Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетическое уравнение Энскога

Кинетическое уравнение Энскога. Чтобы лучше представить себе новые черты кинетической теории, основанной на цепочке (3.3.58), рассмотрим простейшее приближение парных столкновений . Напомним, что при использовании граничного условия Боголюбова это приближение приводит к кинетическому уравнению Больцмана.  [c.212]

Нерешенной проблемой квантовой кинетической теории остается учет неравновесных многочастичных корреляций. В параграфе 4.3 первого тома было получено квантовое обобщение кинетического уравнения Энскога, в котором учитываются корреляции, связанные с законом сохранения энергии. Классическое уравнение Энскога применялось и до сих пор успешно применяется для описания кинетических процессов в плотных газах. Это позволяет предположить, что и в квантовых системах основную роль играют многочастичные корреляции, связанные с сохранением энергии. К сожалению, интеграл столкновений в квантовом уравнении Энскога имеет гораздо более сложную структуру, чем в классическом случае, поэтому для решения конкретных задач требуется разработка эффективных численных методов.  [c.283]


Для вывода уравнений гидродинамики исходя из кинетического уравнения Больцмана получим вначале общее уравнение переноса Энскога без использования явных решений уравнения Больцмана. Для этого умножим кинетическое уравнение Больцмана  [c.137]

Метод Чепмена—Энскога. В 1911—1920 гг. Чепмен и Энског разработали метод решения кинетического уравнения Больцмана, основанный на теории возмушений. По этому методу функция распределения разлагается в степенной ряд по малому параметру е, используя в качестве нулевого приближения локальное распределение Максвелла о  [c.143]

СОСТОЯНИЯ статистической физики к 1950 г. К этому времени был известен лишь один вид кинетического уравнения — уравнение Больцмана (а также различные его варианты уравнение Ландау, кинетическое уравнение для фононов в твердом теле и т. д.). Его теоретическое обоснование, область применимости и недостатки были довольно хорошо изучены, однако не было разработано систематического подхода, позволяющего выйти за границы больцмановского приближения. Единственной попыткой преодоления барьера была работа Энскога (1922 г.), в которой он получил обобщение уравнения Больцмана, справедливое для плотного газа твердых сфер.  [c.280]

Кинетическое уравнение (3.1.72) может служить основой для построения групповых разложений коэффициентов переноса с помощью метода Чепмена-Энскога [78]  [c.179]

Уравнение (3.3.74) представляет собой обобщение кинетического уравнения, предложенного в 1922 году Энскогом, который исходил из интуитивных физических аргументов. Идея Энскога очень проста. Как и в теории Больцмана для разреженных газов, микроскопическая динамика твердых сфер определяется парными столкновениями. Вследствие конечности размеров твердых сфер столкновения между ними являются нелокальными , в связи с чем в интеграле столкновений пространственные аргументы одночастичных функций распределения должны быть разнесены на расстояние, равное диаметру твердых сфер а. И, наконец, вероятность столкновения в плотных газах возрастает, благодаря эффектам исключенного объема . Для учета этих эффектов Энског ввел в интеграл столкновений дополнительный множитель. Его явную форму Энског выбрал, исходя из термодинамических соображений. Можно показать [138], что множитель Энскога близок к значению равновесной функции G2 (r ,r2) при г — Г2 = а. Это согласуется со структурой интеграла столкновений в уравнении (3.3.74), если состояние системы мало отличается от равновесного. Мы видели, однако, что в общем случае в интеграл столкновений Энскога входит квазиравновесная функция (3.3.70).  [c.215]


Заканчивая обсуждение модифицированного уравнения Энскога, нам хотелось бы отметить два важных момента. Во-первых, это уравнение соответствует очень грубому приближению в цепочке (3.3.58), поскольку трехчастичная функция распределения никак не учитывалась в уравнении для Д. Это обстоятельство подсказывает возможность улучшения теории Энскога с помощью той или иной аппроксимации трехчастичной функции распределения. Во-вторых, кинетическое уравнение (3.3.66) применимо к системам с непрерывным потенциалом взаимодействия. Это позволяет обобщить теорию Энскога на подобные системы ). Правда, для систем с непрерывным потенциалом взаимодействия G2(ri,T2, ) зависит от параметра /5(г, ) и, следовательно, одновременно с кинетическим уравнением для одночастичной функции распределения необходимо рассматривать уравнение баланса энергии.  [c.215]

Аналогичная трактовка теории Энскога содержится в работах [120, 121], где для квантовых систем выводится линеаризованное кинетическое уравнения типа уравнения Энскога. В этом случае корреляции, связанные с сохранением энергии, учитываются посредством того, что все средние значения вычисляются с помощью канонического распределения Гиббса с полным гамильтонианом системы, включающим оператор взаимодействия.  [c.296]

Мы закончим наше краткое обсуждение линейных кинетических уравнений одним замечанием. Обратим внимание на то, что после линеаризации квазиравновесного статистического оператора (5.4.7) все равновесные корреляционные функции, определяющие статические восприимчивости и кинетические коэффициенты, вычисляются с полным гамильтонианом системы Н. Таким образом, в кинетическом уравнении (5.4.18) точно учитываются равновесные многочастичные корреляции. С этой точки зрения формализм функций памяти напоминает подход к кинетической теории плотных систем, который обсуждался в разделе 4.3.4 в связи с выводом квантового аналога уравнения Энскога ).  [c.390]

В случае многокомпонентной газовой смеси теория усложняется потому, что оказывается необходимым решать систему кинетических уравнений. Рассмотрим здесь вывод уравнения первого приближения метода Энскога — Чепмена для газовой смеси и, в частности, для бинарной смеси, состоящей из двух сортов газа. Подставим в левую часть уравнения (9.4) локальное максвелловское распределение (9.6) и представим функции первого приближения в виде  [c.63]

Решение. Кинетическое уравнение первого приближения метода Энскога — Чепмена можно записать в виде  [c.274]

Решение кинетического уравнения чаш е всего ищется путем разложения функции распределения в ряд по ортогональным полиномам, составленным из косинусов угла между направлением скорости электрона и направлением электрического поля [1]. Обычно ограничиваются первыми двумя членами разложения — симметричной и антисимметричной частью. Очевидно, что такой метод решения применим лишь к системам, которые в первом приближении описываются симметричной функцией, асимметричная часть должна быть малой поправкой. Аналогично в методе Чепмена и Энскога [2] нулевым приближением является максвелловское распределение частиц по скоростям, влияние полей и градиентов учитывается лишь в первом приближении. В связи с этим могут представить определенный теоретический интерес попытки найти такие решения кинетического уравнения, хотя бы в рамках специальных моделей, которые точны в том смысле, что не представляют собой части ряда последовательных приближений.  [c.179]

Книга состоит из трех основных частей и приложений. Первая часть является введением к систематическому изложению статистической механики. Она посвящена термодинамике и классической кинетической теории. Большое внимание уделяется Я-теореме Больцмана. Такое введение обусловлено педагогическими соображениями и позволяет автору на примере классической кинетической теории разъяснить принципы, лежащие в основе статистической механики. Кроме того, главы, посвященные классической кинетической теории, имеют и самостоятельный интерес, так как в них кратко и ясно изложены вопросы, Связанные с выводом уравнений гидродинамики, а также метод Энскога и Чепмена для решения кинетического уравнения Больцмана.  [c.5]


Для каждого из этих предельных случаев главным членом разложения функции распределения в ряд является максвелловская функция распределения [1]. В общем случае можно попытаться построить интерполяционные формулы для расчета кинетических коэффициентов, используя их представление для каждого из предельных случаев. Однако гораздо удобнее прибегнуть к решению интерполяционного линейного интегрального уравнения, в этом случае интерполяционные формулы для кинетических коэффициентов получают как естественное следствие решения упомянутого линейного интегрального уравнения. Изложение указанного подхода (обобщенного метода Энскога), предложенного Б. В. Алексеевым, а также методов возмущений для уравнения Больцмана с неупругими столкновениями можно найти в [1].  [c.127]

Обратим теперь внимание на то, что при конечных значениях е первый член в формуле (5А.18) пропорционален функции (5А.4), для которой уравнения (5А.2) служат условиями экстремума. Таким образом до тех пор, пока остается конечным, точное решение уравнений отклика соответствует максимуму производства энтропии при заданных внешних полях. Это напоминает ситуацию в кинетической теории газов [78], где точное решение интегральных уравнений Чепмена-Энскога дает для коэффициентов переноса значения, которые соответствуют максимальному производству энтропии при заданных градиентах гидродинамических величин (так называемый вариационный принцип Колера).  [c.400]

В предыдущих главах были рассмотрены некоторые методы решения уравнения Больцмана, основанные на его линеаризации и разложениях по малому параметру, разложениях типа Гильберта и Чепмена — Энскога. Процедура линеаризации обычно применялась вместе с использованием кинетических модельных уравнений. Однако можно показать, что модельные уравнения способны аппроксимировать не только линеаризованное уравнение Больцмана, ыо также и его решения (гл. 6) следовательно, метод гл. 7 можно считать точным до тех пор, пока использование линеаризованного уравнения Больцмана оправдано.  [c.219]

Как было отмечено выше, решения уравнений сохранения континуальной теории и решения уравнения Больцмана являются, вообще говоря, неаналитическими по некоторому параметру 8, описывающему отклонение от уравнений невязкой жидкости. Таким параметром могут быть коэффициенты вязкости и теплопроводности в теории сплошной среды и средняя длина свободного пробега в кинетической теории. В связи с этим разложения в ряды по степеням 8 не дают равномерно пригодных решений для задач с начальными и граничными условиями. Однако некоторые трудности можно преодолеть, если вместо разложения решений использовать разложение самих уравнений, как это делается в так называемом разложении Чепмена — Энскога. Чтобы понять это утверждение, заметим, что, умножив уравнения (2.22) на 8 , просуммировав от 1 до оо и сложив результат с (2.21), мы получим  [c.269]

Третья задача связи (ударный слой) должна привести к вычислению поправки к классическим соотношениям Рэнкина — Гюгонио, необходимой для того, чтобы вычисления на континуальном уровне давали те же самые результаты, что и решение уравнения Больцмана вдали от ударного слоя. Та же необходимость возникает в теории Навье — Стокса [40], когда требуется учесть взаимодействие между ударным и пограничным слоями. Несмотря на то что уравнения Навье — Стокса дают гладкую структуру ударной волны, они должны допускать разрывы, чтобы описать кинетические эффекты. Для разложения Гильберта кинетическое решение задачи связи трудно уже в нулевом приближении (задача о структуре скачка см. разд. 6 гл. VII), но условия сращивания тривиальны (соотношения Рэнкина — Гюгонио) аналогичная задача для теории Чепмена — Энскога (или модифицированного разложения, рассмотренного в разд. 4) пока еще не сформулирована.  [c.291]

Кинетическая теория классического газа представляет собой вполне законченную область физики. Для описания газа используется уравнение Больцмана, которое решается обычно методом Чепмена-Энскога, т.е. разложением по обратным степеням члена столкновений. Тем самым из уравнения Больцмана выводятся уравнения газодинамики, т.е. уравнения Навье-Стокса. Кинетические коэффициенты этих уравнений вычисляются с помощью уравнения Больцмана. В случае очень резких градиентов, например, имеющих место в ударной волне, вместо уравнений Навье-Стокса можно воспользоваться методом моментов с той или иной процедурой замыкания высших моментов. Такой подход дает вполне удовлетворительные результаты.  [c.305]

ЧЕПМЕНА—ЭНСКОГА МЕТОД—метод решения кинетического уравнения Больцмана. Независимо предложен С. Чепменом (S. hapman) в 1916—17 и Д. Энскогом (D. Enskog) в 1917. Подробнее см. в ст. Кинетическая теория газов.  [c.448]

Применив далее с несугцественными изменениями метод Энскога [11] для решения кинетического уравнения в случае плотных газов, можно показать, что уравнение для определения будет иметь вид  [c.445]

Представление о нормальных функциях распределения лежит в основе традиционных методов решения уравнения Больцмана (или других кинетических уравнений). Оно было введено Гильбертом в 1912 г. Для этого великого математика уравнение Больцмана явилось прекрасным примером нелинейного интегродиффе-ренциального уравнения, и Гильберт рассмотрел его с математической точки зрения. Предложенный им метод решения не очень удобен для физических приложений. Проблема была рассмотрена вновь с аналогичной точки зрения Чепменом и независимо Энско-гом. Их методы (незначительно различающееся в деталях) дали идентичные результаты и с тех пор были объединены в известный метод Чепмена — Энскога. Сущность этого метода заключается в систематическом построении нормального решения в виде разложения в ряд вблизи состояния локального равновесия. Параметром разложения фактически служит величина градиентов однако разложение не является тривиальным рядом Тейлора (что приводило бы к некоторым трудностям), а представляет собой более тонкую процедуру. В качестве окончательного результата в приближении первого порядка непосредственно получаются выражения для коэффшщентов переноса, которые можно вычислить в явном виде для различных межмолекулярных потенциалов. Численные значения этих коэффициентов во многих важных случаях прекрасно согласуются с экспериментом.  [c.94]


Боголюбов наметил общую схему разложения и вывел уравнение Больцмана. Программа вычисления в явном виде поправок высшего порядка к этому уравнению осталась нереализованной. Первый шаг, сделанный в таком направлении в 1958 г. Чо и Улен-беком, оказался весьма успешным. Они получили кинетическое уравнение, превышающее по точности уравнение Больцмана на один порядок по плотности. Их уравнение учитывает вклад трехчастичных столкновений, а также вклад модифицированных парных столкновений. Второй вклад в случае твердых сфер точно соответствует интегралу столкновений Энскога.  [c.281]

Квантовое уравнение Энскога. Мы применим теперь квазирав-повеспый статистический оператор (4.3.35) для вывода кинетического уравнения в рамках приближения парных корреляций, сформулированного в разделе 4.3.1. Для определенности будем считать, что система описывается гамильтонианом (4.3.32) или, что то же самое, гамильтонианом (4.2.1). Предположим также, что потенциал Ф соответствует малому радиусу взаимодействия и поэтому эффекты экранирования можно не учитывать.  [c.291]

Неравновесные корреляции, связанные с сохранением энергии. Мы уже говорили в разделах 3.3.4 и 4.3.3, что закон сохранения энергии в кинетической теории требует особого внимания, поскольку, с одной стороны, энергия является интегралом движения и поэтому должна быть включена в набор базисных динамических переменных, но, с другой стороны, среднее значение энергии зависит как от одночастичной, так и от двухчастичной функции распределения. Иначе говоря, баланс энергии определяется не только эволюцией одночастичной функции распределения, но и динамикой корреляций. Напомним, что учет корреляций, связанных с сохранением энергии, является, по существу, основной идеей кинетической теории Энскога для плотных и сильно взаимодействующих систем. На первый взгляд кажется, что для слабо неидеальных газов учет неравновесных корреляций не столь важен, во всяком случае, — в борновском приближении для интеграла столкновений. В марковском режиме эта точка зрения подтверждается нашим анализом, проведенным в разделе 4.3.4. Действительно, мы видели, что интеграл столкновений (4.3.58) совпадает с интегралом столкновений Улинга-Уленбека, если пренебречь вкладом корреляций в двухчастичную матрицу плотности. Как выяснится позже, в немарковском режиме ситуация меняется и корреляции, связанные с законом сохранения энергии, дают вклад в интеграл столкновений уже в борновском приближении. Более того, мы покажем, что именно учет корреляций обеспечивает существование равновесного решения немарковского кинетического уравнения ).  [c.314]

В методе Энскога — Чепмена правая часть кинетического уравнения считается наибольшей. Сравнивая выраж(шие (19.16) со слагаемым левой части кинетического уравнения, содср5кащим производную функции распределения по времени, можем сказать, что для применимости метода Энскога —Чепмена необходимо, чтобы характерное для макроскопических (гидродинамических) процессов время Гдбыло значительно больше времени свободного пробега  [c.78]

Теоретический анализ взаимосвязанных физико-химических, динамических и радиационных процессов и явлений в средней и верхней атмосфере представляет чрезвычайно сложную задачу. Наиболее полное и строгое исследование подобной среды может быть проведено в рамках кинетической теории многокомпонентных смесей многоатомных ионизованных газов, исходя из системы обобщенных интегро-дифференциальных уравнений Больцмана для функций распределения частиц каждого сорта смеси (с правыми частями, содержащими интегралы столкновений и интегралы реакций), дополненной уравнением переноса радиации и уравнениями Максвелла для электромагнитного поля. Такой подход развит, в частности, в монографии авторов Маров, Колесниченко, 1987), где для решения системы газокинетических уравнений реагирующей смеси применен обобщенный метод Чепмена-Энскога. Однако ряд упрощений, часто вводимых при решении сложных аэрономических задач (например, учет только парных столкновений взаимодействующих молекул, предположение об отсутствии внутренней структуры сталкивающихся частиц вещества при определении коэффициентов молекулярного обмена и т.п.), существенно уменьшает преимущества, заложенные изначально в кинетических уравнениях.  [c.68]

В кинетической теории газов рассматриваются различные приемы приближенного решения нелинейного интегродифференциального кинетического уравнения (0.8). Все они требуют предположений о законах взаимодействия частиц (молекул), их составе и т. п. Наиболее известный метод — это метод Чэпмэна-Энскога (см., например, [25]), в котором начальное приближение определяется из условия равенства нулю интеграла столкновений и представляет собой локально-равновесную функцию Максвелла  [c.21]

При помощи этого решения из уравнения переноса получается приближение основной системы уравнений сплошной среды, используемое для изучения движения невязких газов и жидкостей. Следующее приближение f служит для вывода уравнений движения вязких газа и жидкости. Отыскивая методом Чэпмэна-Энскога третье приближение решения кинетического уравнения, получаем уравнения, с помощью которых можно решать задачи о движении сильно разреженных газов — задачи молекулярной аэродинамики, весьма актуальные для исследования движения ракет и спутников в верхних слоях атмосферы.  [c.21]

Упрощение вычислений, получающееся при силах отталкивания, обратно пропорциональных пятой степени расстояния между молекулами, связано с тем, что время свободного пути при этом не зависит от скорости молекулы (закон упругих шаров дает, напротив, постоянную длину свободного пути). Впоследствии приближенное решение кинетического уравнения (115) для различных законов взаимодействия показало, что упрощение вычислений при- водит при этом и к упрощению процессов, происходящих в газе, причем некоторые более сложные явления вообще отсутствуют. К таким явлениям относится термодиффузия (диффузия газов под действием градиента температуры, а не градиента концентрации). Максвелл, решая задачу для сил, обратрю пропортиональных пятой степени расстояния, ее вообще не обнаружил, и лишь позже Д. Энског и С. Чепмен, рассматривая общий случай, получили ее.  [c.543]

В этой работе выражение для диффузионного потока выводится из кинетического уравнения при помощи так называемого приближения 13 моментов Трэда. Это приближение обладает рядом преимуществ по сравнению с методом Чэпмена — Энскога, на основе которого получается выражение (7.15), всякий раз, когда приходится принимать во внимание высшие приближения в разложении функции распределения. Оказывается, что выражение (7.15) для диффузионного потока справедливо только в отсутствие вязкого переноса импульса в газе. В условиях, когда существует вязкий перенос импульса (т. е. градиент скорости), выражение  [c.373]

Чебышёва неравенство 141 Чепмена—Энскога метод решения кинетического уравнения 329, 429  [c.447]

Такой метод решения кинетического уравнения принадлежит Энскоги (О. Епзкоц, 1917).  [c.32]


Наряду с этим происходила эволюция методов построения макроскопических моделей для Кп 1. Обращено внимание на то, что фактически метод Чепмена -Энскога дает формальное разложение решения кинетического уравнения по степеням пространственных производных от газодинамических переменных относительно ло-кально-равновесного решения, причем в каждом приближении учитываются, вообще говоря, внепорядковые по Кп члены. Такая особенность - плата за общность получаемых результатов, за то, например, что уравнения Навье - Стокса применимы для всего поля обтекания вне кинетических слоев как для невязких, так и для вязких областей течения.  [c.186]

Метод элементарных решений связан с методом Чепмена — Энскога по крайней мере с двух точек зрения. Во-первых, разложение решения на дискретную и непрерывную части отражает (по крайней мере в простейших модельных уравнениях) отделение решения Чепмена — Энскога (справедливого вдали от твердых границ и некоторого начального состояния) от решения в переходной области, описываемой кинетическими слоями. Во-вторых, элементарные решения особенно эффективны при исследовании задач связи для методов Гильберта и Чепмена — Энскога (особенно для установления граничных условий). Это продемонстрировано нахождением коэффициента скольжения для модельного уравнения БГК. Для более общих модельных уравнений задачу определения граничных условий аналитически решить, вообще говоря, нельзя. Но всегда можно получить довольно точное описание решения, оценивая коэффициенты разложений или поправки к модельным уравнениям низшего порядка. В частности, отделяя нормальные и поперечные степени свободы, можно найти в квадратурах температурный скачок (Черчиньяни [10] гл. 6), результат оказывается очень близким к точному.  [c.214]

Другой подход предложил Даррозе [38], рассматривавший степенные разложения типа Гильберта, но не по е, а по V В результате он обнаружил два пограничных слоя внешний слой толщины 0(e ), который можно отождествить с прандт-левским вязким пограничным слоем, и внутренний слой толщины 0(е), соответствующий кнудсеновскому, или кинетическому, пограничному слою. В прандтлевском слое функция распределения не относится к гильбертовскому классу, но сохраняет свойства функциональной связи с макропараметрами течения (как это известно из успешного применения метода Чепмена— Энскога на уровне Навье — Стокса). Однако при таком разло женин уравнения Навье — Стокса не появляются вместо них по лучаются уравнения Прандтля для пограничного слоя.  [c.287]

Обобщенные соотношения Стефана-Максвелла (учитывающие термодиффузию и влияние внешних массовых сил) методами кинетической теории одноатомных газов были получены в книге Гиршфельдер и др., 1961) в рамках учета первого приближения теории Чепмена-Энскога для многокомпонентных коэффициентов диффузии J и второго приближения для коэффициентов термодиффузии (т.е. когда в вариационном представлении интегральных уравнений, определяющих первую итерацию Чепмена-Энскога, использовалась пробная функция, содержащая единственный полином Сонина-Лаггера) в виде  [c.98]

Вывод обобщенных соотношений Стефана-Максвелла для многокомпонентной диффузии позволяет также получить очень важные алгебраические уравнения для расчета многокомпонентных коэффициентов диффузии через бинарные коэффициенты диффузии формулы, связывающие термодиффузионные отношения с коэффициентами термодиффузии и многокомпонентной диффузии смеси формулы, связывающие истинный и парциальный коэффициенты теплопроводности. Все найденные (феноменологически) формулы по структуре полностью тождественны выражениям, полученным в рамках первого приближения метода Чепмена-Энскога в кинетической теории многокомпонентных смесей одноатомных газов (сопоставление проведено с результатами, представленными в уникальной книге Ферцигера и Капера). Однако, в отличие от газокинетического подхода (до конца разработанного только для газов умеренной плотности, когда известен потенциал взаимодействия между частицами газа), феноменологический подход не связан с постулированием конкретной микроскопической модели среды и потому полученные здесь результаты носят универсальный характер, т.е. пригодны для описания широкого класса сред, например, многоатомных газовых смесей (что важно для аэрономических приложений), плотных газов, жидких растворов и т.п.  [c.113]


Смотреть страницы где упоминается термин Кинетическое уравнение Энскога : [c.687]    [c.280]    [c.15]    [c.79]    [c.80]    [c.434]    [c.6]    [c.542]    [c.330]    [c.225]    [c.285]   
Смотреть главы в:

Статистическая механика неравновесных процессов Т.1  -> Кинетическое уравнение Энскога



ПОИСК



Кинетические уравнения

Уравнение Энскога

Энскога



© 2025 Mash-xxl.info Реклама на сайте