Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механическая модель рабочего процесса

Остальные параметры обобщенной модели не зависят от углового положения ротора и являются постоянными величинами, если пренебречь такими явлениями, как старение, деформация конструктивных элементов, упругость вращающегося ротора, зависимость активных сопротивлений от частоты переменного тока и т. п. Подобные допущения общеприняты в теории ЭМП. С учетом сделанных допущений рассматриваемая модель ЭМП представляет собой линейную систему с сосредоточенными параметрами, часть которых постоянна, а часть зависит от пространственного положения. Эта система позволяет моделировать электромеханические процессы при взаимном перемещении катушек, электромагнитные процессы в катушках с током и процессы выделения теплоты в активных сопротивлениях и при механическом трении вращения. Все остальные процессы и явления, присущие различным ЭМП, остаются за пределами возможностей модели. Тем не менее линейные модели с сосредоточенными параметрами оказываются достаточными для построения теории основных рабочих процессов ЭМП.  [c.58]


Так, например, механическая модель многих машин может быть представлена в виде двух- или трехмассовой системы (фиг. 2), где 1 — ротор электрического двигателя 2 — зубчатая передача 3 — рабочий орган машины. Переходный процесс в машинах такого типа характеризуется крутильными колебаниями линий передач основного (коренного) вала машины 4 и моторного вала 5. Фиг. 3.  [c.9]

Наравне со сложными испытаниями моделей в условиях, близких к натурным, ставятся в большом масштабе опыты для решения ограниченных задач, например,—для изучения сепарации влаги заданной дисперсности или определения механических потерь от влажности. Применяемые для этой цели конструкции экспериментальных турбин могут быть значительно упрощены. Кроме того, на специализированных стендах создаются благоприятные условия для углубленного изучения отдельных сторон рабочего процесса.  [c.168]

Обычно используемые в качестве основных элементов объемных гидропередач роторные гидромашины характеризуются большими поверхностями трения, механические и объемные потери на которых превалируют над остальными, и поэтому в качестве математической модели роторной гидромашины принимается такая, в которой рассматриваются потери только в зазорах между упомянутыми поверхностями. Разумеется, принятие такой модели не исключает существование и иных видов потерь (например, гидравлические потери, потери в уплотнениях, на перемешивание рабочей жидкости и т. д.), которые чаще всего раздельно не рассматриваются. Поскольку коэффициенты потерь определяются экспериментально, то соответствующим их корректированием можно с достаточной для практических целей точностью описывать рабочий процесс.  [c.183]

Существует несколько модификаций двигателя Стирлинга, но, видимо, слишком оптимистично было бы предполагать, что один и тот же идеальный цикл применим ко всем типам двигателя Стирлинга. Поскольку идеальные циклы касаются только термодинамики энергосиловой установки, отличие конкретного рабочего параметра от эквивалентного ему критерия работы служит мерой отклонения механических и гидравлических характеристик сконструированной системы, обусловленного выбранным механизмом привода, материалом и конструкцией теплообменника, конструкцией уплотнений, относительным мертвым объемом и т. д. При анализе идеального цикла возникают две основные проблемы во-первых, используемый цикл должен правильно описывать термодинамические особенности рабочего процесса (например, нельзя описывать адиабатный процесс как изотермический и наоборот) во-вторых, нужно выбирать наиболее полезные для практики, т. е. измеряемые, критерии работы, в противном случае анализ будет представлять лишь академический интерес. При анализе двигателя, работающего по циклу Стирлинга, наиболее трудной является, по-видимому, первая проблема. Если предположить, что процесс обмена энергией происходит в рабочих полостях переменного объема, то принципиально правильными в предельном случае будут модели изотермического процесса. Однако если в систему входят отдельные теплообменники, то перенос энергии в рабочих полостях переменного объема обычно мал по сравнению с переносом энергии в указанных теплообменниках, и в этом случае более точным будет предположение о том, что процесс газо-  [c.230]


Указанные случаи далеко не исчерпывают всех возможных моделей плазмы. Здесь невозможно дать их сколько-нибудь полный обзор. Но уже из сказанного видно, что в каж ой конкретной задаче нужно с большой осторожностью подходить к выбору модели плазмы и уравнений, описывающих ее движение. Процесс обоснования уравнений для различных задач еще не закончен. Работы в этом направлении должны привести к созданию рабочих моделей, учитывающих наиболее важные физические эффекты. Весьма полезными в этом отношении представляются общие методы построения механических моделей, развиваемые Л. И. Седовым (1962, 1965, 1966).  [c.435]

С одной стороны, это означает системность самой структуры математической модели ЭМУ, что связано с необходимостью учета всей совокупности различных его внутренних физических процессов. Основное по значимости и функциональному назначению энергетическое преобразование в ЭМУ (из электрической в механическую энергию или наоборот) неизменно сопровождается сопутствующими преобразованиями, рассеянием энергии — созданием теплового поля, силового поля вибраций, магнитного поля рассеяния. Именно совместное проявление взаимосвязанных физических процессов — электромагнитных, тепловых, силовых формирует в итоге рабочие свойства ЭМУ и определяет во многих случаях их функциональную пригодность. Поэтому для строгого решения задач в общем случае ЭМУ должно рассматриваться как система с неоднородными, различающимися по физической сущности процессами, в которой существуют дополнительные каналы преобразования энергии, зависимые в энергетическом плане от основного, т.е. существующие за счет его энергетической не-идеальности.  [c.97]

В основу разработки длительности цикла отдельных этапов производства положен технологический цикл. Суммарный цикл производства определяется путем суммирования, совмещения или перекрытия циклов отдельных этапов производства и должен содержать следующие этапы 1) проработка заказа и заключение договора 2) разработка технического проекта на машину 3) выпуск рабочих чертежей изделия 4) оформление и выдача заказов исполнителям 5) разработка технологического процесса по металлургическому производству 6) изготовление металлургической оснастки и моделей 7) производство заготовок 8) разработка технологического процесса по механосборочным цехам 9) изготовление оснастки для механосборочных цехов 10) механическая обработка деталей И) сборка узлов и всей машины.  [c.155]

Варианты структуры РТК разрабатывают на основе результатов комплексного анализа технологических операций и процессов, выбора моделей ПР и их функций. В общем случае ПР в составе РТК механической обработки выполняет следующие функции загрузку, разгрузку основного и вспомогательного оборудования основные операции rio снятию заусенцев и т. п. ориентацию заготовки в пространстве перед установкой в приспособление, укладкой в приемное устройство ИТ. д. транспортирование заготовки от станка к станку управление рабочими циклами основного и вспомогательного оборудования. Операция установки заготовки включает в себя захватывание ее из подающего или приемно-передающего устройства (магазина, накопителя и т. д.), ориентацию в пространстве, перемещение к станку и установ в приспособление (патрон, в центры) или на промежуточное устройство (призму). Цикл начинается с опроса станка о готовности повторения цикла и получения обратной команды о готовности приспособления станка (для токарных станков команды о том, что приспособление и патрон ориентированы в данном положении), о нахождении рабочих органов станка в исходном положении. Кроме того, проводится опрос и поступает обратная команда о наличии заготовки в приемно-передающем устройстве. После установки заготовки на станок проводят опрос о наличии заготовки в приспособлении, затем дается команда на закрепление и проверяется правильность положения ее. Включают привод главного движения (обратная команда — станок включен). После окончания обработки и получения обратной команды об этом дается команда на раскрепление заготовки в зажимном приспособлении станка. ПР переносит заготовку к приемному устройству. Пример взаимодействия ПР с токарным станком приведен в табл. 11.  [c.511]


На современном этапе развития общества особой актуальности приобретает вопрос повышения экономической эффективности функционирования насосных станций, оборудованных ЦН, поскольку они оперируют с огромными потоками механической энергии привода в процессе превращения ее в гидравлическую энергию рабочей жидкости. Это требует осуществления оптимизации режимов уже введенных в эксплуатацию ЦН и создания новых высокоэффективных конструкций машин. Также необходима разработка математических моделей, способных правильно отражать сложные физические процессы в проточной части ЦН.  [c.5]

Актуальность темы. Неуклонное возрастание роли трубопроводного транспорта нефти как средства диверсификации энергетических источников и повышение мировой экологической безопасности требует решение задачи расчету и оптимизации режимов нефтепроводных систем, которые изменяют свою структуру и технологическую погрузку. Это, в свою очередь, определяет необходимость создания современных компьютерно - ориентированных моделей элементов трубопроводных систем, в частности моделей нефтеперекачивающих станций (НПС), обычно оборудованных мощными центробежными насосами (ЦН), которые оперируют с огромными потоками механической энергии привода в процессе превращения ее в гидравлическую энергию рабочей жидкости.  [c.1]

Анализ возможностей, связанных с использованием структурной модели среды для описания процессов деформирования материалов, начнем с наиболее простого случая — пропорционального нагружения, реализуемого, в частности, при растяжении-сжатии бруса. При таком виде нагружения структурная модель, схематично отражающая микронеоднородность реальных материалов, имеет достаточно простую механическую интерпретацию. Рассмотрим образец материала, подвергающийся испытаниям на растяжение-сжатие и находящийся (имеется в виду его рабочая часть) в макроскопически однородном напряженно-деформированном состоянии. Предполагая существование микронеоднородности по поперечному сечению, представим образец в виде системы стержней, деформирующихся одинаково (рис. 1.1). Примем, что стержни обладают свойствами идеального упругопластического материала, а неоднородность характеризуется лишь различием значений их пределов текучести. Модули упругости стержней будем полагать равными, это упростит анализ, не влияя на его конечные результаты.  [c.11]

Если ограничиться рассмотрением тех задач, для которых объемные силы, т. е. вес и инерция пренебрежимо малы по сравнению с силами внешними, то можно воспользоваться относительно упрощенной рабочей моделью механической сущности процесса, допускающей достаточно четкую математическую формулировку задачи.  [c.107]

Отделение сборки двигателей предназначено для ремонта основных деталей двигателя и его сборки. Годовая производственная программа определяется количеством выпускаемых из ремонта двигателей. В отделении производят ремонт деталей слесарной и механической обработкой, сборку узлов, испытание узлов и общую сборку двигателей. В процессе ремонта блок цилиндров подвергается гидравлическому испытанию, расточке коренных подшипников и втулок распределительного вала. Сборка двигателя производится из узлов, предварительно собранных на специализированных рабочих местах. При значительной программе отделения по основной модели двигателя выполнение процесса сборки следует рекомендовать на поточных линиях. При расчете рабочих мест поточной сборки в основу должна быть положена синхронизация выполнения основных "сборочных операций технологического процесса. Основной величиной, от которой зависит синхронизация техно-  [c.166]

Литье в облицованные кокили — прогрессивный технологический процесс, позволяющий получать крупные и точные отливки из черных сплавов с малыми припусками на механическую обработку. Металлическая форма имеет тонкое термоизоляционное покрытие, которое предотвращает отбеливание чугуна и разгар кокиля. Жесткая конструкция самого кокиля обеспечивает стабильность размеров и точность литых заготовок. Обычно кокиль облицовывают путем надува песчано-смоляной смеси на рабочую поверхность кокиля с использованием контурной плиты, выполняющей роль модели и воспроизводящей точные очертания будущей отливки.  [c.174]

Прежде всего в электрооборудовании выделяют систему зажигания, состоящую из механических, электрических и в последних моделях из электронных устройств. Их задача — воспламенение рабочей смеси при всех режимах работы двигателя. Автолюбитель, знакомый с основами процессов, определяющих работу системы зажигания, может без посторонней помощи ее регулировать.  [c.34]

Зависимости изменения показателей работы дизеля ЮДЮО от уменьшения эффективных сечений выпускных окон втулки цилиндра (рис. 127) получены в результате расчета математической модели рабочего процесса поршневой части двигателя совместно с агрегатами воздухоснабжения при частоте вращения коленчатого вала 850 об/мин и постоянной цикловой подаче топлива, соответствующей номинальной мощности. Эффективные сечения выпускных окон оцениваются произведением где tiB — коэффициент истечения и Рв — сечение окон. Сечения окон уменьшаются в эксплуатации при отложении на них нагара, из-за чего уменьшается эффективная мощность двигателя Ne, индикаторный iii и эффективный г е к. п. д. Индикаторный к. п. д. уменьшается из-за понижения коэффициента избытка воздуха для сгорания а при уменьшении расхода воздуха через двигатель. На изменение механического т]м к. п. д. оказывают влияние затраты мощности на приводной центробежный компрессор, которая прямо пропорциональна расходу воздуха. Отложение нагара на выпускных окнах сопровождается увеличением температур отработавших газов перед турбиной U и температур характерной точки поршня t . Уменьшение коэффициента избытка воздуха а и рост температур т и t указывают на заметное увеличение тепловой напряженности работы цилиндропоршневой группы и деталей проточной части турбины турбокомпрессора. Частота вращения ротора турбины Пт понижается, и при уменьшении эффективного сечения окон свыше 20% работа центробежного компрессора приближается к границе помпажа. Этот режим характеризуется малым расходом воздуха и достаточно высокими степенями повышения давления, что приводит к срыву воздушного потока в проточной части компрессора, колебаниям давлений воздуха в ресивере и неустойчивой работе двигателя.  [c.215]


Математическая теория ЭМП исследует обобщенные модели, заменяющие собой реальные устройства. Необходимость введения обобщенных моделей обусловлена большим разнообразием и сложностью изучения ЭМП. Многообразие и сложность присущи не только конструктивным формам и технологии прЪизводства, но и физическим процессам ЭМП. Основным рабочим процессом в ЭМП является электромеханическое преобразование энерг ии. Однако основной процесс неизбежно сопровождается такими процессами, как выделение теплоты и нагревание, естественное или принудительное охлаждение, механические воздействия на вращающийся ротор и др. Эти процессы не являются определяющими с позиций целевого (функционального) назначения ЭМП, но вызывают значительные трудности при математическом моделировании.  [c.55]

Для понимания рабочего процесса турбины полезно представить себе его механическую модель. Для неподвижного сосуда такая модель уже была показана на фиг. 3-2 в виде неподвижного плота. Для подражания рабочему колесу надо представить себе вращающийся плот или, лучше, карусель (фиг. 3-5), т. е. кольцевую вращающуюся около вертикальной оои т площадку п. По окружающей карусель неподвижной наклонной поверхности q с перилами сбегают люди, развивая некоторую скорость, налравлениую под углом к радиусу карусели. Пробегая по последней, они стремятся спрыгнуть внутрь карусели (к лестнице) в направлении, близ-  [c.26]

Изменение параметров технического состояния машин в ряде случаев сопровождается увеличением уровня колебательной энергии (Ниже, когда иет необходимости различать механизм, машину и агрегат, для простоты их будем называть машиной). Для машин, уровень шума которых имеет существенное значение, превышение определенного уровня вибрации или излучаемой акустической энергии можно считать отказом по виброакустическим показателям В этом случае первой задачей вибро-акустической диагностики машин является локализация источников повышенной виброактивности. Она позволяет определить относительную роль каждого источника в создании общей вибрации. На ее основе строят математическую модель механизма и устанавливают особенности кинематики рабочего узла или протекающего в нем процесса, приводящ,ие к возникновению повышенной вибрации Источник вибрации может быть протяженным (например, многоопорныи ротор) Тогда возникает необходимость дополнительного исследования пространственного распределения динамических сил и кинематических возбуждений, возникающих в данном узле. Наиболее распространенными способами выявления и локализации источииков является сравнение вибрационных образов (во временной и частотной областях) машины в целом и отдельных ее узлов Когда виброакустические образы нескольких источников подобны, полезно анализировать потоки колебательной энергии через различные сечения механизмов, динамические силы, действующие в различных сочленениях, а также статистические характеристики процессов (функции корреляции, взаимные спектры, модуляционные характеристики и т д,). В связи с тем. что силовые и кинематические возбуждения в узлах н вибрация машины в целом зависят не только от интеисивности рабочих процессов, но и от динамических характеристик конструкций, для выявления причин повышенной вибрации следует измерять механический импеданс и подвижность различных узлов — статорных и опорных узлов механизмов, машин, агрегатов, а также фундаментных конструкций Способы выявления источников повышенной виброактивности механизмов. Наиболее распространенный способ выявления — сопоставление частот дискретных составляющих измеренного спектра вибрации с расчетными частотами возбуждений, действующих в рабочих узлах механизмов В табл. 1 пре ставлены сводные формулы частот дискретных составляющих вибрации и возбуждающих сил некото рых механизмов. Спектры вибрации измеряют на нескольких скоростных режимах работы механизма, что позволяет более надежно сопоставить расчетные частоты с реальным частотным спектром вибрации Кривые зависимости уровней конкретных дискретных составляющих вибрации от режима работы механизма дают возможность выявить резонансные зоны.  [c.413]

Изготовление деталей с применением гальванопластики включает этапы изготовления модели, подготовки ее поверхности, нанесения на последнюю токопроводного слоя, электролитическое наращивание на модель рабочего слоя из никель-кобальтового сплава (или другого сплава) и медного технологического подслоя, механической обработки, присоединение или нанесение конструкционного слоя. Модели можно изготовлять из различных материалов металла, восковой композиции, гипса, пластических масс и др. Наибольшее распространение получили полиметакрилат (органическое стекло), полиэфирная смола ПН-1 (используется в качестве- облицовочного слоя), эпоксидные смолы ЭД5 и ЭД6, акрилатовые смолы (в качестве наполнителя) и хлорвинил для получения имитации рельефа искусственной кожи. Токопроводных слой можно получить химическим серебрением, химическим меднением, нанесением медного слоя металлизацией в вакууме и графитированием. Гальваническое наращивание рабочего слоя производится в специальной установке, обеспечивающей перемещение модели в ванне в процессе наращивания.  [c.134]

В разделе Динамика машин и механизмов изучается движение функциональных частей машины с учетом действуюпщх сил и инертности механической системы. Силы оценивают механическое воздействие между элементами звеньев при их движении, связанным с выполнением рабочего процесса и преобразованием энергии. Характеристиками инертности являются масса, моменты инерции и центры масс звеньев. Решение задач динамики на стадии проектирования машины, обеспечения динамических характеристик в заданных границах при изготовлении и эксплуатации машин основано на определенных расчетных процедурах. Расчетные динамические модели могут отражать связи между функциональными частями машины с разной степенью идеализации. Обоснованный выбор динамической модели и ее параметров предполагает использование моделей разной сложности в зависимости от заданных требований к динамическим характеристикам машины и ее функциональных частей. Например, наиболее простые динамические модели используются при допущениях отсутствия податливости звеньев (жесткие звенья), линейности передаточных кинематических функций механизмов, отсутствия динамических эффектов в системе управления движением машины при работе на разных режи-  [c.102]

Перюпективным направлением совершенствования математических моделей ЭМУ, применяемых в автоматизированном проектировании, все в большей мере становится направление, связанное с представлением взаимосвязей входных параметров и рабочих показателей объектов в терминах теории поля. При этом частные модели электромагнитных, тепловых, механических процессов объединяются в комплексную модель, позволяющую оценить рабочие свойства объекта как в установившихся, так и в переходных режимах с большей точностью. В качестве метода анализа преимущественное распространение, наряду с традиционными, уже сейчас получает метод конечных элементов, допускающий четкую физическую интерпретацию математических зависимостей, автоматизацию подготовки данных и дающий возможность детального представления протекающих процессов. Получат более широкое применение не только детерминированные, но и вероятностные математические модели объектов, позволяющие имитировать большой спектр воздействия на объект в процессе производства и эксплуатации.  [c.291]


Наибольшее раопространение получила методика испытаний закрепленного образца при термоциклическом нагреве, предложенная Коффиным [88], существенно развитая в работах советских ученых [2, 13, 27, 62, 71, 78]. В основе этой методики лежит представление о термомеханическом состоянии элементарното объема материала в опасной, наиболее нагруженной точке конструктивного элемента, подвергающегося циклическому нагреву [36]. Модель термоциклического нагружения может быть представлена в виде процесса, показанного а рис. 9 рабочий элемент 1 соединяется с эластичным элементом 5 осуществляется циклический нагрев. Элементы 2 3 (жесткость С2=о° Со<С1) обеспечивают дополнительную тепловую деформацик> за счет прогрева и механические связи со стороны прилегающих объемов детали.  [c.18]

Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]

В предыдущих главах рассмотрены динамические явления в машинных агрегатах, имеющих сравнительно простую структуру моделей. К моделям такого вида приводят обычно используемые при их построении допущения, связанные с пренебрежением реальным распределением инерционных параметров, исключением из рассмотрения унруго-диссипативных свойств звеньев передаточного механизма и рабочей машины, существенным ограничением числа учитываемых степеней свободы механической системы и системы управления и пр. Однако для достаточно широкого класса задач динамики управляемых машин адекватные модели машинных агрегатов имеют значительно более сложную структуру. Так, для передаточных механизмов машинных агрегатов с быстроходными двигателями характерны возмущающие воздействия с широким частотным спектром. При исследовании динамических процессов в таких машинных агрегатах возникает необходимость в исиользовании моделей передаточных механизмов с большим числом степеней свободы, отражающих многообразие двин<ений, обусловленных изгибно-крутильными деформациями звеньев, контактными деформациями опор и др. В ряде случаев существенным оказывается учет реального распределения упруго-инерционных параметров.  [c.169]

В условиях, когда имеется опыт длительной безопасной работы высокотемпературных паропроводов (их срок службы при t = = 833 К составляет до 2. 10 ч и предполагается по его продлению до 4-10 ч), целесообразно использовать их в качестве полунатур-ных моделей ответственных элементов энергооборудования, работающего при меньших температурах. Основными критериями, дающими возможность такого подхода, является идентичность химического состава, механических свойств, уровня эксплуатационной нагруженности, характеристик рабочей среды. Консервативные результаты моделирования процесса исчерпания ресурса объекта могут быть обеспечены при исходных свойствах модели не выше, чем у объекта и их изменении во времени не худшем, чем у объекта.  [c.213]

В этой связи пока единственными остаются экспериментальные методы определения эффективности тех или иных влагоулавливающих устройств. Начатые в 1955 г. в БИТМ опыты проводились на моделях турбин при малых окружных скоростях. В качестве рабочего тела использовалась воздуховодяная смесь, полученная путем впрыска в поток воздуха перед турбиной мелко распыленной форсунками воды. Такая методика привлекает простотой, но не позволяет моделировать тепловые процессы, протекающие в реальном потоке влажного пара. Результаты этих опытов позволили подробно исследовать механическую сторону явления сепарации при малых окружных скоростях рабочего колеса.  [c.373]

Натурные испытания, проводимые на эгсапах 5 и 2 MOiyr бьпъ заменены статистическими испытаниями на имитационных моделях процессов контактного взаимодействия деталей к механической обработки их рабочих поверхностей.  [c.337]

Характер колебательного процесса при включении ФС зависит от упругоинерционных характеристик трансмиссии, а также колес, подвески, корпуса машины и от внешних сил сопротивлений. Силы, вызывающие движение машины, создаются двигателем. Колеса машины с грунтом имеют неудерживаемую связь, которая в определенных условиях может нарушаться, что оказывает влияние на поведение механической системы машины. Таким образом, двигатель, ФС, трансмиссия, движитель, машина, рабочее орудие составляют единую динамическую систему, которую необходимо рассматривать при построении расчетной модели для исследования динамических процессов в ФС. Рассмотрим построение такой модели для колесного трактора Т-40 [37, 39].  [c.137]

Уяет механической жарактерястики элеюродвигателя при переходных режимах. При проектировании различных машин и установок часто возникает необходимость определить время переходного процесса при их пуске. При этом следует учитывать способ соединения рабочей машины с ее приводом. Часто используют для этой цели постоянные и сцепные управляемые и самоуправляемые муфты. При постоянных муфтах крутящие моменты на соединяемых валах и их угловые скорости одинаковы или связаны определенными соотношениями. При фрикционных, электромагнитных, магнитоиндукционных муфтах расчетные крутящие моменты на соединяемых валах зависят от коэффициентов трения или сцепления, удельного давления, размеров площади поверхностей трения и ряда факторов. При этом в период переходного процесса между поверхностями трения происходит скольжение между ведущей и ведомой частями муфты. Уравнение движения динамической модели в дифференциальной форме  [c.174]

Эти параметры имеют важнейщее значение для оценки динамичности автоматов и особенно влияния на нее скорости перемещения рабочего звена главного исполнительного механизма и упругости элементов, входящих в силовую систему автомата, образующих единую динамическую модель "пресс - штамп - заготовка". Анализ этой системы позволяет дать качественную и количественную оценку влияния величины динамических факторов на изменение механических свойств материала обрабатываемой давлением заготовки, вибраций автомата и его несущие способности и на изменение показателей качества технологического процесса, параметров и конструкции ср(едств обработки (штампа, машины).  [c.355]

Для выбивки отливок из форм, а стержней из отливок широко используют различное по действию и грузоподъемности оборудование, например решетки выбивные инерционные моделей 31211-31219 грузоподъемностью (по массе отливок) от 10 до 400 кг решетки выбивные транспортирующие моделей 31241-31255 грузоподъемностью от 16 до 100 кг барабаны для выбивки и охлаждения отливок и смеси моделей 31810—31817 грузоподъемностью от 2,5 до 60 кг. Выбивка отливок на этих машинах осуществляется за счет вибраций и вращений литейной формы, в результате которых она разрушается, а формовочная смесь отделяется от отливки. При этом часто от нее отламываются элементы литниковой системы, а в ряде случаев удаляются и стержни. Однако многие стержни имеют высокую прочность и даже после механического воздействия на отливку в процессе выбивки остаются в ней. Поэтому для вьшолнения такой трудоемкой операции используют различные усга-новки для электрогидравлического удаления стержней из отливок и очистки их от остатков отработанной формовочной смеси например, установки моделей 36121А — 36216 с наибольшей массой загружаемых отливок от 2,5 до 40 т и аналогичные по назначению гидравлические камеры периодического действия моделей 37113—37126 с площадью рабочей камеры от 4,5X4,5 до 12X6 м. Вода, подаваемая на отливку струей диаметром 4—8 мм и давлением 10—20 МПа, вымывает из нее даже стержни, изготовленные на таком связующем, как жидкое стекло. При этом происходит и частичная очистка отливок от остатков формовочной смеси.  [c.24]


Помимо анализа основных физических процессов в нак( гелях энергии различного типа в книге приводятся матем 1еские модели и расчетные соотношения, позволяю определять главные параметры и показатели накопите 1 также выбирать эффективные режимы их работы. Боль внимание уделено рассмотрению нестационарных проце 5 накопителях энергии, согласованному анализу элек динамических, механических, тепловых и других явле определяющих рабочие характеристики накопителей. Опис  [c.2]


Смотреть страницы где упоминается термин Механическая модель рабочего процесса : [c.239]    [c.485]    [c.72]    [c.224]   
Смотреть главы в:

Турбинное оборудование гидростанций Изд.2  -> Механическая модель рабочего процесса



ПОИСК



Модели механические

Модели процессов

Процесс механические

Процесс рабочий



© 2025 Mash-xxl.info Реклама на сайте