Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Замкнутые полости

При прессовании металл выдавливается из замкнутой полости через отверстие, соответствующее сечению прессуемого профиля (см. рис. 3.1, б). Этим процессом изготовляют не только сплошные профили, но и полые (рис. 3.48, а). В этом случае в заготовке необходимо предварительно получить сквозное отверстие. Часто отверстие прошивают на том же прессе. В процессе прессования при движении пуансона / с пресс-шайбой 5 металл заготовки 2 выдавливается в зазор между матрицей 3 и иглой 4. Прессование по рассмотренным схемам называется прямым. Значительно реже применяют обратное прессование, схема деформирования которого сходна со схемой обратного выдавливания.  [c.115]


В термометрии излучения в отличие от термометрии, основанной на применении термопары или термометра сопротивления, можно использовать уравнения в явном виде, которые связывают термодинамическую температуру с измеряемой величиной (в данном случае со спектральной яркостью). Это возможно потому, что тепловое излучение, существующее внутри замкнутой полости (излучение черного тела), зависит только от температуры стенок полости и совсем не зависит от ее формы или устройства при условии, что размеры полости намного больше, чем рассматриваемые длины волн. Излучение, выходящее из маленького отверстия в стенке полости, отличается от излучения черного тела лишь в меру того, насколько сильно отверстие нарушает состояние равновесия в полости. В тщательно продуманной конструкции это отличие может быть сделано пренебрежимо малым, так что равновесное излучение черного тела становится доступным для измерений. Таким образом, методы термометрии излучения позволяют в принципе измерить термодинамическую температуру с очень высокой точностью, что будет кратко рассмотрено в разд. 7.7.  [c.309]

Происходящих на стенках. Излучение внутри замкнутой полости находится в тепловом равновесии со стенками, т. е. должно существовать равновесие между испущенным и поглощенным излучением. Процессы, протекающие на атомном уровне при испускании и поглощении излучения в замкнутой полости, впервые были рассмотрены Эйнштейном в 1917 г. Он считал, что вероятность перехода атома из данного энергетического состояния в более низкое энергетическое состояние с испусканием фотона имеет вид  [c.321]

Выше было показано, что плотность излучения замкнутой полости зависит только от температуры стенок и совершенно не зависит ни от ее формы, ни от оптических свойств. Перейдем теперь к полости, применяемой на практике и имеющей в стенке небольшое отверстие, через которое излучение выпускается. Проблема состоит в том, чтобы строго вычислить, насколько это излучение отличается от излучения черного тела для данной геометрии и материала. Вопрос этот чрезвычайно  [c.326]

В гидравлических подпятниках осевую нагрузку воспринимает масляная подушка в замкнутой полости, питаемой насосом. Вал поддерживается в постоянном вертикальном положении посредством маслораспределительных устройств.  [c.422]

В гл. 1 мы указывали, что черное излучение может быть смоделировано с помощью замкнутой полости. Поэтому нам необходимо рассмотреть электромагнитное излучение в замкнутой полости.  [c.59]


Электромагнитное поле в замкнутой полости может быть интерпретировано как совокупность стоячих волн. Каждую волну можно заменить эквивалентным осциллятором, тогда энергия поля составит сумму энергий всех осцилляторов. Так как движение происходит в полости, то возникающее в результате этого излучение должно иметь температуру, равную температуре излучающих стенок. Поэтому каждый осциллятор, заменяющий стоячую волну, должен обладать энергией, зависящей не только от частоты, но и от температуры. Следует заметить, что при движении зарядов энергия зависит от времени, но нас будет интересовать не мгновенная энергия, а энергия на собственной частоте системы.  [c.59]

Вывод формулы Планка. Рассмотрим равновесную систему, состояш,ую из излучения и атомов, находяш,ихся внутри замкнутой полости с постоянной температурой стенок. Для простоты будем полагать, что атомы могут находиться в двух энергетических состояниях Ех и 2 (рис. 15.1). Пусть 1 и 2 — числа атомов, находящихся в состояниях Е-х и 2, W (V, Т) — объемная плотность излучения, Т — температура стенок полости.  [c.340]

Установим связь между испускательной способностью черного тела и спектральной плотностью равновесного излучения. Для этого подсчитаем поток энергии, падающий на единичную площадку, расположенную внутри замкнутой полости, заполненной электромагнитной энергией средней плотности t/,,. Пусть излучение падает на единичную площадку 6.S = 1 в направлении, определяемом углами О и ф (рис. 8.7) в пределах телесного угла dQ  [c.408]

Задача о конвективной неустойчивости неподвижной жидкости обладает той спецификой, что все собственные значения id) вещественны, так что возмущения затухают или усиливаются монотонно, без колебаний. Соответственно, и возникающее в результате неустойчивости неподвижной жидкости устойчивое движение стационарно. Покажем это для жидкости, заполняющей замкнутую полость, с граничными условиями (57,5) на се стенках ).  [c.312]

В природе не существует тел, совпадающих по своим свойствам с абсолютно черным телом. Тела, покрытые слоем сажи или платиновой черни, имеют поглощательную способность Л ., близкую к единице лишь в ограниченном интервале длин волн. В далекой инфракрасной области их поглощательная способность заметно меньше единицы. Однако можно создать устройство, которое по своим свойствам очень близко к абсолютно черному телу. Такое устройство представляет собой почти замкнутую полость с диффузно отражающими стенками, имеющую небольшое отверстие (рис. 24.2). Любой луч, попавший внутрь полости через отверстие, выйдет из него обратно лишь испытав многочисленные отражения. Пусть при одном падении луча на внутреннюю поверхность отражается /г-я доля светового потока. При п падениях отразится доля, выражаемая величиной Так как к всегда меньше единицы, то при достаточно большом п величина станет очень малой. Таким образом, лишь ничтожная часть лучей, упавших на отверстие, выйдет обратно и поглощательная способность отверстия будет для всех длин волн близка к единице ). Размеры отверстия, при котором полость можно считать с определенной точностью абсолютно черным телом, зависят от величины к. Так, при й=0,4 полость можно считать абсолютно черным телом с точностью до 0,1 %, если диаметр d отверстия равен 1/10 диаметра О полости. При к= та же точность обеспечивается при d D l6.  [c.134]

Выражения для коэффициентов Вп и В21 и их связь с Л21 выводятся в квантовой электродинамике на основе термодинамических соображений. Приведем здесь вывод связи между коэффициентами Эйнштейна, для чего рассмотрим замкнутую полость, стенки которой испускают и поглощают электромагнитное излучение. При статистическом равновесии излучение внутри полости характеризуется спектральной плотностью v.r, определяемой формулой Планка  [c.270]

Заметим, что в природе абсолютно черных тел, строго говоря, не существует. Достаточно хорошей моделью такого тела может служить замкнутая полость с маленьким отверстием (диаметр отверстия не должен быть больше поперечника самой полости). Излучение, попадающее через отверстие внутрь полости, практически уже не может выйти наружу и в конечном счете полностью поглощается ее стенками. Модель абсолютно черного тела показана на рис. 2.1 именно такие устройства использовали в опытах с абсолютно черным телом.  [c.38]


Задолго до создания лазеров были хорошо изучены типы колебаний в объемных резонаторах, широко используемых в сантиметровом диапазоне длин волн. Идеальный объемный резонатор представляет собой замкнутую полость с идеально проводящими стенками, в которой может находиться непоглощающая среда. Электромагнитное поле в таком резонаторе можно получить путем решения уравнений Максвелла с соответствующими граничными условиями. В результате оказывается, что поле в резонаторе может быть представлено как суперпозиция отдельных типов колебаний, или мод резонатора. Напряженность поля каждой моды изменяется гармонически во времени и имеет вид  [c.282]

Для доказательства (13.26) рассмотрим процесс теплообмена между двумя абсолютно черными телами малым диском (тело 1), который расположен внутри большой замкнутой полости, и замкнутой полостью (тело 2). Пусть оба тела имеют одинаковую температуру, а в полости поддерживается вакуум. В указанных условиях теплообмен между телами / и 2 может осуществляться только излучением. Если черное тело 1 излучает R теплоты (энергии излучения), то столько же R ) оно должно поглощать. В противном случае температура тела / становилась бы либо больше, либо меньше начальной. Самопроизвольное изменение температуры тел, составляющих изолированную изотермическую систему, в соответствии со вторым законом термодинамики невозможно.  [c.282]

Центр сечения вала несколько сдвинут относительно оси вращения. При вращении винта в цилиндрической обойме, которая имеет профилированную внутреннюю винтовую поверхность, образуются замкнутые полости, заполняемые жидкостью. Создается непрерывное перемещение замкнутых полостей с находящейся в них жидкостью вдоль оси винта. Таким образом происходит перекачка жидкости винтовым насосом.  [c.209]

Основными частями этого тензометра являются металлические гофрированные коробки (сильфоны 1, 2), образующие замкнутую полость, сообщающуюся с капилляром 3. Полость между сильфонами заполнена жидкостью. При удлинении образца объем полости увеличивается и уровень жидкости в капилляре понижается на величину h.  [c.468]

Рассмотрим теплообмен между телом и его оболочкой. На рис. 16.4,а, б представлены следуюш,ие системы двух тел тело I находится в замкнутой полости тела 2, тело 2 охватывает плоское или выпуклое тело 1.  [c.412]

В процессах теплообмена, протекающих в условиях естественной конвекции в замкнутых полостях, толщина пограничного слоя становится соизмеримой с размерами пространства, в котором протекает процесс, поэтому упрощающие предположения, принятые при выводе уравнений пограничного слоя, становятся неприемлемыми. При анализе процессов переноса теплоты через прослойки и щели различной формы приходится рассматривать полную систему уравнений (2.52)-(2.55), которая для этих условий  [c.119]

Для характеристики теплового излучения удобным оказалось понятие абсолютно черного тела (АЧТ), т. е, тела, поглощающего все попадающее на него излучение. Излучение АЧТ описывается аналитически, оно является функцией только его температуры. Физической моделью АЧТ может служить замкнутая полость с отверстием, значительно меньшим ее габаритов.  [c.118]

Третья стадия — герметизация зон —. характеризуется наибольшей величиной уплотнения. На поверхности зоны образуется сплошная пленка расплава, каналы разобщаются и превращаются в замкнутые полости. Пористость внутри зоны снижается до 5—20 %. Формируется краевой угол растекания расплава по подложке. Резко уменьшается микрошероховатость. Слой покрытия в пределах зоны утрачивает газопроницаемость по механизму фильтрации, поэтому выделение газа из подложки либо образование его на межфазной границе приводит к возникновению газовых включений. Характерный интервал вязкости этой стадии 10 —10 П.  [c.30]

Примером такого задания могут быть граничные условия для тела, полностью заполняющего замкнутую полость в бесконечно жестком массиве и во всех точках поверхности приклеенного к массиву абсолютно прочным и неподатливым клеем (рис. 9.2). Если изменить температурное поле такого тела, то в нем возникнут напряжения, точки внутри  [c.613]

Смазка подшипников возбудителя осуществляется разбрызгиванием. Для контроля за уровнем масла служит обыкновенный щуп. Замкнутая полость регулировочного механизма, размещенная в главном валу, заполняется солидолом при сборке. Максимальное усилие Рш х, развиваемое каждым шатунно-кривошипным возбудителем, зависит от грузоподъемности шатунного подшипника Рп и коэффициента эффективности Кэ- шах =  [c.111]

При изготовлении узлов и деталей и их монтаже должна быть исключена возможность отложения органических соединений на поверхностях, соприкасающихся с теплоносителем, а также остатков промывочных жидкостей в замкнутых полостях. Эксплуатация должна производиться с обязательным условием отсутствия контакта теплоносителя при любых ситуациях с органическими жидкостями (спиртом, маслами и т. д.). При невысоких температурах в качестве разделительных жидкостей возможно применение фторированных органических соединений (типа М-1, М-2 и т. д.). Однако при попадании  [c.35]

Широко распространена также гипотеза, связывающая облегчение разрушения с молизацией водорода в замкнутых объемах металла, которые представляют собой различные поры, микротрещины, газовые пузыри и пр. Возникающее при этом давление водорода в замкнутой полости способствует образованию напряжений в микрообъемах металла. Эти напряжения суммируются с напряжениями, возникающими от приложенных извне сил, и разрушение наступает при меньшей внешней нагрузке [52, ВЗ].  [c.19]

НИИ поршня компрессора. От точки ад до а кривая давления верхнего воздуха изменяется по адиабате, отличающейся от предыдущей кривой адиабаты до точки ад вследствие включения замкнутой полости буфера.  [c.395]

Теоретические индикаторные диаграммы компрессорного цилиндра (фиг. 121). От точки Од до Од, ввиду того что оба поршня поднимаются, давление верхнего воздуха резко возрастает. На участке от Од до 04 идёт сжатие верхнего воздуха в замкнутой полости компрессора. В точке 04 происходит выключение буфера.  [c.395]


Таким образом, для тела, находящегося в равновесии внутри замкнутой полости, поглощательная епособность данного элемента поверхности для данной длины волны, данного состояния поляризации, данного направления в пределах данного телесного угла должна равняться излучательной способности для излучения с точно такими же параметрами.  [c.323]

Предположим, что требуется найти излучательную способность изотермической полости, показанной на рис. 7.5. Величина, которую необходимо вычислить, представляет собой отношение спектральной яркости элемента стенки А5, визируемого в Р, к спектральной яркости черного тела при той же температуре. В свою очередь поток излучения, исходящий из в направлении апертуры а, состоит из двух частей потока, излученного самим элементом А5, и лучистого потока, отраженного тем же элементом А5. Первый зависит только от коэффициента излучения стенки и ее температуры и не зависит от присутствия остальной части полости. Отраженный поток, со своей стороны, зависит от коэффициента отражения поверхности элемента А5 и от лучистого потока, попадающего на А5 из остальной части полости. На значении отраженного потока сказывается влияние а, так как лучистый поток, который в замкнутой полости пришел бы от а в направлении А5, в рассматриваемом случае отсутствует. Именно этот эффект отсутствия падающего потока от а в потоке излучения, отраженного от А5, и необходимо вычислить. Следует также учесть, что отсутствует не только лучистый поток в направлении а- А5, но и лучистый поток от а в направлении остальной части стенок полости. Таким образом, лучистый поток, поступающий в А5 от всей оставщейся части полости, является несколько обедненным. Из всего этого должно быть ясно, что расчет излучательной способности такой полости никоим образом не является тривиальной операцией. Для строгого вычисления необходимо знать в деталях геометрию полости и системы наблюдения, угловые зависимости излучательной и отражательной характеристик материала стенки полости, а также распределение температуры вдоль стенок полости. Температурная неоднородность изменяет поток излучения полости в целом так же, как и наличие апертуры, но с некоторым дополнительным усложнением, которое состоит в том, что изменение потока  [c.327]

В криосорбционной панели вакуумного насоса двойную функцию фильтра и теплового экрана 1 выполняет пористая металлокерамическая стенка (рис. 1.13). Замкнутая полость между пористым экраном 1 и профилем 2, охлаждаемым протекающей по каналу 3 криогенной жидкостью, заполнена кристаллическим адсорбентом 4. Откачиваемый газ I проходит сквозь пористую стенку, в ней охлаждается и затем поглощается адсорбентом. Экран воспринимает падающий на него лучистый тепловой поток и переносимую откачивамым газом теплоту теплопроводностью передает охлаждаемому профилю. Таким образом, пористая стенка выполняет функцию тепловой защиты, препятствуя попаданию теплоты на адсорбент, и одновременно является фильтром, удерживающим мелкозернистый адсорбент от распыления по вакуумной системе. Это позволяет сделать конструкцию криосорбционного насоса высокотехнологичной и предельно компактной.  [c.16]

Подход Рэлея к изучению теплового излучения. Во всех разобранных выше случаях подход к изучению теплового излучения был термодинамическим. Рэлей в отличие от своих предшественников впервые применил методы статистической физики к явлениям теплового излучения. Равновесное электромагнитное излучение, находящееся в замкнутой полости с постоянной температурой стенок, рассматривалось им как система стоячих волн разных частот, распространяющихся во всевозможных направлениях. Частоты образовавшихся стоячих волн должны удовлетворять тем же условиям, что и частоты стоячих упругих волн в стержне. При колебаниях упругого стержня на его закрепленпых концах образуются узлы смещения и на длине стержня L укладывается целое число полуволн  [c.330]

Остановимся подробнее на понятии теплового равновесия, очень важном для последующего изложения, в значительной мере связанного с изучением энергетики п юцессов излучения и поглощения света. Для этого полезно обратиться к термодинамическому рассмотрению явлений внутри замкнутой полости. Пусть стенки этой полости полностью отражают падающий на них свет. Поместим в полость какое-либо тело, излучающее световую энергию. Внутри полости возникнет электромагнитное поле и в конце концов ее заполнит излучение, находящееся в состоянии теплового равновесия с телом. Равновесие наступит и в том случае, когда каким-либо способом нацело устранится обмен теплом исследуемого тела с окружающей его средой (например, будем проводить этот мысленный опьгг в вакууме, когда отсутствуют явления теплопроводности и конвекции). Лишь за счет процессов испускания и поглощения света обязательно наступит равновесие излучающее тело будет иметь температуру, равную температуре электромагнитного излучения, изотропно заполняющего пространство внутри полости, а каждая выделенная часть поверхности тела будет излучать в единицу времени столько энергии, сколько она поглощает. При этом равновесие должно наступить независимо от свойств тела, помещенного внутрь замкнутой полости, влияющих, однако, на время установления равновесия. Плотность энергии электромагнитного поля в полости, как показано ниже, в состоянии равновесия определяется только температурой.  [c.400]

Пусть в замкнутой полости наряду с другими телами имеется черное тело, поглощательная способность К(5торого а, = 1. Температура всех тел в состоянии равновесия одинакова. Тела, находящиеся в полости, обмениваются излучением, но этот обмен не нарушает теплового равновесия. Поэтому излучение o.dS, посылаемое внутрь полости в единицу времени каким-то участком стенки черного тела, равно излучению, поглощаемому им за то же время. Так как черное тело поглощает все падающее на него излучение, то r dS характеризует все излучение, доходящее до выделенного участка стенки от всех остальных тел, находящихся в полости. Заменим 68 другой площадкой с той же температурой, но не являющейся частью черного тела и ха-рактеризуюишйся испускательной и поглощательной aj способностями. За единицу времени эта площадка 6S по-прежнему получает излучение odS, ибо это есть излучение, приходящее от всех остальных тел, оставшееся неизменным. Из этого излучения площадка поглощает только часть, равную ai,)r t3A . За это же время она излучает поток энергии ri (3S. Так как тепловое равновесие не может нарушаться этим обменом энергий, то ai r)dS = ri dS, откуда rxJa ) г, — отношение испускательной способности к поглощательной, одинаковое для всех тел (т.е. представляет собой универсальную функци)о температуры и длины волны) и равное испускательной способности абсолютно черного тела.  [c.404]

Несколько изменим постановку задачи, приблизив ее к изучаемой проблеме. Пусть осциллятор находится в равновесии с электромагнитным полем равновесного излучения, изотропно заполняющим при некоторой температуре замкнутую полость. Тогда осциллятор будет совершать не свободные, а вынужденные колебания, т.е. он не только излучает энергию, но и поглощает ее из окружающего пространства. Для простоты будем рассматривать колебания зарядов под действием монохроматического излучения частоты m. В этом случае вынуждающую силу запишем как реальную часть Re F t) = Re qEox e " == qEox os at. Тогда уравнение движения имеет вид  [c.418]


На таком же принципе основано устройство тела, наиболее приближающегося по своим свойствам к абсолютно черному. Оно изготовляется в виде почти замкнутой полости (рис. 36.6), снабженной маленьким отверстием, диаметр которого не больще 1/10 поперечника полости, так что отверстие видно из точек стенки под телесным углом, не большим 0,01 ср. Излучение, проникающее через отверстие, падает на стенки полости, частично поглощается ими, частично рассеивается или отражается и вновь попадает на стенки. Вследствие малых размеров отверстия луч должен  [c.692]

Представим себе замкнутую полость объемом V с идеально отражающими стенками, нагретыми до температуры Т, в которой создан вакуум. Внутри полости существует электромагнитное поле. В результате отражений от стенок в полости образуется система бесконечно большого числа стоячих волн различной частоты и разного направления. Каждая такая стоячая волна представляет собой элементарное состояние электромагнитного поля. Теорема о равномерном распределении энергии утверждает, что и в этом случае при равновесии между стенками полости и электромагнитным излучением на каждую стоячую волну должна приходиться средняя энергия, равная 1гТ, где к — постоянная Больцмана. При этом, подобно то.му как средняя энергия гармонического осциллятора складывается из средней кинетической энергии, равной кТ 2, и средней потенциальной энергии, также равной кТ12, в случае электромагнитных стоячих волн полная средняя энергия кТ складывается из средних энергий электрического и магнитного полей, равных в отдельности кТ 2 каждая.  [c.138]

Закон Кирхгофа. Пусть в замкнутой полости (рис. 35) находятся два тела одно черное — А, а второе нечерное — В. При равновесии температуры тел и излучения одинаковы, а количество энергии, излучаемое за любое время единицей площади поверхности каждого тела, равно количеству энергии, поглощаемому им за то же время.  [c.210]

Пусть имеется замкнутая полость, стенки которой нагреты до некоторой температуры Т и излучают и поглощают фотоны. При излучении фотона атом переходит с более высокого энергетического уровня на более низкий энергетический уровень. При поглощении фотона наблюдается перескок атома с более низкого энергетического уроння на более высокий. Таким образом,  [c.74]

Замкнутая полость всережимпо о пневматического регулятора (рис. 5.22), изолированная от внешней среды диафрагмой 14, вакуумной трубкой 9 связана с впускным трубопроводом двигателя. Диафрагма с одной стороны опирается на пружину ]8, а с другой — связана с рейкой 12 топливного насоса. При увеличении частоты вращения коленчатого вала во впускном трубопроводе увеличивается разрежение, диафрагма под действием перепада давлений в левой (замкнутой) и правой полостях регулятора деформирует пружину 18 и перемещает рейку 12 в сторону уменьшения цикловой подачи топ.зива. Таким образом получается регуляторная характеристика 5 (с.м. рис. 5.20). Для перехода на режи.мы работы по регуляторным характеристикам 6 — 7 следует прикрывать дроссельную заслону I, чем обеспечивается всережимность регулирования. Для увеличения цикловой подачи топлива при пуске служит упругий упор 16, на который. можно воздействовать рычагом 10, перемещая одновременно рейку в сторону дополнительного увеличения цикловой подачи топлива.  [c.252]

Основным методом радиапионного контроля в гражданской авиации является рентгеновский (прошедшего излучения и теневой) радиографический метод. На основе рентгеновского излучения используется графический способ представления информации в виде фиксированного изображения на пленке. Учитывая методическую сложность, трудоемкость и низкую чувствительность метода, его применяют только в тех случаях, когда другими методами контроль осуществить нельзя. Выше уже был приведен пример ситуации с применением такого метода контроля к замкнутым полостям конструктивных элементов ВС. Помимо того, контроль проводят и с целью обнаружения влаги в сотовых конструкциях, например в самолетах Ил-86 и Ил-96.  [c.70]

Прессование. Основной операцией процесса изготовления композиционных материалов методом диффузионной сварки под давлением является прессование. Именно в процессе этой операции происходит соединение отдельных элементов предварительных заготовок в компактный материал (формирование изделий). В отличие от прессования как метода обработки давлением металлов и сплавов, заключающегося в выдавливании металла из замкнутой полости через отверстие в матрице и связанного с большими степенями деформации обрабатываемого материала, данный процесс по своему существу ближе к процессу прессования порошковых материалов, применяемому в порошковой металлургии. Прессование заготовок композиционных материалов в большинстве случаев осуществляется в замкнутом объеме (в пресс-формах, состоящих из матрицы и двух пуансов типа пресс-форм, применяемых для получения изделий из металлических порошков) и с незначительной пластической деформацией материала матрицы, необходимой только для заполнения пространства между волокнами упрочнителя и максимального уплотнения самой матрицы. При этом, как и в процессе горячего прессования порошков, наряду с пластической деформацией матрицы, на границе раздела 126  [c.126]

Задвижка имеет клиновой двухдисковый затвор. Для обеспечения более высокой степени герметичности имеется возможность подачи уплотняющей воды в среднюю полость. Для исключения возрастания давления в замкнутой полости корпуса задвижки при использовании ее в системах, где может повышаться температура среды в корпусе при закрытом положении затвора, в одной из тарелок затвора имеется отверстие, в которое устанавливается пакет дроссельных шайб, ограничивающих расход уплотняющей воды. Соединение корпуса с крышкой уплотняется двумя металлическими прокладками, кроме того предусмотрена сварка на ус . Сальник задвижки выполнен двухступенчатым с отводом возможных протечек, кольца сальника — прессованные асбестогра фитовые марки АГ-50. Для исключения контактной коррозии шпинделей во время хранения задвижки поставляются с сальниковой набивкой марки АС, пропитанной водоглицериновым раствором нитрата натрия. Штатная набивка АГ-50 устанавливается при монтаже. Задвижки управляются элекчронрино-дом с двигателем мощностью 23 кВт, Масса задвижки 7200 кг.  [c.95]

При отсутствии нагрузки на штоке гидроцилиндра расход и скорость перемещения штока пропорциональны перемещению золотника. Вблизи нейтрального положения ЭГР обладает очень высоким коэффициентом усиления давления для замкнутой полости. Вследствие этого небольшое перемеще-ние золотника достаточно для создания полного давления в тяжелонагру-женном гидроцилиндре. Управляю-  [c.63]

США) сконструировали роликовый подшипник с теми же эксплуатационными возможностями, но обладающий тринадцатикратным ( ) рабочим ресурсом даже при двукратной радиальной нагрузке. Подшипник состоит из нескольких замкнутых полостей, наполненных шариками, и нескольких роликов. Шарики дают валу возможность перемещаться вдоль оси хоть на километр, а ролики вместе с внутренними рядами шариков воспринимают радиальную нагрузку. Наружный диаметр нового подшипника примерно такой же, как и у подшипника скольжения, статический и динамический коэффициент трения также не больше.  [c.46]


Смотреть страницы где упоминается термин Замкнутые полости : [c.79]    [c.23]    [c.511]    [c.55]    [c.155]    [c.393]   
Смотреть главы в:

Конвективная устойчивость несжимаемой жидкости  -> Замкнутые полости



ПОИСК



Мг с 1зи полостей

Описание парадокса на основе анализа изменения давления в замкнутой рабочей полости

Течения в замкнутых полостях

Ц замкнутый



© 2025 Mash-xxl.info Реклама на сайте