механика хрупкого разрушения применима, если / > ру. Другое ограничение связано с наличием у реальных конструкционных материалов структуры, размер элементов которой сопоставим с размером трещины. Для поликристаллических материалов характерный размер структуры р имеет порядок размера зерна, для композитов на основе волокон —порядок диаметра волокна и т. п. Область, для которой выполнено условие / > р, но нарушено условие / > Ру, является предметом нелинейной механики разрушения. Чтобы описать зависимость а (/) при небольших значениях /, необходимо детально рассмотреть концевые зоны, в которых происходит развитие пластических деформаций. Стремление сохранить в качестве основной характеристики материала трещиностойкость Кгс приводит к различным полуэмпирическим соотношениям. Вместе с тем размеры устойчивых трещин обычно составляют десятки и даже сотни миллиметров, а эксплуатационные номинальные напряжения, как правило, невелики по сравнению с пределом текучести, поэтому область применения механики хрупкого разрушения в практических расчетах довольно широка.  [c.107]

Давая общую характеристику критериев разрушения, отметим, что если в качестве критериальной величины взять локальный параметр у вершины трещины (упругое раскрытие на малом расстоянии от вершины трещины, радиус кривизны вершины трещины, деформацию у вершины трещины, угол раскрытия, малую область разрушаемого материала с реакцией материала и т.п.), то все они дадут один и тот же конечный результат (после их применения) именно в силу локальности анализируемой области [39]. Подобные критерии составляют предмет линейной механики разрушения. Вообще, термин линейная механика разрушения относится к задачам о трещинах, поставленным в рамках линейной (линеаризованной) теории упругости. Наоборот, привлечение к анализу свойств пластичности материала приводит к потерям однозначных оценок, сопряженных с большим разнообразием моделей предельного состояния и разрушения. Критерии, построенные на этой основе, отвечают критериальным величинам интегрального толка, необратимо накапливающимся в ближней и дальней окрестностях трещины. В силу большого разнообразия возможных эффектов, в сравнении с критериями линейной механики разрушения, критерии нелинейной механики разрушения показывают большой разброс результатов не только между собой, но и с экспериментом. С этой точки зрения, имея в виду прикладные расчеты сложных технических систем, целесообразнее и надежнее (и спокойнее для конструктора) критериальные соотношения, основанные на модельных представлениях, заменить прямыми натурными или полу-натурными экспериментами.  [c.74]


Число публикаций по дина лической механике разрушения непрерывно возрастает и достигает сейчас нескольких сотен статей ежегодно. Чтобы объяснить возрастающий интерес к исследованиям динамики разрушения, необходимо понять, в чем состоит предмет динамической механики разрушения и какова ее взаимосвязь с квази стати ческой механикой разрушения.  [c.4]

Давая общую характеристику критериев разрушения, отметим, что если в качестве критериальной величины взять локальный параметр у вершины трещины (упругое раскрытие на малом расстоянии от вершины трещины, радиус кривизны или деформацию у вершины трещины, угол раскрытия и т. п.), то все они дадут один и тот же конечный результат. Подобные критерии составляют предмет линейной механики разрушения. Линейная механика разрушения относится к задачам о трещинах, поставленным в рамках линейной теории упругости, и оперирует, как правило, коэффициентами интенсивности напряжений. Нелинейная механика разрушения привлекает в анализ свойства пластичности материала. Это вытекает из необходимости учета пластического течения в окрестности вершины трещины. Критерии нелинейной механики разрушения отличаются большим разнообразием в связи с различием моделей предельного состояния. Критерии, построенные на этой основе, отвечают критериальным величинам, необратимо накапливающимся в ближней и дальней окрестности трещины. В сравнении с критериями линейной механики раз-  [c.53]

Настоящая книга необычна, она существенно отличается от большой части издаваемой литературы по механике. Это не учебник для первичного ознакомления с предметом и не научная монография в строгом понимании этого слова. Лучше всего ее содержание можно, видимо, определить как обзор основных идей, лежащих в основе механики разрушения. Эта работа написана на основе курса лекций для спе-  [c.5]

Статические проблемы механики разрушения. Основоположником механики разрушения по праву можно считать А. Гриффитса. Основы механики хрупкого разрушения тела с треш,иной изложены им в работе [480], опубликованной в 1920 г. в трудах Лондонского королевского общества. Однако эта работа осталась незамеченной и долгое время идеи, высказанные в ней, не находили поддержки среди специалистов в области прочности материалов. Отчасти это было связано с тем, что его теория была разработана для идеально хрупкого разрушения материалов. Но как показывает опыт, при разрушении большинства конструкционных материалов, используемых в инженерной практике, наблюдаются пластические деформации в окрестности фронта трещины. При этом значительная часть энергии разрушения расходуется на пластическое деформирование материала. Только после работы Дж. Ирвина [492, 493] механика разрушения тел, содержащих трещины, стала интенсивно развиваться, а ее методы стали применять- Ся при расчетах на прочность различных инженерных конструкций. Ниже кратко изложены основные идеи А. Гриффитса и Дж. Ирвина, которые составляют предмет классической линейной механики разрушения.  [c.10]

Как отмечалось в гл. 1, настоящая монография не затрагивает пока в надлежащем объеме вопросы малоцикловой живучести конструкций на стадии развития в них трещин малоциклового нагружения. Основой расчетов прочности и ресурса злементов конструкций с трещинами являются уравнения и критерии нелинейной механики циклического разрушения. Совместное рассмотрение двух стадий работы элементов конструкций — стадии до образования трещин (что является предметом настоящей монографии) и стадии их развития — должно способствовать обоснованному продлению ресурса безопасной эксплуатации и форсированию режимов работы.  [c.269]

Дальнейшие исследования уравнений состояния при малоцикловом нагружении должны явиться научной основой для решения задач о прочности и ресурсе элементов конструкций, имеющих различные зоны концентрации и испытывающих действие в этих зонах экстремальных тепловых и механических нагрузок. Существенное значение результаты таких исследований приобретают при решении вопросов механики малоциклового разрушения, которая является базой для определения ресурса конструкций на стадии развития дефектов в соответствии с рис. 1.4. Для анализа этой стадии повреждения конструкций в первую очередь могут быть использованы [9] уравнения обобщенных диаграмм циклического деформирования для случая стационарного нагружения при комнатных, повышенных и высоких температурах. Развитие фундаментальных и прикладных исследований в указанных выше направлениях механики малоциклового деформирования и разрушения является предметом дальнейшего рассмотрения проблемы малоцикловой усталости.  [c.242]

В последнее время наблюдается всё более тесное сближение механики контактного взаимодействия и трибологии, поскольку предметом исследования как одной, так и другой науки является фрикционный контакт. Постановки контактных задач включают в себя такие специфические свойства фрикционного контакта как поверхностная микроструктура, трение и адгезия, тепловыделение при трении и т.д. [102]. Решение этих задач позволяет определить напряжения в области контакта, а также в тонких приповерхностных слоях, что очень важно с точки зрения прогнозирования характера их разрушения при трении (изнашивания).  [c.8]

Этот случай прямо противоположен случаю идеальной трещины ж ограниченной пластической зоны, которые являются предметом множества современных исследований в области линейной механики хрупкого разрушения, что, возможно, объясняется большими трудностями, связанными с решением упругопластических задач.  [c.20]

В этом разделе мы обсудим этот вопрос чисто качественно, чтобы было яснее, в каком направлении будет строиться дальнейшее изложение. Главное, что характерно для предметов нашего окружения, это их постоянная информационная связь. Вся природа купается в лучах солнечного света, переливаясь всеми красками, и этого уже достаточно, чтобы живые существа вели постоянное наблюдение за своим окружением. Аналогичная связь через свет может существовать и между объектами неживой природы. С точки зрения квантовой механики это означает, что положение макротел постоянно "измеряется" окружающими их живыми и неживыми телами. Поэтому ф-волны макротел подвержены постоянному разрушению когерентности. Мы живем в мире разрушенной когерентности и непрерывно продолжающегося ее разрушения. Попробуем оценить, где пролегает естественная граница между микромиром и макромиром. Для этого мы воспользуемся соотношением (91) для ширины неравновесного волнового пакета.  [c.78]


Расчеты на прочность изделий сложной формы. Излагая в предыдущей главе теорию сложного напряженного состояния, мы совершенно обошли молчанием вопрос о том, каким образом определить напряженное состояние в телах, подверженных действию сил. Общая задача об определении напряжений и деформаций в упругом теле произвольной формы, подверженном действию произвольных внешних сил, является предметом теории упругости, которая представляет собою раздел механики сплошной среды и развивается в направлении создания и усовершенствования методов решения соответствующих краевых задач для некоторых систем дифференциальных уравнений в частных производных. Несмотря на огромные успехи математической теории упругости, далеко не все задачи, представляющие практический интерес, удается решить во многих случаях, даже когда точное решение или метод его отыскания известны, практическое использование этого решения для расчета на прочность затруднительно ввиду чрезвычайной сложности и громоздкости вычислений. с другой стороны, знания распределения напряжений в теле в упругой стадии его работы еще недостаточно для суждения о прочности. Как мы убедились на примере статически неопределимых стержневых систем, переход некоторых элементов в состояние текучести еще не означает разрушения системы в целом. Тем более это относится к телу, находящемуся в условиях сложного напряженного состояния. Достижение состояния текучести в одной или нескольких точках само по себе не является опасным окруженный упругими областями, материал не имеет фактической возможности течь. В то же время, после того как состояние текучести где-та достигнуто, дальнейшее увеличение нагрузки приводит к образованию пластических зон конечных размеров.  [c.104]

Весь материал Гпавы 4 имеет непосредственное отношение к излагаемому предмету, поэтому желательно ознакомиться с ним при первом прочтении. Мы предполагаем, что у читателя могут возникнуть определенные сложности с прочтениемраздеюв 4.3 - 4.4 вследствие новизны и нестандартности идей, излагаемых в них. Но не стоет огорчаться. Нужно попытаться выяв1ггь суть концепции дробно-размерного слоя н понять, как она используется в механике разрушения. В этом Вам поможет Сюварь тер.чипов, приведенный в конце учебника.  [c.4]

Часть I посвящена основным критериям и методам мехаиикп упругого и упругопластического разрушения. На конкретных примерах показаны результаты применения различных критериев разрушения для определения критических и допустимых длин трещин как при статических, так и при циклических нагрузках. Для самостоятельного изучения основ механики разрушения, а также для чтения лекций в ограниченном объеме но этому предмету можно использовать материал 1—3, 12, 16, 17, 25, 30, 33, 34.  [c.7]

Предлагаемая читателю книга В. 3. Партона и Е. М. Морозова — первая на русском языке монография по данному предмету, построенная главным образом па оригинальных исследованиях авторов,—затрагивает вопросы нелинейной механики разрушения в том аспекте, который был отмечен выше. В ней рассматриваются некоторые упругопластические задачи для тел, содержащих трещшш. Но основное содержание книги — это линейная механика разрушения, а также некоторое ее развитие, которое приводит к определяющим уравнениям, могущим быть нелинейными.  [c.11]

Широко известно значение статистических методов для оценки прочности конструкций. Статистическая теория разрушения должна быть также отнесена к механике разрушения, хотя сейчас, пожалуй, изощренность теоретиконвероятностпого анализа комбинируется с довольно примитивными механическими моделями, что объясняется трудностью предмета.  [c.12]

У думающего читателя, прочитавшего название этого параграфа, сразу возникнут несколько вопросов. Во-первых, если существует динамическая механика разрушения, то, наверное, есть еще и статическая механика разрушения Во-вторых, как же это согласуется с тем, что разрушение чаще всего происходит вследствие неустойчивого распространения трещины (т. е. является существенно динамическим процессом) О какой же механике разрушения шла речь до сих пор Нужно сразу признаться, что эти вопросы отнюдь не просты, и ответы на них далеко не очевидны Действительно, процесс разрушения характеризуется (по крайней мере на заключительной стадии) быстрым распространением магистральной трещины или семейства разветвленных трещин, т. е. является существенно динамическим. В описании этого процесса иа микро- и макроуровнях остается много неясного, и когда мы встречаем в литературе утверждение о том, что механика разрушения предоставляет необходимый аппарат для расчета прочности тел и конструкций, то подразумеваем так называемую квазистатическую механику разрушения, которая дает ответ на вопрос о том, является ли существующая магистральная трещина устойчивой или нет. В самом деле, квазистатическая механика разрушения разработана достаточно хорошо, по это лишь первое прибли кепие к описанию разрушения, позволяющее судить только о том, начнется катастрофический рост трещины или нет. Предмет же динамической механики разрушения значительно шире, чем квазиста-тической. Если в квазистатпческой механике разрушения формулируется только критерий неустойчивого распространения трещины, то в динамической механике разрушения р1ужио установить ряд критериев для старта,  [c.157]

Известно, что механика разрушения использует разные точки зрения на непростой процесс разрушения, взирая на него с позиций и физики строения веш,ества, и механики континуума, и инженерного расчета. Попытки соединить воедино разные предметы и методы исследования приводили к многотомным справочникам, аналогам энциклопедий. Примером тому служат известные семитомное и четырехтомное издания соответственно под редакцией Дж. Либовица и В.В. Панасюка.  [c.6]

В последние десятилетия механика разрушения вьщелилась в самостоятельный раздел механики деформируемого твердого тела, предметом изучения которого стала несущая способность тел и конструкций с учетом начального распределения трещин и их возможного развития. Вьтоды механики разрушения используются для обеспечения прочности, надежности и долговечности конструкщ1Й, разработки зф-фективных неразрушающих средств контроля, недопущения аварий, которые могут иметь значительные зкономические и социальные последствия. В то же время ясно, что исследования по механике разрушения важны и для тех технологий, где необходимо управляемое разрушение -при разработке горных месторождений, буршии скважин, резании металлов.  [c.3]

Очевидно, что предмет динамической механики разрушения значительно шире, чем квазистатической. Если в квазистатической механике разрушения формулируется только критерий неустойчивого распространения трещины, то в динамической механике разрушения нужно установить ряд критериев для старта, остановки, распространения, искривления и ветвления трещин. В рамках упомянутой выше идеализированной модели при этом возникает соответственно целый спектр критических коэффициентов интенсивности козффициент интенсивности старта, зависящий от скорости нагр)окения, коэффициенты интенсивности остановки, ветвления и, наконец, критический козффициент интенсивности, зависящий от скорости распространения трещины. Некоторые экспериментальные данные по значениям коэффициентов интенсивности напряжений удается удовлетворительно объяснить, а некоторые — приводят к противоречиям с теоретическими положениями. Однако опубликованные экспериментальные данные и сами по себе противоречивы. Возможно,дело здесь в том, что во многих экспериментах пренебрегалось взаимодействием отраженных от границ образцов волн напряжений с вершиной трещины, недостаточно точно измерялись скорость распространения трещины и коэффициенты интенсивности напряжений.  [c.5]


Исследование вопроса о взаимосвязи динамической и квазистати-ческой механики разрушения приводит к формулировке предмета динамического разрушения. Процесс разрушения характеризуется (по крайней мере в заключительной стадии) лавинным распространением одной трещины дли семейства разветвленных трещин, т. е. является существенно динамическим. В описании этого процесса на мик-ро- и макроструктурном уровнях остается много неясного, и когда мы сейчас встречаем в литературе утверждения о том, что механика разрушения предоставляет необходимый аппарат для расчета прочности тел и конструкций, то подразумеваем квазистатическую механику разрушения, которая дает ответ на вопрос о том, является ли существующая магистральная трещина устойчивой или неустойчивой. Действительно, механика квазистатического разрушения линейно-упругих, пластических и вязкоупругих материалов к настоящему времени разработана достаточно хорошо, но это лишь первое приближение описания разрушения, позволяющее судить только о том, начнется катастрофический рост трещины или нет.  [c.158]

При исследовании динамики разрушения возникают следующие задачи. Во-первых, при каких условиях квазистатического или динамического нагружения начинается катастрофическое распространение трещины заданных размеров Во-вюрых, при каких условиях разгрузки распространяющаяся трещина остановится В-третьих, какие параметры нагрузки и материала определяют распространение трещины В-четвертых, при каких условиях распространяющаяся трещина разветвится и какой механизм лежит в основе этого явления Эти задачи назьшают задачами старта, остановки, распространения и ветвления соответственно. Их решение и составляет предмет динамической механики разрушения.  [c.159]

Таким образом, очевидно, что предмет динамической механики разрушения значительно шире, чем квазистатической. Если в квазиста-тической механике разрушения формулируется, как правило, только критерий неустойчивого распространения трещины, то в рамках динамической механики разрушения нужно установить целый ряд критериев дпя старта, остановки, распространения, искривления и ветвления трещины. При попытках феноменологического описания динамики разрушения при помощи концепций магистральной остроугольной трещины и коэффициентов интенсивности напряжений возникает соответственно целый спектр критических коэффициентов интенсивности коэффициент интенсивности старта трещины, зависящий от скорости нагружения, коэффициент интенсивности остановки, коэффициент интенсивности ветвления, коэффициент интенсивности распространения трещин, зависящий от скорости трещины. При этом некоторые экспериментальные данные удается объяснить, а некоторые приводят к серьезным противоречиям с теоретическими положениями. Необходимо, однако, заметить, что и экспериментальные данные сами по себе являются весьма противоречивыми.  [c.159]

Действительно, на некотором этапе этого процесса, как уже упоминалось, микроповреждеяия объединяются в макротрещины. Можно отказаться от детального изучения возникновения и развития сети микроповреждений (распределение которых по телу должно представлять поле параметра со, фигурирующего в (4.39)), если хотя бы ориентировочно известны начальные размеры и положение макротрещин. А это во многих случаях и в самом деле можно указать довольно точно без детального анализа начальной стадии процесса разрушения (существенное значение имеет тот факт, что между микро- и макротрещинами нет резкой границы часто разрывы в кристаллической решетке с размерами порядка десятков ангстрем оказывается возможным трактовать на языке механики сплошной среды). В результате задача о разрушении тела сводится к задаче о равновесии (или движении) тела с трещинами, определению сопротивления распространению в теле заданной системы трещин и тому подобным вопросам, служащим предметом механики тела с трещинами или, короче, механики трещин.  [c.137]

В цикле специальных дисциплин при подготовке инженеров-механиков появились предметы, связанные с изложением взглядов на природу разрушения материалов, конструкций, систем. Цель этих дисциплин - дать возможность инженеру исключить преждевременное разрушение объектов на всех стадиях от идеи до эксплуатации аппаратов и машин на производстве Ыастояшее учебное пособие раскрывает природу разрушения материалов, причем на фоне традиционных представлений предлагаются оригинальные идеи, которые могут настроить читателя на творческую волну. Пособие предназначено для студентов специальности 1705, но может быть полезным и студентам других специальностей.  [c.2]

Книга содержит нетрадиционное изложение курса теории упругости, базирующегося на специальных разделах теории дифференциальных уравнений в частных производных и математического анализа. В первой главе в достаточно компактной форме дается конспективное изложение тех математических дисциплин, которые уже с успехом используются и могут быть использованы в дальпейи1ем при решении на современном уровне различных задач теории упругости. Две следующие главы посвящены концентрированному, по вместе с тем достаточно полному изложению собственно предмета теории упругости, включая такие сравнительно новые разделы, как. злектромагнитоупругость и механика хрупкого разрушения, постановке краевых задач, а также изложению некоторых приемов сведения краевых задач теории упругости к классическим задачам математической физики, В остальных главах книги (главы VI—VIII) конкретные математические методы, указанные в заглавии, применяются к решению определенных классов задач теории упругости. В ряде случаев эффективность того или иного метода демонстрируется на примерах таких задач, решение которых было получено только в последнее время. Большое внимание уделяется как вопросам строгого математического обоснования тех или иных алгоритмов, так и приемам их численной реализации.  [c.2]

Проблемы усталостного разрушения деталей машин и инженерных конструкций уже давно стали предметом пристального внимания специалистов по прочности. Однако многолетние усилия механиков, физиков и металловедов в изучении этих проблем ещё не завершились созданием теории усталости, удовлетворяющей сегодняшним потребностям расчётной практики [1,2]. Теоретический анализ усталостной прочности сопря-  [c.84]


Смотреть страницы где упоминается термин Предмет механики разрушения : [c.653]    [c.69]    [c.20]    [c.174]    [c.119]    [c.14]    [c.357]    [c.12]    [c.4]    [c.6]   
Смотреть главы в:

Механика деформируемого твердого тела  -> Предмет механики разрушения



ПОИСК



Механика предмет

Механика разрушения

ПРЕДМЕТЙЫЙ



© 2025 Mash-xxl.info Реклама на сайте