Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка задачи. Общие уравнения движения

ПОСТАНОВКА ЗАДАЧИ, ОБЩИЕ УРАВНЕНИЯ ДВИЖЕНИЯ 399  [c.399]

Постановка задачи. Общие уравнения движения  [c.399]

Условимся среди всех чисел подобия (39) особо выделять составленные только из тех масштабов сравниваемых потоков и физических констант среды, которые заключаются в постановке задачи об определении движения, т. е. наперед заданы. Одинаковость таких чисел подобия обусловливает подобие двух сравниваемых течений, и поэтому сами числа могут быть названы критериями подобия. Критериев подобия меньше, чем чисел подобия для соответствующего класса течений, так как не все масштабные величины, введенные при составлении безразмерных уравнений и граничных и начальных условий, на самом деле могут быть заданы наперед. Значения некоторых из них определяются только после того, как будет получено единственное решение данной конкретной задачи. Отсюда следует, что число достаточных условий, представленных системой равенств вида (40), будет меньше общего числа необходимых условий.  [c.369]


В предлагаемом курсе основное место отведено математической постановке задач, анализу дифференциальных уравнений равновесия и движения и их решению, общим и частным методам их интегрирования. Некоторые конкретные задачи, имеющие принципиальное значение, проиллюстрированы числовыми примерами.  [c.4]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]

В наиболее общем случае, когда нельзя ничего заранее сказать о симметрии задачи, ее решение весьма затруднено. Общая постановка задачи и ее математическое описание известны и даны, например, в [54]. Для составления основных уравнений используются известные законы газо- и термодинамики. Система уравнений включает уравнения неразрывности, движения частиц жидкости и газа, баланса энергии, диффузии, теплопроводности, а также условия на границе раздела двух сред. Эти уравнения громоздки, и мы их здесь не приводим.  [c.18]

При чисто теоретических исследованиях эти уравнения служат для установления общих качественных свойств движений и для фактического вычисления искомых функциональных связей с помощью различных математических операций. Однако механическое исследование не всегда возможно осуществить путём математических рассуждений и вычислений. В ряде случаев решение механических задач встречается с непреодолимыми математическими трудностями. Очень часто мы не имеем вообще математической постановки задачи, так как исследуемое механическое явление настолько сложно, что для него пока ещё нет удовлетворительной схемы и нет ещё уравнений движения. С таким положением мы встречаемся при решении многих очень важных задач в области авиамеханики, гидромеханики, в проблемах изучения прочности и деформаций различных конструкций и т. п. В этих случаях главную роль играют экспериментальные методы исследования, которые дают возможность установить простейшие опытные факты. Вообще всякое изучение явлений природы начинается с установления простейших опытных фактов, на основе которых можно формулировать законы, управляющие исследуемым явлением, и записать их в виде некоторых математических соотношений.  [c.11]


В предыдущем параграфе (так же как и при изучении движения тяжелого тела, рассматривавшегося с кинематической точки зрения в б гл. II т. 1) совершенно не принималось во внимание движение Земли, и основное уравнение динамики относилось к осям, связанным с Землей. Постановка задачи, таким образом, была приближенная смысл и пределы законности такого приближения были выяснены в общих рассуждениях, развитых в 7 гл. VII т. 1.  [c.116]

Таким образом, между рассматриваемым случаем и случаем, который был разобран в предыдущем пункте, имеется существенное различие. Здесь, помимо активных сил, оказываются известными только способы реализации связей, но не соответствующие реакции, которые вследствие этого являются вспомогательными неизвестными. Эти неизвестные входят в виде явных слагаемых в правые части уравнений (1). Отсюда следует, что уравнения (1) в случае движения системы со связями представляют собой только предварительную постановку задачи поэтому в динамике приходится отыскивать способы, которые позволили бы исключить из уравнений (1) в наиболее общих возможных случаях реакции и таким образом для определения движения дать дифференциальные уравнения, зависящие только от прямых данных рассматриваемой задачи.  [c.255]

Дифференциальные уравнения движения. Согласно общим соображениям п. 1 мы придем к полной постановке задачи, отправляясь еще раз от основного уравнения  [c.100]

Упругие реакции (8.23)—(8.26), необходимые для определения потенциальной энергии дискретной механической системы [см. уравнение (8.16)], даны для двусторонних связей. Для односторонних связей выражения реакций остаются теми же, но пределы суммирования или интегрирования в этом случае являются функциями от компонент движения тел механической системы, определить явный вид которых в общей постановке задачи (см. рис. 99) невозможно. Данную задачу можно решать только в конкретных случаях.  [c.339]

В отличие от известной постановки задачи о течениях в пограничном слое при обтекании тел жидкостью функция др/дх в первом уравнении (1.1) не задана, а должна быть найдена, подобно тому, как это делается в задачах гидродинамической теории смазки [7]. Очевидно, чго в принятом предположении о постоянстве плотности р давление р х) в слое определяется с точностью до постоянной. Это же справедливо и при движении тел более общей формы при нахождении распределения давления в замкнутой полости, занятой расплавом.  [c.171]

Они позволяют точно или приближенно рассчитывать напряженно-деформированное состояние и деформирующие силы, минуя, как и в методе линий скольжения и характеристик, интегрирование дифференциальных уравнений движения и равновесия в частных производных. Это достигается использованием экстремальных и вариационных принципов, которые основываются на законе сохранения энергии. Вариационные методы позволяют решать наиболее сложные задачи в общей их постановке с минимальным числом упрощений и допущений. Эти методы в настоящее время интенсивно развиваются и совершенствуются. Их успех обусловлен также широким внедрением в науку и производство современных быстродействующих электронных вычислительных машин.  [c.294]

Автомодельные решения представляют, конечно, лишь некоторые простейшие частные решения поставленной общей задачи, но вместе с тем в большинстве случаев оказываются полезными, так как позволяют судить об основных сторонах рассматриваемого явления. Стоит отметить — в дальнейшем это будет подтверждено многочисленными примерами,— что возможность существования автомодельных решений обусловливается отсутствием в постановке задачи (уравнениях и граничных и начальных условиях) некоторых характерных масштабов времени, длины, массы или др., т. е. некоторой ограниченностью самой постановки задачи, отказом от общности постановки. Так, например, в предыдущей задаче о центрированных волнах разрежения за движущимся поршнем не могло быть речи о произвольном заданном наперед законе движения поршня, а, наоборот, по ходу решения задачи был определен тот частный закон движения поршня, при котором возможно существование центрированных волн.  [c.153]


С помощью математических абстракций мы приходим в теоретической гидродинамике к постановкам задач, содержащим помимо соотношений, выводимых из общих уравнений, еще дополнительные специальные гипотезы, позволяющие выделить те решения, которые отражают влияние физических факторов, не учитываемых принятой схемой (эффект вязкости в теории идеальной жидкости, учет кавитации в теории непрерывных потоков, учет устойчивости движения вязкой жидкости при переходе от ламинарных потоков к турбулентным и т. п.). Нам представляется, что математический анализ таких гипотез, проведен-  [c.5]

Ранее была получена общая система уравнений гидромеханики вязкой жидкости и сформулирована постановка задач, позволяющая выделить конкретные движения.  [c.245]

Получающиеся таким путем дифференциальные уравнения движения в общем случае будут содержать лишние неизвестные, исключить которые не всегда просто. На помощь приходится привлекать экспериментальные факты, вносящие некоторую определенность в постановку задачи. Одним из таких экспериментальных фактов является, в частности, известный закон Кулона, устанавливающий зависимость касательных составляющих сил реакции связей от нормального давления. Составленные таким образом уравнения движения будут представлять собой сложную систему и дальнейшее исследование этой системы обычно проводится путем постепенного освобождения от лишних неизвестных. Исследование часто осложняется тем обстоятельством, что коэффициент трения не является постоянной величиной, а изменяется в зависимости от нагрузки.  [c.365]

Уравнения движения и общая постановка задачи устойчивости движения тела с жидкостью  [c.183]

Изучение задач устойчивости в абстрактных пространствах было начато К. П. Персидским (1936—1937, 1948, 1950) и М. Г. Крейном (1948) и в настоящее время продвинуто далеко вперед, включая доказательство теорем существования функций Ляпунова (см., например, работы В. И. Зубова, 1954, 1955, 1957 Н. Н. Красовского, 1956), что связано с успехами общей теории дифференциальных уравнений на базе функционального анализа. Для систем, описываемых функциональными уравнениями, важное значение имеет правильный учет начальных возмущений, возможных в реальных условиях, в связи с чем для постановки задачи устойчивости немаловажное значение имеет качественное исследование характера движений.  [c.28]

П. А. Кузьмин (1957) рассмотрел вопрос об устойчивости при параметрических возмущениях, когда возмущающие силы имеют структуру, полностью определенную полем основных сил невозмущенных движений, и физическое происхождение возмущающих сил связывается с возмущением разнообразных физических параметров, входящих в дифференциальные уравнения движения любой материальной системы. Изложим кратко несколько более общую постановку задачи о параметрических возмущениях, принадлежащую Н. Н. Красовскому (1959). Пусть дана система уравнений возмущенного движения  [c.53]

Завершая в этом пункте обсуждение предыстории общей теории оптимальных процессов, подчеркнем, что, по-видимому, к 1955 г. выяснились основные постановки задач об оптимальном управлении и уже проявились главные особенности этих задач. Таким образом, были созданы все предпосылки для капитального построения теории. Пользуясь случаем, отметим также, что дальнейшее успешное развитие этой теории в СССР в значительной степени было обусловлено хорошим предыдущим развитием в нашей стране нелинейной механики, автоматики и качественной теории дифференциальных уравнений и в том числе — теории нелинейных колебаний и теории устойчивости движения, которые составили надежный фундамент. для исследования оптимальных систем. Следует также иметь в виду, что дальнейшее развитие теории оптимальных процессов шло параллельно с интенсивным развитием вычислительной математики, без приложения которой эффективность методов теории управления представляется крайне проблематичной.  [c.187]

Разрушение при ползучести. В. И. Розенблюм (1957) получил решение задачи об определении времени до разрушения диска постоянной толщины с отверстием. В основу положены уравнения установившейся ползучести, распространенные на случай конечных деформаций, таким образом, рассмотрена схема вязкого разрушения. Л. М. Качанов (1960) рассмотрел на основе своей теории некоторые задачи о времени разрушения стержневых систем, сформулировал общую постановку задачи о движении фронта разрушения и определил время разрушения скручиваемого вала. Ю. Н. Работнов (1963) решил задачу о разрушении диска с отверстием по схеме хрупкого разрушения. При этом учитывалось влияние накопления поврежденности на скорость ползучести и, следовательно, на распределение напряжений. Позже Ю. Н. Работнов (1968) рассмотрел вопрос о влиянии концентрации напряжений на длительную прочность. При этом считалось, что распределение напряжений мало отличается от распределения напряжений в жестко-пластическом теле, но переменная величина степени поврежденности со фигурирует в условии пластичности, которое становится подобным условию равновесия неоднородной сыпучей среды.  [c.149]

Хотя возраст теории устойчивости соразмерен с возрастом теории дифференциальных уравнений, лищь в 1892 г. благодаря Ляпунову она получила наиболее общую постановку и, главное, весьма мощные и математически строгие методы исследования. В приложениях постановка задачи об устойчивости движения, принадлежащая Ляпунову, и методы, созданные им, оказались весьма удачными и эффективными.  [c.829]


Рассматривается задача о плоскопараллельном движении пары цилиндров в бесконечном объеме идеальной несжимаемой жидкости. Предполагается, что жидкость покоится на бесконечности и совершает безвихревое движение. Бьеркнесом, в начале прошлого столетия, в книге [9] описана экспериментальная установка, позволяющая определять силы, действующие на осциллирующие тела в жидкости. Движение жидкости было обусловлено лишь колебательным движением тел. Полученным результатам дано качественное объяснение, проведена интересная аналогия с задачами электродинамики. Жуковский [4] рассмотрел более общую задачу, предположив, что движение жидкости, в которой находится осциллирующая сфера, происходит по некоторому определенному заранее закону. В более строгой постановке задача о взаимодействии двух сфер в идеальной жидкости рассматривалась в [5, 6]. Уравнения движения были там получены лишь в приближенном виде для случая, когда центры сфер постоянно находятся на некоторой фиксированной прямой. Целью настоящей работы является вывод общих уравнений движения двух круговых цилиндров в идеальной жидкости, нахождение интегралов движения и редукция к относительным переменным.  [c.327]

В 8.4 были выписаны общие уравнения статической теории упругости и соответствующие граничные условия, там же была сформулирована постановка задачи теории упругости. В общем случае движение упругого тела происходит во времени и элементы его обладают ускорениями, поэтому более общей будет постановка динамической задачи теории упругости. В декартовых координатах эти ускорения представляют собою вторые производные от неремещений по времени. Применяя иринцип Далам-бера, мы получим уравнения движения упругого тела, добавив к действуюхцим силам Fi силы инерции  [c.430]

Принцип Длламбера. Результат, полученный в предыдущем пункте, в какой-либо из трех своих эквивалентных форм носит название принципа Даламбера ) название принцип находит свое оправдание в характере интуитивной очевидности, которой обладает это положение механики. С чисто математической стороны этот принцип, по сравнению с постулатами и общими теоремами, уже ранее установленными, не дает чего-либо нового, так как по существу он сводится к номинальному истолкованию основных уравнений (8). Но с теоретической точки зрения и для исследования механических задач принцип Даламбера представляет значительный интерес, поскольку он позволяет свести постановку какого угодно динамического вопроса к статическому вопросу. Составление уравнений движения материальной системы для какой-либо динамической задачи при помощи принципа Даламбера сводится к составлению уравнений равновесия соответствующей статической задачи.  [c.267]

Аналогичные обстоятельства имеют место и для любой системы S, находящейся под действием двусторонних связей, не только кинематических, но также и динамических. Сервомоторные силы Фисами по себе, как предназначенные для осуществления связей, принадлежат к классу реакций связей, в постановке же задачи о движении они должны быть причислены к прямо приложенным силам (аналогично tomj , как это делается в случае пассивных сопротивлений и трения). Таким образом, мы должны рассматривать систему как подчиненную только обычным связям (геометрическим и кинематическим) и движущуюся под действием всех активных сил F и сервомоторных сил Ф-. Следовательно, общее уравнение  [c.319]

Если за основные неизвестные принимаются углы Эйлера б, <в, I, определяющйе относительно неподвижных осей, проходящих через точку О, положение неизменяемой части 5, то векторы ы К могут быть выражены в функциях от 6, , ф и от их первых производных. То же самое можно сказать и о векторе М, если мы ограничимся случаем (который не является наиболее общим из возможных), когда внешние силы, предполагающиеся заданными, зависят от положения и состояния движения одной только твердой части S. Остается еще гиростатический момент х, который выражает влияние циклических движений уравнение (47) или равносильное ему уравнение (47 ) уже не будет достаточным для постановки задачи о движении системы S до тех пор, пока не удастся каким-нибудь способом определить вектор X. для чего, вообще говоря, требуется изучение механического поведения частей S системы S- Рассмотрим пока частный случай, пригодный для интересных приложений, когда задача упрощается, поскольку сами предположения позволяют заранее видеть, что гиростатический момент является постоянным, В общем случае, следуя  [c.220]

На основе изложенного может быть сформулировано обобщенное уравнение энергии с учетом различных видов теплообмена (лучеиспускание, конвекция, теплопроводность), связанных с движением среды, наличием источников и стоков тепла, нестаци-онарности режима и работы объемных сил и сил трения. Задача о лучистом теплообмене, таким образом, является частным случаем этой весьма широкой постановки вопроса. Определение отдельных функций, входящих в общее уравнение энергии, строго математическим путем пока представляет непреодолимые трудности. В частности, при решении задач по лучистому теплообмену необходимо знать температурное поле и поле коэффициентов поглощения. Первое из них является результатом одновременно протекающих процессов тепловыделения и теплоотдачи, связанных с процессами горения и движения среды, т. е. с явлениями как кинетического, так и диффузионного характера, чаще всего не поддающихся точному математическому описанию.  [c.198]

В существующих решениях используются в основном прямые методы учета излучения, заключающиеся в следующем лучистая составляющая, взятая в форме выражения для результирующей плотности излучения, включается в уравнение энергии, которое рассматривается совместно с уравнениями движения и неразрывности при соответствующих граничных условиях для вычисления температурного поля. Наиболее полно такая постановка задачи сформулирована Е. С. Кузнецовым [2]. Прямые методы, применяемые обычно для ламинарного пограничного слоя, приводят к необходимости решать сложные нелинейные интегродифферен-циальные уравнения, что практически, в общем случае, не представляется возможным. К одной из первых попыток учета излучения движущихся газов следует отнести работу М. Т. Смирнова [3]. Наиболее полно идеи этого метода развиты В. Н. Адриановым и С. Н. Шориным [4]. В работе последних рассматривается движение серого излучающего нетеплопроводного газа в канале заданной конфигурации. Задача сводится к нелинейному дифференциальному уравнению простейшего типа, которое берется в квадратурах. Вычисляются температурное распределение в потоке и некоторые теплообменные характеристики, применяемые в теплотехнических приложениях.  [c.133]

Вычислительные аспекты. Решение задач современной астродинамики и космической техники немыслимо без расчетов, проводимых с помощью электронных вычислительных машин. К сожалению, теория и применение программирования для ЭВМ и диагностических методов зачастую игнорируются специалистами, формулируюш ими задачу для решения, хотя машинное время, затрачиваемое на решение сложной задачи, и точность решения обычно крайне чувствительны к самой постановке задачи. Опыт, накопленный в ходе решения траекторных задач на ЭВМ, указывает на то, что годографическая формулировка задачи значительно больше способствует эффективному решению при данной совокупности методов программирования, чем обычная обш епринятая постановка. Некоторые из основных причин такого положения можно, по крайней мере в общих чертах, понять на примере сравнения следующих альтернативных уравнений движения в двумерном пространстве, записанных соответственно в обычном и в годографическом виде  [c.66]


Уравнения неустановившегося движения воды в открытых руслах были впервые выведены А. Сен-Венаном в 1871 г. Общий анализ гидравлической постановки задач движения воды в открытых руслах, во многом непревзойденный до сих пор, был дан затем Буссинеском в упомянутом уже на стр. 72 трактате, опубликованном в 1877 г.  [c.84]

На самом деле, как показывают многочисленные исследования, турбулентное движение, как бы ни было оно сложно по своей внутренней структуре, подчиняется общим законам динамики непрерывной среды, в частности установленным в предыдущей главе уравнениям динамики вязкой сжимаемой или несжимаемой жидкости в нестационарной их форме. В то же время не имеет смысла точная постановка вопроса о разыскании решений этих уравнений при строго поставленных начальных и граничных условиях. Де 1Ствительно, в обстановке неограниченного роста сколь угодно малых возмущений самые ничтожные отклонения от поставленных граничных и начальных условий (неточности в изготовлении поверхности обтекаемого тела, предыдущая история потока и др.) могут привести к столь значительным изменениям решений уравнений, чго за ними исчезнут все достоинства строгой постановки задачи. Пользоваться упрощенной геометризацией формы обтекаемых тел или каналов и не учитывать наличия начальных возмущений в потоке можно лишь в тех случаях, когда поток устойчив и существует уверенность, что сделанные малые ошибки в постановке задачи приведут к столь же малым ошибкам в ее пешении это и делалось ранее при рассмотрении ламинарных движений. Для исследования турбулентных движений приходится применять  [c.582]

Исключение давления и плотности из уравнений движения. Представляет определенный интерес задача об исключении р, р и 5 из системы уравнений (35.1) — (35.4) и выяснения посредством этого условий существования и единственности поля скоростей произвольного движения жидкости. В обще й постановке эта задача была ращена недавно Бер-кером ), однако из-за сложности исследуемого вопроса мы рекомендуем читателю по поводу общей задачи обратиться к первоисточнику. В работе Беркера получено также несколько новых точных рещений.  [c.170]

В общем случае изучение механических процессов в начально-деформированных телах необходимо проводить в рамках нелинейной теории упругости. Однако, множество процессов, происходящих в начально-деформированных телах, можно рассматривать в рамках линеаризованной теории наложения малых деформаций (возмущений) на конечные деформации (начальное состояние) в предположении, что возмущения малы. Традиционно [30, 41, 42] различают три состояния тела естественное (ненапряженное) состояние (ЕС), начально-деформированное состояние (НДС) и актуальное (возмущенное по отношению к НДС) состояние. При этом особое значение приобретает выбор системы координат, которая может быть связана либо с естественной конфигурацией (система координат Лагранжа или материальная система координат), либо с актуальной конфигурацией (система координат Эйлера) [30, 41, 42]. Линеаризованные уравнения движения существенным образом зависят как от выбора системы координат, так и от выбора определяющих соотношений, поскольку имеет место возможность определения напряженного состояния различными тензорами (Коши, Пиола, Кирхгофа и т.д.) и множественность их представления через меры деформации (Коши-Грина, Фингера, Альманзи) или градиент места. Более детально с особенностями постановки задач для преднапряженных тел можно ознакомиться в монографиях А. И. Лурье [41], А. Лява [42] и А. Н. Гузя [30].  [c.290]

Очевидно, что неразрушающие механические испытания могут быть только контактными с применением гладких штампов, поскольку наличие острых кромок неизбежно приведет к появлению необратимых деформаций и, возможно, разрушению. Если по постановке задачи необходимо контролировать (задавать) перемещения, то жесткость штампа должна намного превышать жесткость исследуемого тела. Следовательно, математические модели механических неразрушающих испытаний приводят к контактным задачам с жестким индентором (штампом) с неизвестной заранее областью контакта и неизвестными усилиями контактного взаимодействия. Эти модели, помимо обычных дифференциальных уравнений равновесия (или движения) в области, занимаемой деформируемым телом, и граничных условий в виде равенств, содержат условия в форме неравенств. Неравенства, которым подчиняются искомые функции, отражают требование непроникания граничных точек одного тела внутрь другого, а также условие неположительности нормального давления — отсутствия растягивающих усилий в области контакта. Следовательно, задача идентификации в указанной выше постановке в общем случае сводится к минимизации функции цели при ограничениях в форме неравенств.  [c.477]

Сформулируем теперь граничные условия в начальном переходном сечении x =0 между тупым носком и боковой поверхностью. Точный учет этих условий приведет, по существу, к общему закону лодобия (см. гл. 4). Поэтому для ослабления требований в соответствии с общей постановкой задачи 11.1 удовлетворим при х = 0 лишь интегральным уравнениям количества движения в проекции на оси х, г, которые в переменных (11.5.2) примут вид  [c.274]

Постановка задачи, уравнения движения. Пусть две мате-эиальные точки Mi и М2, массы которых равны единице и /i (/i <С 1), описывают круговые орбиты под действием сил ньютоновского притяжения вокруг общего центра масс О в плоскости ОХ1Х2. Пусть ОМ2 = Ь, OMi = fib, а угол а между осью OXi и ОМ2 меняется но закону OL = fi) , ио 1 = fb , где / — гравитационная посто-  [c.386]

В наиболее общей постановке задачи, когда расс.матривают-ся все уравнения исходной системы (7.1) —(7.15), теоретический расчет дисперсного режима выполнен авторами применительно к нестационарному охлаждению вертикальных трубопроводов жидким недогретым азотом при подъемном и опускном движении в широком диапазоне изменения массовой скорости, давления, температуры стенки и недогрева жидкости.  [c.219]


Смотреть страницы где упоминается термин Постановка задачи. Общие уравнения движения : [c.401]    [c.38]    [c.191]    [c.12]    [c.44]    [c.12]    [c.145]    [c.464]   
Смотреть главы в:

Небесная механика Аналитические и качественные методыИзд.2  -> Постановка задачи. Общие уравнения движения



ПОИСК



656 —• Постановка задачи

Движения общие уравнения

Задача общая (задача

Задача п тел уравнения движения

К постановке зг ачи

Общая постановка задачи

Общие уравнения

Постановка задачи и уравнения движения



© 2025 Mash-xxl.info Реклама на сайте