Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физико-химическое состояние поверхностного слоя (ПС)

Некоторые из этих ограничений взаимосвязаны. Так, физико-химическое состояние поверхностного слоя деталей в значительной мере определяется физико-механическими свойствами материала, точность размеров -состоянием поверхностного слоя.  [c.299]

Отечественный и зарубежный опыт показывают, что даже высококачественный тип покрытия, нанесенный на плохо подготовленную поверхность, не обеспечивает долговременной защиты, поверхности из-за развития подпленочной коррозии и нарушения связи между металлом и покрытием, образовавшимися продуктами химических и электрохимических реакций. Поэтому в содержание мероприятий по подготовке поверхности включают не только удаление органических и неорганических загрязнений, продуктов высокотемпературной и атмосферной коррозии, но и изменение характера микрорельефа и улучшение физико-химического состояния поверхностного слоя защищаемого металла. В связи с этим резко возрастают затраты на подготовку поверхности, например в США они составляют до 60% от общих затрат на защиту от коррозии.  [c.27]


Физико-химическое состояние поверхностного слоя деталей. Силовые и температурные воздействия на поверхность детали при изготовлении и эксплуатации приводят к изменению физических свойств материала в поверхностном слое. Атомы, которые находятся у поверхности, имеют односторонние связи, поэтому обладают нестабильным состоянием. Поверхность детали обладает повьппенной химической активностью и адсорбирует атомы элементов окружающей среды, как при обработке, так и при эксплуатации.  [c.148]

Все это влечет изменение физико-химического состояния поверхностного слоя материала детали, которое может быть характеризовано упрочнением, остаточными напряжениями, структурно-фазовым состоянием и химсоставом.  [c.148]

Физико-химическое состояние поверхностных слоев является также комплексным понятием, включающим в общем случае параметры кристаллической структуры (размеры и форму зерен, текстуру, плотность дислокаций), деформационного упрочнения (степень  [c.43]

II. Физико-химическое состояние поверхностного слоя  [c.38]

Во-вторых, поверхностный слой формируется в результате разнообразных технологических процессов, которые не только образуют необходимую форму поверхности и изменяют свойства материала, но и вызывают ряд побочных явлений, изменяющих свойства твердого тела у его поверхности. Физико-химические параметры поверхностного слоя, его структура и напряженное состояние, как правило, сильно отличаются от свойств всего объема материала.  [c.70]

Адгезионно-деформационная или молекулярно-механическая теория трения твердых тел (внешнего трения) дает представление о природе износа, главных действующих факторах, и показывает возможность описания основных закономерностей трения. Согласно этой теории процесс трения сопровождается комплексом явлений взаимодействием контактирующих поверхностей, физико-химическим изменением поверхностных слоев трущихся пар, разрушением (износом) поверхностей. В связи с существенной дискретностью фрикционного контакта, различием температурного и напряженного состояния в отдельных точках контакта,  [c.160]

Процесс ЭЭУ применяется для восстановления изношенных участков деталей, изменения физико-химических свойств поверхностного слоя и для покрытия деталей тонким слоем благородного металла. Технологические показатели ЭЭУ определяются рядом взаимосвязанных факторов [16, 20] количеством переносимого материала с анода на катод в единицу времени, зависящим от величины энергии, которая выделяется на МЭП частотой следования импульсов взаимодействием легирующего и легируемого материала, т. е. характером взаимодействия материала анода и катода во время контакта и изменением температуры перехода упрочненного слоя в хрупкое состояние.  [c.152]


В то же время основной задачей теории изнашивания является установление критериев, с помощью которых можно было бы предсказать скорость (или интенсивность) изнашивания, наступление предельного состояния поверхностных слоев, переходы от одного вида изнашивания к другому. Наиболее общим и перспективным в исследовании и описании процессов изнашивания является термодинамический подход, в основе которого лежат законы сохранения энергии и принцип увеличения энтропии при необратимых процессах (первое и второе начала термодинамики). Целесообразность такого подхода также объясняется тем, что в основе современных теорий прочности твердых тел и строения вещества лежат энергетические концепции, а процесс трения всегда сопровождается диссипацией энергии. При этом совокупность происходящих физико-химических процессов, обусловливающая изменение структуры материала, энтропии трибосистемы и ее изнашивание (разрушение), может быть описана с помощью законов неравновесной термодинамики и термодинамических критериев (энерге-  [c.111]

Общая картина напряженного состояния поверхностного слоя будет представлять собой результат суммарного воздействия напряжений, возникающих вследствие кристаллизации и фазовых превращений. Последние, налагаясь на тепловые, могут иногда уменьшать их, а иногда и увеличивать. Если в результате суммарного действия температурного и структурного факторов произойдет уменьшение объема оплавленного поверхностного слоя, то участки сплава, расположенные глубже, будут препятствовать этому. В результате в затвердевшем поверхностном слое возникают растягивающие напряжения. Увеличение же объема оплавленного слоя при его охлаждении приводит к тому, что у поверхности возникают сжимающие напряжения. Из этого следует, что величина и глубина распространения остаточных напряжений в поверхностном слое, очевидно, зависят от параметров импульсов, свойств обрабатываемого материала и физико-химических свойств оплавленного поверхностного слоя.  [c.557]

Применение СОЖ вносит соответствующие, пока еще не выясненные до конца, изменения в физико-химические процессы, протекающие в зоне контакта инструмента с обрабатываемой поверхностью, обусловливающие напряженное состояние поверхностных слоев.  [c.58]

Технологический цикл производства деталей конструкций (механические, термические, физико-химические и другие виды обработки полуфабрикатов) оказывает существенное влияние на их эксплуатационные характеристики [531]. Образование единицы новой поверхности связано с определенной работой, затрачиваемой на изменение энергетического состояния поверхностного слоя, которое может привести как к положительным, так и отрицательным эффектам в формировании технологической наследственности.  [c.330]

К показателям качества машины и ее деталей относится также физико-химическое состояние и физико-механические свойства поверхностного слоя материала, из которого сделана деталь.  [c.32]

В процессе нагружения трением — приработки и дальнейшей эксплуатации — происходит коренное изменение состояния поверхности. Исходный технологический рельеф, как правило, быстро исчезает. Развивается рабочий рельеф поверхностей трения, формирование которого определяется механикой нагружения, структурным состоянием поверхностных слоев и физико-химическим действием рабочих сред.  [c.23]

Влияние обрабатываемого материала. Химический состав, физико-механические свойства и структура материалов оказывают большое влияние на допустимую скорость резания. На величину скорости резания при обработке металлов оказывает влияние как состояние металла (горячекатаный, отожженный, холоднокатаный), так и состояние поверхностного слоя заготовки. Например, наличие корки, т. е. более твердого, чем основной металл, слоя металла на поверхности заготовки вынуждает снижать скорость резания.  [c.110]


Обычно свойства изделий машиностроения выражают через показатели качества, объединяемые в группы. Основными группами показателей качества изделий являются назначения, надежности, технологичности, стандартизации и унификации и др. Названные Фуппы объединяют несколько показателей, каждый из которых характеризует соответствующий параметр или совокупность параметров изделия. Например, показатель долговечности любой изнашиваемой в процессе эксплуатации механической пары, представленный ресурсом этой пары, будет зависеть от геометрических параметров сопряженных деталей (размеры, допуски размеров, отклонения формы и взаимного расположения поверхностей), параметров шероховатости и волнистости поверхностей, физико-механи-ческих параметров материала деталей и состояния поверхностных слоев (химический состав, структура, твердость и др.), параметров, характеризующих режим работы и условия эксплуатации и т.д.  [c.315]

Точность размеров элементов деталей при всех прочих других одинаковых условиях влияет на важнейшее свойство деталей, подверженных в процессе эксплуатации изнашиванию, на их долговечность (рис. 1.2.1). В данном примере минимальный ресурс детали-втулки, изнашивающейся по внутренней поверхности, будет изменяться от > соответствующего допуску Т В до для допуска Т"В. Долговечность деталей, изнашивающихся в процессе эксплуатации, существенно зависит от интенсивности износа, представленной на схеме углом наклона линии износа к оси абсцисс, что зависит от материала детали и применяемых методов упрочняющей технологии. Последние призваны придавать поверхностным слоям деталей такое физико-химическое состояние, при котором достигались бы требуемые эксплуатационные свойства, в том числе высокая износостойкость трущихся поверхностей.  [c.41]

После шлифования поверхностные слои в значительной степени насыщены структурными дефектами (дислокациями, вакансиями и др.) и, следовательно, находятся в особом физико-химическом состоянии. Такое состояние поверхности не может не сказаться на свойстве этого слоя, а также на кинематике различных процессов, протекающих при последующем нагреве. Таким образом, исследование физического состояния и структуры поверхностных слоев отличается большой сложностью.  [c.27]

Кратко рассмотренные выше операции химической обработки конструкционных материалов перед нанесением покрытий преследуют цель создания однородной, свободной от жировых загрязнений и окислов поверхности. Однако в ряде случаев комплекса этих операций бывает недостаточно, чтобы обеспечить надежное сцепление покрытия с основой. Тогда прибегают к дополнительной обработке, которую в отличие от обычных щироко применяемых методов можно назвать специальной. Сюда относятся различные виды обработки, изменяющие физико-химическое состояние или природу тончайшего поверхностного слоя, следствием чего является усилие адгезионных сил между основой и покрытием [138].  [c.95]

Физическое состояние и напряженность поверхностного слоя после обработки электрическим методом зависят от физико-химического механизма снятия припуска с обрабатываемой поверхности и условий, определяющих его протекание.  [c.130]

Исследования в области механики контактных взаимодействий, химических и диссипативных процессов в поверхностных и приповерхностных слоях трущихся материалов показывают, что материал в указанных зонах в процессе трения резко изменяет свое физическое состояние, меняя механизм контактного взаимодействия. Происходят существенные изменения в суб- и микроструктуре приповерхностных микрообъемов. Изучение кинетики структурных, фазовых и диффузионных превращений, прочностных и деформационных свойств активных микрообъемов поверхности, элементарных актов деформации и разрушения, поиск численных критериев оптимального структурного состояния, оценок качества поверхности должны быть фундаментальной основой в поисках материалов и сред износостойких сопряжений. В настоящее время исследованы закономерности распределения пластической деформации по глубине поверхностных слоев металлических материалов, кинетика формирования вторичной структуры, процессы упрочнения, разупрочнения, рекристаллизации, фазовые переходы, которые, в свою очередь, зависят от внешних механических воздействий, состава, свойств трущихся материалов и окружающей среды. Важное значение в физике поверхностной прочности имеет определение связи интенсивности поверхностного разрушения при трении и величины развивающейся пластической деформации. Сложность указанной проблемы заключается в двойственности природы носителей пластической деформации. Дислокации, дисклинации и другие дефекты структуры являются концентраторами напряжений, очагами микроразрушения. В то же время движение дефектов (релаксационная микропластичность) приводит к снижению уровня напряжений концентратора, следовательно, замедляет процесс разрушения. Условия деформации при трении поверхностных слоев будут определять преобладание одного из указанных механизмов, от которого будет зависеть интенсивность поверхностного разрушения. Межатомный масштаб связан с характерным сдвигом, производимым элементарными носителями пластической деформации (дислокациями). В легированных металлических системах величина межатомного расстоя-  [c.195]

Выше отмечалось, что трибосистемы относятся к открытым термодинамическим системам, обменивающимся энергией и веществом с внешней средой. Трение является процессом преобразования внеи1ней механической энергии во внутреннюю в виде колебательных и волновь]х движений частиц трибосистемы, сопровождаемым термическими, термоэлектронными, акустическими, химическими и другими явлениями. Основная часть этой энергии превран ается в тепловую и отдается во внешнюю среду, другая идет на изменение физико-химического состояния поверхностных слоев трущихся материалов. Диссипация энергии соответствует увеличению энтропии (dS > 0). Энергетический баланс трибосистемы описывается уравнением [9]  [c.112]


Общая для всего мира тенденция улучшения рабочих параметров ГТД за счет увеличения степеней сжатия как следствие приводит к появлению большого числа коротких лопаток с собственными частотами колебаний даже по первой форме в области высоких звуковых частот циклов. Увеличение частоты / при данном ресурсе эксплуатации Тэ автоматически приводит к росту циклической наработки N. Поскольку ресурс Тэ также имеет тенденцию к росту, увеличивается относительное число усталостных повреждений среди возможных нарушений работоспособности деталей ГТД. Стала актуальной проблема оптимизации технологии коротких лопаток и связанных с ними элементов дисков по характеристикам сопротивления усталости на высоких звуковых частотах и эксплуатационных температурах, которые, как и частота нагружения, становятся все более высокими. Из-за жестких требований к весу деталей и сложности их конструкции в каждой из них имеет место около десятка примерно равноопасных зон, включающих различные по форме поверхности и концентраторы напряжений гладкие участки клиновидной формы, елочные пазы, тонкие скругленные кромки, га.лтели переходные поверхности), ребра охлаждения, малые отверстия, резьба и др. Даже при одинаковых методах изготовления, например при отливке лопаток, поля механических свойств, остаточных напряжений, структуры и других параметров физико-химического состояния поверхностного слоя в них получаются различными. К этому следует добавить, что из-за различий в форме обрабатывать их приходится разными методами. Комплексная оптимизация технологии изготовления таких деталей по характеристикам сопротивления усталости сразу всех равноопасных зон без использования ЭВМ невозможна. Поэтому была разработана система методик, рабочих алгоритмов и программ [1], которые за счет применения ЭВМ позволяют на несколько порядков сократить число технологических испытаний на усталость, необходимых для отыскания области оптимума методов изготовления деталей, а главное строить математические модели зависимости показателей прочности и долговечности типовых опасных зон деталей от обобщенных технологических факторов для определенных классов операций с общим механизмом процессов в поверхностном слое. Накапливая в магнитной памяти ЭВМ эти модели, можно применять их для прогнозирования наивыгоднейших режимов обработки новых деталей, которые в авиадвигателестроении часто меняются без трудоемких испытаний на усталость. Построение  [c.392]

Для изучения первого периода разрушения могут быть использованы металлографический, рентгенографический, магнитометрический, резистометрический, акустический, электрохимический и другие анализы, фиксирующие изменение тонкой структуры и физико-химического состояния поверхностных слоев металла, а тЛже микрогеометрии поверхности и сплошности изделий.  [c.39]

Состояние поверхности труб является одним из важнейших факторов, определяюш,их надежность нефте- и газопроводов. Технологическая наследственность изготовления труб, механические воздействия при погрузочно-разгрузочных транспортных и монтажных операциях, некачественная очистка перед нанесением заш,итных покрытий обусловливают гетерогенность (неоднородность) физикомеханических и физико-химических свойств поверхностного слоя, что снижает сопротивление трубопроводов коррозионно-усталост-ному разрушению в условиях циклического изменения нагрузок и воздействия активных сред.  [c.252]

Природа упрочняющего эффекта во многом ост.ается еще неясной. Экспериментальные данные свидетельствуют, что упрочнение стали при обработке кислыми ингибированными растворами сопровождается выглаживанием дна концентраторов напряжений и образованием на поверхности металла защитной фазовой пленки. Это напоминает известный эффект Иоффе. Однако свести эффект упрочнения к эффекту Иоффе нельзя, так как не все ингибиторы вызывают его а лишь некоторые, т. е. наблюдается специфичность действия ингибиторов. Эффект упрочнения в некотором роде противоположен эффекту Ребиндера и связан с изменением физико-химических свойств поверхностных слоев стали. Л ожно предположить, что поверхностно-активное вещество, взаимодействуя с поверхностью. металла, повышает его поверхностную энергию а и, в соответствии с уравнением Гриффитса, прочность Р = Т/ Е а/С возрастает. Таким образом, ингибированный раствор формирует определенное благоприятное физико-механическое состояние поверхностных слоев стали.  [c.92]

Электроэрозионная обработка имеет ограниченное применение для обработки силовых деталей авиационных и ракетных двигателей из жаропрочных сплавов. Но поскольку в некоторых случаях этот метод применяется, например, для обработки лопаток турбин за одно целое с диском в ТНА, то следовало выяснить состояние поверхностного слоя и его влияние на усталостную прочность. Исследование показало, что поверхностный слой сплава ЭИ437А после электроэрозионнрй обработки и последующей термообработки (см. табл. 3.6, режим 35) имеет глубину упрочненного слоя до 35—50 мкм. Интенсивность упрочнения поверхностного слоя при этом незначительна и составляет примерно 13—15%. Такая глубина и степень упрочнения поверхностного слоя связаны с особенностями физико-химических процессов электроэрозионной обработки высокими мгновенными температурами на отдельных участках обрабатываемой поверхности, насыщением поверхностного слоя, преимущественно по границам зерен, углеродом из рабочей жидкости (керосина) и образованием в нем карбидов хрома и титана [1 ].  [c.109]

Величина силы трения, возникающей на единичной микронеровности контактирующих тел, зависит от ее геометрической конфигурации, напряженного состояния в зоне контакта, механических свойств поверхностного слоя менее л<есткого из взаимодействующих тел и физико-химического состояния поверхностей контактирующих тел. В общем случае мнкронеровности поверхности не имеют правильной геометрической формы, их форма близка к форме сегментов эллипсоидов, большая полуось которых совпадает с направлением обработки поверхности. При вычислениях сил трения и интенсивностей износа наиболее широко распространена сферическая модель шероховатой поверхности. Согласно этой модели микронеровности считают шаровыми сегментами постоянного ра. Диуса.  [c.191]

Особо следует рассмотреть вопрос проверки влияния режимов дезактивации на работоспособность выбранных материалов пары трения. Процесс дезактивации заключается в воздействии на поверхность оборудования растворов определенных химических веществ, растворяющих не только насосные загрязнения, но и снимающих некоторый поверхностный слой металлических деталей, имеющий наведенную активность [7]. Если дезактивирующий раствор будет контактировать с материалами подшипников, то не исключена возможность ухудшения работоспособности подшипников из-за изменения физико-химических свойств и структурного состояния поверхностного слоя. Поэтому стойкость материалов пары трения к действию дезактивирующих растворов должна проверяться в достаточно длительных ресурсных испытаниях после проведения дезактивации ГЦН по принятой технологии. Эти испытания могут быть выполнены на стенде, сооруженном для обкатки опытного образца насоса при спецификационных режимах и дооборудованном системами приготовления, введения и слива дезактивирующих растворов.  [c.227]


В дополнение к основному показателю качества изделий и их деталей (точности) имеется ряд других показателей. К ним, например, относятся физико-химическое состояние и физикомеханические свойства поверхностного слоя материала, из которого сделана деталь. Под физико-механическими свойствами поверхностного слоя понимаются твердость, структурное состояние, характер и знак остаточных напряжений и др. В необходимых случаях на отклонения показателей каждого из этих свойств следует устанавливать надлежащие допуски исходя из служеб-  [c.60]

Термическая и химико-термическая обработка применяются с целью изменения физико-механических и физико-химических свойств металлов, определяющих технологические и эксплуатационные характеристики деталей. Улучшение свойств металла при термической обработке является следствием структурных и фазовых изменений, а также изменений напряженного состояния металла (отжиг, нормализация, закалка и отпуск, улучшение, старение). Химико-термические процессы протекают с диффузионным насыщением поверхностных слоев деталей различными элементами при этом химический состав поверхностного слоя изменяется. С этой целью применяют цементацию (науглероживание), азотирование, цианирование, алитирование, хромирование, силици-рование. В результате неравномерности нагрева и охлаждения при термической обработке возникают термические напряжения, а неравномерность структурных превращений во времени и по сечению данной заготовки вызывает структурные напряжения. Все это приводит к деформации деталей.  [c.234]

В резьбовых соединениях весьма распространено схватывание в витках резьбы, возникающее в процессе эксплуатации. Определим предельные усилия затяжки, вызывающие схватывание в резьбе. Анализ взаимодействия твердых тел при внешнем трении показывает, что схватывание и задир между взаимодействующими телами наблюдаются при нарушении условий внешнего трения. Условия внещнего трения не будут выполняться при нарушении сплошности поверхностных слоев более деформируемого твердого тела 70]. Нарушение сплошности этих слоев зависит от величины виедрення микронеровности и от физико-химического состояния поверхности, влияющего на атомно-молекулярные взаимодеьютвия на границе раздела взаимодействующих тел в зонах фактического касания.  [c.250]

Современные науки - физика твердого тела и материаловедение обосновали и убедительно показали взаимосвязь химического состава, струк1уры и свойств твердых тел, и в частности конструкционных н инструментальных материалов. Особенность условий эксплуатации материалов в трибосистеме, т.е. в условиях трения и изнашивания, состоит в том, что поверхностные слои контактирующих деталей испытывают разнообразное энергетическое воздействие, находясь в сложном напряженно-деформированном состоянии. Статические и динамические нагрузки инициируют высокие внутренние напряжения и выз(.1вают упругие и пластические деформации, которые в условиях эксплуатации приводят к усталости и разрушению (изнапшванию) поверхностного слоя.  [c.268]

Соединить в монолит два яли несколько компонентов можно с помощью прокатки, горячего прессования и термокомпрессионной (диффузионная) сварки, при которой прочное соединение образуется в результате пластической деформации и физико-химического взаимодействия в поверхностных слоях колтактирующих материалов, находящихся в твердом состоянии. Пламя высококалорийного газа, сгорающего в струе кислорода, электрическая дуга не всегда могут быть использованы при создании композиционных материалов.  [c.140]

Упруго-пластическая деформация поверхностного слоя в процессе механической обработки вызывает изменение структурночувствительных физико-механических и химических свойств в металле поверхностного слоя по сравнению с исходным его состоянием. В деформированном поверхностном слое возрастают все характеристики сопротивления деформированию пределы упругости, текучести, прочности, усталости. Изменяются характеристики прочности при длительном статическом и циклическом нагружении в условиях высоких температур. Снижаются характеристики пластичности относительное удлинение и сужение, повышается хрупкость (уменьшается ударная вязкость), твердость, внутреннее трение, уменьшается плотность. Металл в результате пластической деформации упрочняется.  [c.50]

Стекло упрочненное, т. е. приведенное в высокопрочное состояние Оизг — = 50-ь 100 кПмм и выше), получают преимущественно в результате ослабления раз-упрочняющего влияния поверхностных дефектных слоев на обычном промышленном (низкопрочном) стекле. Это достигается удалением таких слоев химическим травлением в растворах плавиковой кислоты (химическое упрочнение), путем создания в этих слоях блокирующих напряжений сжатия (упрочнение технической закалкой или ионным обменом на поверхности) или, путем улучшения состояния ( залечивания ) и физико-химической защиты самой де( ктной поверхности стекла с помощью разнообразных защитных покрытий — кремнийорганических, окисно-металлических и др.  [c.462]

Математическое моделирование, закон поверхностного разрушения твердых тел при трении в общем случае должны учитывать физические, химические, механические явления, контактную ситуацию, изменение геометрических характеристик твердых тел во времени, кинематику движения, структуру и состав поверхностных и приповерхностных слоев, образование химических поверхностных соединений, состояние смазочного слоя. Получение уравнений, характеризующих в общем случае процесс поверхностного разрушения при трении, должно базироваться на синтезе эксперимента и математических моделей, учитывающих физико-химические процессы, механику сплошных сред, термодинамику и материаловедческий аспект проблемы. Разрабатываемый теоретико-инвариантный метод расчета поверхностного разрушения твердых тел при трении основывается на уравнениях эластогидродинамической и гидродинамической теории смазки, химической кинетики, контактной задачи теории упругости, кинетической теории прочности и учитывает теплофизику трения, адсорбционные и диффузионные процессы. Цель данных исследований —в получении из анализа и обобщений экспериментальных результатов критериальных уравнений с широкой физической информативностью структурных компонентов, полезных для решения широкого класса практических задач и необходимых для ориентации в направлении постановки последующих экспериментальных работ. Исследования в данной области будут углубляться и расширяться по мере развития знаний о физико-химических процессах, г[ротекающих при трении, получения количественных характеристик и развития математических методов, которые обобщают опытные наблюдения.  [c.201]


Смотреть страницы где упоминается термин Физико-химическое состояние поверхностного слоя (ПС) : [c.399]    [c.154]    [c.87]    [c.234]    [c.205]    [c.9]    [c.164]    [c.57]    [c.179]   
Смотреть главы в:

Технологическое обеспечение качества изделий машиностроения  -> Физико-химическое состояние поверхностного слоя (ПС)



ПОИСК



Поверхностные состояния

Слой поверхностный

Состояние слоев

Химическая физика



© 2025 Mash-xxl.info Реклама на сайте