Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка задачи и уравнения движения

Постановка задачи и уравнения движения. Рассмотрим простейшую схему зависимой передней подвески автомобиля (рис. 6.36), когда центр тяжести подвески находится на одинаковом расстоянии от колес, подвеска динамически симметрична относительно своего центра тяжести, колеса полностью сбалансированы, их средние плоскости всегда параллельны и оси шкворней установлены вертикально.  [c.397]


Постановка задачи и уравнения движения. Рассмотрим модель автомобиля, движущегося по горизонтальной плоскости Оху вдоль оси Оу, Модель состоит из кузова, жестко скреплен-  [c.410]

Постановка задачи и уравнения движения  [c.210]

ПОСТАНОВКА ЗАДАЧИ И УРАВНЕНИЯ ДВИЖЕНИЯ  [c.211]

Постановка задачи, вывод уравнения движения и рассмотрение случая малых колебаний математического маятника были даны уже ранее в 112. В 117 было доказано, что вопрос о движении физического маятника сводится к задаче о математическом маятнике эквивалентной длины.  [c.493]

В случае динамической постановки задачи система уравнений движения и условие несжимаемости обращаются в замкнутую систему для вектора скорости v и среднего напряжения а, если использовать вытекающие из (18.2) и (18.17) выражения напряжений через v w. а  [c.188]

В наиболее общем случае, когда нельзя ничего заранее сказать о симметрии задачи, ее решение весьма затруднено. Общая постановка задачи и ее математическое описание известны и даны, например, в [54]. Для составления основных уравнений используются известные законы газо- и термодинамики. Система уравнений включает уравнения неразрывности, движения частиц жидкости и газа, баланса энергии, диффузии, теплопроводности, а также условия на границе раздела двух сред. Эти уравнения громоздки, и мы их здесь не приводим.  [c.18]

В настоящее время стало ясным, что основные проблемы внутреннего строения звёзд и проблемы выяснения грандиозных удивительных явлений, наблюдаемых в переменных звёздах, связаны тесным образом с исследованием проблем газовой динамики. В излагаемой теории даны новые рациональные постановки задач и точные решения уравнений адиабатических движений газа и уравнений равновесия газа с учётом эффектов излучения. Соответствующие идеализированные случаи движения или равновесия газа можно в некоторых случаях рассматривать как схематические процессы, моделирующие действительные газодинамические эффекты в звёздах. Они могут служить источником для получения представления о возможных механизмах вспышек звёзд, пульсаций звёзд, о внутреннем строении звёзд и о влиянии различных физических факторов, связанных с выделением и поглощением энергии внутри звёзд, роли переменности плотности, о влиянии тяготения, о возможных движениях, обусловленных отсутствием начального равновесного распределения давлений, и т. п.  [c.9]


Рассмотрим получение вариационно-матричным способом канонической системы дифференциальных уравнений для решения задач устойчивости н колебаний. При получении разрешающих уравнений будем считать, что в исходном невозмущенном состоянии оболочка напряжена, но не деформирована. Исходное напряженное состояние определяется решением- задачи статики в линейной постановке. При составлении уравнений движения в окрестности исходного состояния будем учитывать начальное напряженное состояние. В деформационных соотношениях кроме линейных составляющих будем учитывать нелинейные слагаемые, связанные с дополнительными углами поворота нормалей. При решении задач рассмотрим только осесимметричное начальное напряженное состояние. Будем считать, что действующие на конструкцию внешние нагрузки при движении системы не изменяются ни по величине, ни по направлению. В целом систему, включая внешние нагрузки и условия связи, будем считать консервативной. Исследование движения системы относительно начального состояния проведем без учета демпфирующих свойств.  [c.156]

Динамика отдельного включения в жидкости. В п. 1 получены основные уравнения стационарного одномерного движения жидкости с твердыми частицами, окруженными паровыми оболочками и имеющими температуру, которая превышает температуру насыщения пара несущей жидкости. Для замыкания системы (1.12) необходимо задать уравнения состояния фазы и определить интенсивности фазовых превращений, т.е. изучить процессы силового, массового и энергетического взаимодействия отдельного включения и жидкости. В этой связи рассмотрим задачу о динамике паровой оболочки около нагретой твердой частицы, помещенной в жидкость (полная постановка задачи и ее обсуждение приведены в [8]).  [c.732]

Условимся среди всех чисел подобия (39) особо выделять составленные только из тех масштабов сравниваемых потоков и физических констант среды, которые заключаются в постановке задачи об определении движения, т. е. наперед заданы. Одинаковость таких чисел подобия обусловливает подобие двух сравниваемых течений, и поэтому сами числа могут быть названы критериями подобия. Критериев подобия меньше, чем чисел подобия для соответствующего класса течений, так как не все масштабные величины, введенные при составлении безразмерных уравнений и граничных и начальных условий, на самом деле могут быть заданы наперед. Значения некоторых из них определяются только после того, как будет получено единственное решение данной конкретной задачи. Отсюда следует, что число достаточных условий, представленных системой равенств вида (40), будет меньше общего числа необходимых условий.  [c.369]

В самом деле, если справедливы уравнения совместности (8.1) и уравнения движения (8.2), то отсюда немедленно следует справедливость уравнений (8.10) и (8.7). Пусть теперь дана новая постановка задачи (8.10), (8.8), (8.7), (8.9).  [c.66]

При получении разрешающих уравнений будем считать, что в исходном невозмущенном состоянии оболочка напряжена, но не деформирована. Исходное напряженное состояние определяется решением задачи статики в линейной постановке. При составлении уравнений движения в окрестности исходного состояния будем учитывать начальное напряженное состояние. В деформационных соотношениях кроме линейных составляющих будем учитывать нелинейные слагаемые, связанные с дополнительными углами поворота нормалей. При решении задач рассмотрим только осесимметричное начальное напряженное состояние. Будем считать, что действующие на конструкцию внешние нагрузки при движении системы не изменяются ни по величине, ни по направлению. В целом систему, включая внешние нагрузки, поведение материала и условия связи, будем считать консервативной.  [c.230]

ПОСТАНОВКА ЗАДАЧИ, СИСТЕМЫ КООРДИНАТ И УРАВНЕНИЯ ДВИЖЕНИЯ  [c.80]

Исходная система уравнений и постановка задачи. Определяющие вращательное движение и ориентацию твердого тела уравнения запишем в переменных, соответствующих структуре системы (2.5.5)  [c.154]


Приведенные в книге примеры подтверждают важность методов аналитической механики для самых различных приложений показать это являлось одной из целей, которую ставил перед собой автор книги. При рассмотрении примеров на первый план выдвигалась постановка задачи и составление уравнений движения интегрированию их и исследованию результатов уделено меньше места.  [c.10]

Обсудим теперь некоторые обобщения, связанные с усложнениями постановки задачи и с модификациями методов исследования для проблем об оптимальном управлении. Почти везде выше речь шла о задачах, содержащих условия минимума (или максимума) величин I, являющихся интегралами от функций, заданных на движениях х (i) и управлениях и (t), или являющихся функциями от конечных (или промежуточных) величин X (t) и и (i). Между тем в прикладных задачах об управлении нередко возникают проблемы типа минимакса. Примером такой математической проблемы может служить следующая задача на движениях системы, описываемой уравнением  [c.213]

В конкретной задаче о движении газа дифференциальные уравнения (7.10) и соотношения (7.15) на возможных внутри области течения поверхностях разрыва параметров газа должны быть дополнены условиями, позволяющими выделить отыскиваемое движение из всей совокупности возможных движений. Как правило, эти условия вытекают из физической постановки задачи, и их формулировка не вызывает значительных трудностей.  [c.141]

ОБОБЩЕННАЯ ПОСТАНОВКА ЗАДАЧИ И ПОДХОД К ЕЕ РЕШЕНИЮ. Рассмотрим управляемое движение объекта, описываемое системой нестационарных нелинейных дифференциальных уравнений обШ его вида  [c.356]

Движение тел в газах с большими сверхзвуковыми скоростями сопровождается интенсивным аэродинамическим нагреванием обтекаемой поверхности и ее термохимическим и/или термомеханическим разрушением. В общем случае возникает сложная задача совместного решения уравнений газовой динамики с учетом физикохимических процессов в потоке газа и толще материала стенки тела и уравнений движения тела по траектории с переменными коэффициентами аэродинамических сил и моментов, а также с переменными геометрическими размерами и массой. В случае умеренной интенсивности разрушения оказывается возможным существенно упростить проблему, считая обтекание квазистационарным при этом аэродинамические коэффициенты и процесс разрушения поверхности определяются мгновенными значениями параметров движения и состояния тела. Однако и в этом случае задача об изменении формы тела за счет уноса материала в точной постановке содержит в качестве составных элементов несколько самостоятельных задач математической физики (обтекания тела, определения тепловых потоков через пограничный слой, распространения тепла в теле и т.д.) для замкнутых групп уравнений, связанных между собой через граничные условия. Математические свойства таких комплексных задач еще мало исследованы, и обозримые результаты получены лишь при использовании ряда существенно упрощенных математических моделей.  [c.188]

Математическая постановка и решение задачи о движении несферического пузырька газа в жидкости могут быть осуществ-.лены для случая слабодеформированного пузырька. Сформулируем основные предположения. Будем считать, что Re 1, т. е. течение жидкости является ползущим . Пузырек газа свободно всплывает в жидкости под действием силы тяжести с постоянной скоростью и. Поместим начало координат в центр массы пузырька. Течение жидкости и газа будем считать осесимметричным. Уравнения движения жидкости вне пузырька и газа внутри пузырька будут иметь вид (2. 2. 7). Слабая деформация пузырька может быть описана при помощи малой безразмерной величины С ( os 0), так что уравнение формы поверхности примет вид  [c.65]

Функции, включающие в себя постановку задачи о движении механических систем, называют характеристическими. Очевидно, что одной из них является функция Лагранжа. Эта функция включает в себя понятия кинетической и потенциальной энергий, поэтому уравнения движения (61.14) носят энергетический характер.  [c.87]

Естественная постановка задачи для выяснения этого вопроса состоит в следующем- пусть в начальный момент времени (/ = 0) создано изотропное турбулентное движение, в котором функции bik r,t) и bik,i r,i) экспоненциально убывают с расстоянием. Выразив давление через скорости по написанной формуле, можно затем с помощью уравнений движения жидкости пытаться определить характер зависимости производных по времени от корреляционных функций (в момент t = 0) от расстояния при г- оо. Тем самым определится и характер зависимости от г самих корреляционных функций при t > 0. Такое исследование приводит к следующим результатам ).  [c.202]

Из постановки этих двух основных задач динамики непосредственно следует, что из трех переменных, входящих в формулу (2) второго закона (масса, кинематика движения, сила), задаются только две масса и кинематические уравнения движения— в первой задаче динамики, масса и сила —во второй. Это говорит о том, что второй закон Ньютона, выраженный векторной формулой (2) или аналитически системой (7), не является тождеством (определением понятия силы), а представляет собой уравнение с неизвестным вектором силы F (первая задача динамики) или вектор-радиусом r t) (вторая задача динамики).  [c.20]

Изучением движения снаряда в воздухе занимается внешняя баллистика. В настоящем параграфе мы рассмотрим основную задачу внешней баллистики в схематизированной и упрощенной постановке. Отвлекаясь от влияния формы снаряда и его вращения, от изменения плотности воздуха с высотой полета снаряда, от влияния вращения Земли, скорости ветра и многих других факторов, рассматриваемых во внешней баллистике, примем снаряд за материальную точку М массы т, совершающую движение под действием двух сил (рис. 242) силы тяжести G = mg и силы сопротивления воздуха D, направленной по касательной к траектории снаряда в сторону, противоположную движению, и являющейся заданной функцией скорости v эту функцию обозначим через mf(v). Естественные уравнения движения снаряда будут иметь вид  [c.47]


Во второй части учебника изложены основные положения динамики стержней, дан вывод уравнений движения стержней в линейной и нелинейной постановке приведены уравнения малых колебаний пространственно-криволинейных стержней с изложением численных методов определения частот и форм колебаний. Большое внимание уделено неконсервативным задачам с изложением методов исследования динамической устойчивости малых колебаний. Рассмотрены параметрические и случайные колебания стержней. Приведены примеры численного решения прикладных задач с использованием ЭВМ.  [c.2]

В предлагаемом курсе основное место отведено математической постановке задач, анализу дифференциальных уравнений равновесия и движения и их решению, общим и частным методам их интегрирования. Некоторые конкретные задачи, имеющие принципиальное значение, проиллюстрированы числовыми примерами.  [c.4]

Отметим два приближенных подхода. Первый связан с линеаризацией уравнений движения, которые затем удается проинтегрировать и получить выражение для сопротивления тела в виде некоторого функционала от формы контура. Другой подход основан на применении приближенных формул для давления на поверхности, полученных на основе элементарных представлений для больших сверхзвуковых скоростей (М 1). Обычно для этих целей используются законы сопротивления Ньютона и Буземана [1,2. Для наиболее интересных видов ограничений и произвольной толш ины тел уравнение контура находится в конечном виде. Дальнейшее упрош ение для тонких тел не является необходимым, а иногда [3] вводится лишь для сокра-ш ения вычислений. Ко второму направлению относится значительно больше работ, чем к первому. В частности, первая задача в такой постановке рассмотрена еш е Ньютоном [4]. Однако в работах этого направления об-раш ается недостаточное внимание на то, что контур тела минимального сопротивления в обш ем случае состоит из участков двустороннего экстремума ( экстремалей") и из участков краевого экстремума. Последние являются границами области допустимого изменения параметров и определятся постановкой задачи и областью применимости приближенных формул. Игнорирование этого приводит к возникновению онределенных трудностей, а также к потере некоторых решений.  [c.381]

Хотя возраст теории устойчивости соразмерен с возрастом теории дифференциальных уравнений, лищь в 1892 г. благодаря Ляпунову она получила наиболее общую постановку и, главное, весьма мощные и математически строгие методы исследования. В приложениях постановка задачи об устойчивости движения, принадлежащая Ляпунову, и методы, созданные им, оказались весьма удачными и эффективными.  [c.829]

В строгой постановке задачи решения уравнения Дирака для электрона во внешнем магнитном поле должны быть разделены по состояниям спина. Это требует введения специального оператора, характеризующего лроекцию спина частицы и коммутирующего с оператором Гамильтона (интеграл движения)  [c.73]

Опыт лежит в основании законов механики решения конкретных задач прямо или косвенно проверяются опытным путем. Но опыт, кроме того, во многих случаях позволяет сформулировать постановку задачи и внести в нее разумные упрош,ения. В результате наблюдений над каким-нибудь явлением (движением какого-либо объекта) мы можем получить предварительные сведения ( предварительную информацию ). Это дает нам возможность уяснить себе в общих чертах характер движения. Так, например, наблюдения над движениями небесных тел показывают, что их движения не вполне точно согласуются с законами Кеплера налицо малые отклонения от основного кеплеровского движения. Движение какой-либо системы может оказаться наложением колебательного, близкого к периодическому, движения на некоторое среднее движение. Амплитуды колебаний могут либо сохранять свою величину в течение достаточно продолжительного времени, либо заметно затухать. Наблюдение за движением волчка указывает нам на стабилизирующее значение быстрого собственного вращения и т. п. Подобная предварительная информация позволяет в ряде случаев сравнить величины членов в уравнениях движения и, отбрасывая второстепенное, выделить главное. Таким образом, выделяется основное — невозл /ы<е ное — состояние движения (это может быть, в частности, состояние покоя), на которое накладываются возмущения. Подобное выделение имеет смысл, если сами возмущения (приращения координат точек и приращения скоростей) численно малы ).  [c.427]

В монографии последовательно изложены теоретические основы, необходимые для понимания и расчета движения гетерогенных или многофазных смесей в различных ситуациях. Такие смеси широко представлены в различных природных процессах и областях человеческой деятельности. Подробно изложены вопросы вывода уравнений движения, реологии и термодинамики гетерогенных сред. Для этого рассмотрены как феноменологический метод, так и более глубокий метод осреднения. Получены замкнутые системы уравнений для монодпсперсных смесей с учетом вязкости, сжимаемости фаз, фазовых переходов, относительного движения фаз, радиальных пульсаций пузырей, хаотического движения и столкновений частиц и других эффектов. Рассмотрены уравнения и постановки задач применительно к твердым пористым средам, насыщенным жидкостью. Описаны имеющиеся в совремеввой литературе решения задач о движении и тепло- и массообмене около капель, частиц, пузырьков.  [c.2]

Это означает, что для существования потенциального решения, описывающего микродвил ение несущей жидкости в ячейке в постановке задачи (3.5.1) —(3.5.5), необходимо и достаточно, чтобы осредненное (макроскопическое) движение несущей фазы было потенциальным или близким к нему. В этом случае значения v в решении (3.5.11), (3.5.12) определяются через характеристики среднего движения согласно условию (3.5.14), которое с учетом первого уравнения (3.2.23) при аа <С 1, "С г , rfjpi/rfi = О можно представить в виде  [c.146]

Рассмотрим постановку и решение задачи об относительном движении и коалесценции двух пузырьков газа в слабовязкой жидкости в соответствии с [551. Прежде чем перейти к теоретическому анализу коалесценции пузырьков, запишем систему уравнений для относительного движения двух пузырьков близких размеров, используя обозначения, введенные в разд. 2.10  [c.150]

Несколько изменим постановку задачи, приблизив ее к изучаемой проблеме. Пусть осциллятор находится в равновесии с электромагнитным полем равновесного излучения, изотропно заполняющим при некоторой температуре замкнутую полость. Тогда осциллятор будет совершать не свободные, а вынужденные колебания, т.е. он не только излучает энергию, но и поглощает ее из окружающего пространства. Для простоты будем рассматривать колебания зарядов под действием монохроматического излучения частоты m. В этом случае вынуждающую силу запишем как реальную часть Re F t) = Re qEox e " == qEox os at. Тогда уравнение движения имеет вид  [c.418]

В настоящем курсе мы можем лишь вкратце объяснить постановку задач динамики ракет и осветить некоторые выводы из решений этих задач, иолноетью оиуекая вопросы численного интегрирования основных дифференциальных уравнений движения ракет.  [c.123]

В противоположность гидравлик теоретическая гидромеханика имела строго математический характер и при решении задач исходила из дифференциальных уравнений движения > идкости. Гидромеханика преследовала строгость постановки задачи, точность получаемых решений и стремилась обойтись без опытных данных. Однако не всегда оказывалось возможным получить решения уравнений гидромгханики, а в ряде случаев полученные решения, несмотря на свою строгость и общность, не давали достаточного совпадения с опытными данными. Гидромеханика часто не могла дать ответа на насущные задачи инженерной практики.  [c.8]



Смотреть страницы где упоминается термин Постановка задачи и уравнения движения : [c.11]    [c.148]    [c.224]    [c.556]    [c.87]    [c.111]   
Смотреть главы в:

Небесная механика Аналитические и качественные методыИзд.2  -> Постановка задачи и уравнения движения



ПОИСК



656 —• Постановка задачи

Движение изменяемого твердого тела (Уравнения Лиувилля) Обобщенная задача о движении неголономного шара Чаплыгина Движение шара по сфере Ограниченная постановка задачи о вращении тяжелого твердого тела вокруг неподвижной точки Неинтегрируемость обобщенной задачи Г. К. Суслова Движение спутника с солнечным парусом

Задача п тел уравнения движения

К постановке зг ачи

Постановка задачи, системы координат и уравнения движения

Постановка задачи. Нелинейные уравнения движения

Постановка задачи. Общие уравнения движения

Постановка задачи. Различные формы дифференциальных уравнений движения

Уравнения движения. Потенциальные функции. Постановка задач динамики



© 2025 Mash-xxl.info Реклама на сайте