Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод Определение экспериментальное

По методу определения (экспериментальный или расчетно-теоретический) и месту, занимаемому в расчетах на прочность, различают следующие виды напряжений.  [c.9]

Поскольку этот результат находится в противоречии с выводами, вытекающими из теоретических исследований, то сам метод определения экспериментальных значений критических нагрузок заслуживает более пристального внимания. Трудности в этом определении хорошо, известны и обусловлены, в частности, тем, что Действительный момент потери устойчивости удается редко зафиксировать кроме того, на поведение пластинки оказывают влияние первоначальные несовершенства и закритическое упрочнение, а, также возможное нелинейное поведение материала пластинки.  [c.228]


ЗАДАЧИ РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНЫХ МЕТОДОВ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ РЕЖИМА  [c.171]

Одной из основных задач, стоящих перед коррозионистами, является развитие научных исследований процессов коррозии и разработка на их основе более эффективных методов противокоррозионной защиты металлов. Для этого необходимо использование последних достижений в области экспериментальной физики, физической химии и металлографии, в частности более точных и удобных ускоренных методов определения коррозионной стойкости металлов, сплавов и их заменителей.  [c.426]

В данном разделе предложена методика численного расчета субкритического и закритического вязкого роста трещины при статическом и импульсном нагружениях. Методика основана на применении МКЭ в квазистатической и динамической упруго-пластической постановке с использованием теории пластического течения и параметра нелинейной механики разрушения — интеграла Т. Она позволяет контролировать развитие трещины при вязком разрушении с учетом неоднородных полей ОН, разнородности материала конструкции по механическим свойствам, реальной геометрии конструкции и ее формоизменения в процессе деформирования. Моделирование трещины осуществляли путем дискретизации полости трещины специальными КЭ (см. подразделы 4.1.3 и 4.3.1). Также излагается предложенный экспериментально-численный метод определения параметра /i материала, отвечающего страгиванию трещины.  [c.254]

Существуют различные экспериментальные и расчетные методы определения ОСН и деформаций. Комплексное исследование ОСН расчетными и экспериментальными методами, сопоставление соответствующих данных позволяют судить о достоверности получаемых значений и характере распределения остаточных напряжений (ОН) в сварном соединении. Кроме того, появляется возможность оценить корректность и приемлемость принятых в расчетах допущений. В связи с этим в данном разделе рассматриваются основные расчетные и экспериментальные методы определения ОСН и выявляются преимущества и недостатки, присущие каждой группе методов.  [c.269]

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ОСН  [c.269]

ЭКСПЕРИМЕНТАЛЬНО-РАСЧЕТНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ОН  [c.271]

В настоящем разделе представлен разработанный [104] экс-периментально-расчетный метод определения ОН в любом сечении двумерного тела произвольной формы (напряжения определяются в плоскости, перпендикулярной рассматриваемому сечению). Метод базируется на поэтапном решении обратной задачи упругости, исходной информацией для которой являются экспериментально замеренные в произвольной точке тела деформации, возникающие в процессе его разрезки по сечению, в котором определяются ОН.  [c.271]


Экспериментальное определение моментов инерции. Один из экспериментальных методов определения моментов инерции тел (метод маятниковых колебаний) основан на использовании формулы (68) периода малых колебаний маятника.  [c.328]

Экспериментальные методы определения сварочных деформаций и напряжений  [c.419]

Экспериментальные неразрушающие методы определения НДС элементов конструкции, основанные на установлении связи между деформацией кристаллической решетки и действующими напряжениями. Портативный неразрушающий контроль (НК) НДС основывается на различных физических принципах  [c.336]

Все известные экспериментальные методы определения теплофизических характеристик материалов делятся на две группы стационарные и нестационарные.  [c.124]

Экспериментальные методы определения степени черноты покрытия  [c.162]

Кроме описанного выше координатного метода определения положения центра тяжести тел применяют экспериментальные способы. Рассмотрим два из них.  [c.76]

Если на ось 2 рядом с барабаном насадить последовательно твердое тело, момент инерции которого неизвестен, то, замерив путь s, пройденный грузом по наклонной плоскости и соответствующий промежуток времени т, можно определить неизвестный момент инерции. Это — один из экспериментальных методов определения моментов инерции твердых тел.  [c.220]

Р 50-54-45-88. Расчеты и испытания на прочность. Экспериментальные методы определения напряженно-деформированного состояния элементов машин и конструкций.— М. ВНИИНМАШ, 1988.- 48 с.  [c.359]

Таким образом, для инфракрасной области спектра наблюдается удовлетворительное согласие теории, развитой Друде, с данными эксперимента и открывается возможность вычисления а и с по формулам (2.27) из экспериментально найденных оптических констант металла п и лае. Следует отметить, что обратный путь (получение п и пае из измерения а и е) не приводит к успеху, так как в области столь высоких частот отсутствуют достаточно точные методы определения этих электрических констант.  [c.106]

Значение энергии с частицы может быть оценено по длине среднего пробега частицы (11.16 11.17), найденной экспериментально. Значение импульса р частицы можно найти из соотношения (11,48), измеряя экспериментально радиус кривизны г траектории частицы в магнитном поле с известной индукцией В. Этот метод определения т имеет невысокую точность для частиц малой энергии, которые при своем движении в камере Вильсона испытывают сильное рассеяние на атомах и ядрах газа, наполняющего камеру, что приводит к неточному определению радиуса кривизны траектории. Для частиц больших энергий соотношение (11.50) дает хорошие значения для массы.  [c.52]

Существует несколько экспериментальных методов определения времени жизни частиц. Укажем некоторые из них.  [c.342]

Таким образом, с помощью метода малых возмущений можно получить значение критического числа Рейнольдса. Начиная с того места на пластине, где число Рейнольдса достигает своего критического значения, начинают нарастать возмущения с определенной длиной волны. Далее вниз по потоку становятся неустойчивыми возмущения и с другими длинами волн. Наконец, на некотором расстоянии от начала потери устойчивости ламинарное течение переходит в турбулентное. Критическое число Рейнольдса, определенное экспериментальным путем из наблюдения перехода ламинарного режима течения в турбулентный, соответствует тому месту пластины, где турбулентность потока приводит к перестройке всего течения. Поэтому найденные пз экспериментов критические числа Рейнольдса обычно превышают по величине их теоретические значения.  [c.312]

Линейная зависимость С от температуры подтверждается экспериментально. Такие измерения позволяют определять плотность состояний вблизи уровня Ферми Ер, причем именно измерения электронной теплоемкости являются одним из прямых методов определения зонной структуры твердых тел.  [c.126]


ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ПОВЕРХНОСТНОГО ТРЕНИЯ  [c.205]

В настоящее время в экспериментальной практике используются разнообразные методы определения турбулентных характеристик потока. Однако все они могут быть разделены на две большие группы. К первой группе относят методы, основанные на введении в поток индикатора (пыль, мелкие частицы), по поведению которого можно сделать вывод о параметрах турбулентности. Это методы, основанные на эффекте Доплера (лазерный, акустический анемометры), методы мгновенной фоторегистрации, разнообразные оптические методы, методы электронных пучков и т. д. Указанные методы имеют небольшую разрешающую способность приборов, для них характерны трудности юстировки оптической системы, большой объем экспериментальной информации, а также определенные трудности расшифровки показаний аппаратуры. В то же время эти методы не искажают структуры потока и находят применение в тех случаях, когда другие методы неприменимы (например, при исследовании структуры вязкого подслоя).  [c.257]

Экспериментальные методы определения теплопроводности основаны на решении уравнения теплопроводности [1, 2].  [c.338]

Аналогичные вычисления, выполненные для различных смесей углеводородов, подобных рассмотренной в примере 1, с использованием уравнения состояния Бенедикт — Вебб — Рубина, показывают хорошее совпадение рассчитанных величин с экспериментальными данными. Для характеристики многокомпонентной системы недостаточно знать только температуру и давление. Если известны состав одной фазы, а также температура или давление, точные вычисленн5 методом последовательных приближений непригодны. Для случаев, когда известны экспериментальные данные по температуре, давлению и составу, коэффициент распределения для каждого компонента вычисляют для концентрации, определенной экспериментально с помощью уравнения (8-84) и соотношения  [c.276]

Системы снижения токсичности двигателей применяют в первую очередь для обеспечения санитарных норм на содержание вредных веществ в атмосфере объектов с ограниченным воздухообменом — производственных и складских помещениях, объектах строительства, рудниках, шахтах, карьерах, на городском маршрутном транспорте. Режимы использования двигателей в этих случаях определены сложившейся технологией проведения работ, заданным графиком движения и могут быть представлены в виде моделей эксплуатационных циклов работы двигателя и автомобиля (машины), аналогичных стандартизированным испытательным циклам. Нагрузочные и скоростные режимы работы двигателя в цикле могут быть определены либо непосредственным режимометрированием, либо аналитически, путем проведения тягового расчета автомобиля по заданным параметрам движения. По найденным режимам работы двигателя в поле токсической характеристики определяют часовые выбросы токсичных компонентов, а при необходимости, зная скорость движения автомобиля, и пробеговые выбросы. Непосредственное определение нагрузки двигателя в эксплуатационных условиях представляет собой трудоемкую экспериментальную задачу, поэтому целесообразно использовать аналитический метод определения нагрузки.  [c.103]

В работе [168] предложен метод определения-скорости распространения усталостной трещины в коррозионной среде при различных частотах и асимметриях нагружения, удовлетворительно описывающий большое количество экспериментальных данных для различных материалов и коррозионных сред. Суть метода заключается в следующем. Вводятся параметры — СРТ на воздухе dLldx) и в среде (dLldx) ср, определяемые по зависимостям  [c.199]

В настоящей работе предлагается экспериментально-расчетный метод определения Ju с использованием диаграммы P — AL, полученной для одного образца [130, 133]. В основе метода лежит концепция постоянства параметра Т после старта трещины, иными словами, концепция однозначного соответствия диаграммы Р — AL с условием Т (АL) = onst = he.  [c.260]

Учитывая изложенное, можно заключить, что экспериментальные методы измерения ОСН не могут дать полного представления о распределении напряжений по всему объему конструкции. Применение их ограничено случаями определения напряжений по какому-либо сечению узла (при этом известны только компоненты тензора напряжений, действующие в плоскости, перпендикулярной этому сечению), по поверхности изделия, а также оценкой средних по толщине соединения напряжений. Оценка локальных напряжений в высокоградиентных полях возможна как интегральная. Для детального исследования областей с высокоградиентньши полями напряжений целесообразно применять расчетные методы, а экспериментальные использовать для оценки корректности и применимости принятых в расчетах допущений.  [c.271]

Числовые значения массопереносных характеристик D, б, и, с материалов при различных температурах и влагосодержаниях определяются экспериментально. В тгастоящее время известно несколько методов определения массопереносных характеристик, разработанных советскими и зарубежными исследователями.  [c.508]

Метод определения длительной прочности материала в сероводородсодержащих средах может быть упрощен с помощью использования экспериментальных данных об испытании образцов. Так, при выборе сталей для трубопроводов, эксплуатируемых в сероводородсодержащих средах, одним из основных критериев пригодности металла является величина порогового напряжения. Сталь, выдержавшая испытания в среде NA E [51] в течение 720 ч при постоянной нагрузке (равной, как правило, 0,800,2), считается пригодной для изготовления трубопроводов, по которым транспортируются сероводородсодержащие среды. Трубопроводы, выполненные из этой стали, безотказно функционируют в течение гарантийного срока эксплуатации (для трубопроводов ОНГКМ — 12 лет [41]).  [c.123]


Годом позже Друде предложил более совершенный метод определения оптических параметров металла. Согласно методу Друде, для определения и и х достаточно измерить сдвиг фаз Аф = ср ( — ср между параллельными и перпендикулярными компонентами отраженного поля и коэффициент отражения R при некотором значении угла падения. Далее п и х можно связать с параметрами среды е ИОВ уравнениях Максвелла. Как показывают расчеты, результаты подобного вычисления не дают удовлетворительного согласия с экспериментально вычисленными значениями я и х в видимой области. Расхождение усиливается с увеличением частоты падающего света. Такое расхождение между теорией и экспериментом можно обьяс-iHiTb влиянием связанных электронов на п и х. Действительно, при развитии вышеупомянутой теории мы исходили из представления о металле как о системе, состоящей из полностью свободных электронов. При увеличении частоты света (для видимой и ультрафиолетовой областей) в оптических явлениях участвуют также связанные электроны, отсюда и вытекает расхождение теории с экспе-рпмеьггом. В инфракрасной области, где оптические свойства металлов Б основном обусловлены наличием свободных электронов, согласие можно считать удовлетворительным. Вообще мы не вправе  [c.65]

В других случаях приходится интегрировать уравнение (е) приближенными методами, применяя, например, метод Адамса — Штермера ). Это приходится делать тогда, когда функциональная зависимость между Н и V, определенная экспериментально, будет иметь более сложный вид, чем зависимость (Н).  [c.328]

Авторы [2] при помощи аналогии топологического характера положительно отвечают на фундаментальный вопрос о возможности существования в природе магнитных монополей (полюсов магнита, существующих отдельно друг от друга, или, иными словами, магнитных зарядов). Исключительная важность данного вопроса заключается в том, что обнаружение (или доказательство невозможности существования) монополей позволило бы ответить на многие принципиальные вопросы естествознания. В частности, обнаружение магнитных зарядов было бы первым серьезным подтверждением теорий Великого объединения, единым образом описывающих электромагнитное, слабое и сильное взаимодействия [3] Суть аналогии состоит в создании в слоистых жидких кристаллах нематического и холестерического типов определенной топологии распределения векторов, описывающих ориентацию составляющих кристалл молекул. Данная топология аналогична топологии распределения векгоров магнитного поля вокруг гипотетического монополя Дирака. Таким образом, распределение векгоров ориентации молекул в жидких к-ристаллах можно визуально наблюдать в поляризационный микроскоп. Это позволяет по особенностям поведения жидких кристаллов выдвигать предположения о возможном поведении магнитных монополей и принципиальных методах их экспериментального обнаружения.  [c.15]

Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов о затмениях отдаленных светил и о годичном параллаксе звезд. Точные лабораторные методы определения скорости света, выработанные впоследствии, используются при геодезической съемке. Теоретическое обоснование и экспериментальное исследование принципа Допплера в оптике сделали возможным решение задачи о лучевых скоростях светил или движущихся светящихся масс (протуберанцы, каналовые лучи) и привели к весьма широким астрономическим обобщениям. Сравнительное измерение скорости света в вакууме и различных средах послужило в свое время в качестве ехрег1теп1ит сгис1з для выбора между волновой и корпускулярной теориями света, а впоследствии привело к понятию групповой скорости, имеющему большое значение и в современной квантовой физике. Сравнение скорости распространения света с константой с максвелловской теории, обозначающей, с одной стороны, отношение между электромагнитными и электростатическими единицами заряда, а с другой — скорость распространения электромагнитного поля, сыграло важнейшую роль при обосновании электромагнитной теории света. Наконец, вопрос о влиянии движения системы на скорость распространения света и вся обширная совокупность связанных с ним экспериментальных и теоретических проблем привели к формулировке эйнштейновского принципа относительности — одного из самых значительных обобщений  [c.417]

Метод прерываний (метод Физо). Первый экспериментальный метод определения скорости света земных источников был разработан в 1849 г. Физо. Схема опыта Физо изображена на рис. 30.4, а. Свет, распространяющийся от источника 5, частично отражается от полупрозрачной пластинки Р и направляется к зеркалу М. На пути луча располагается прерыватель света — быстро вращающееся зубчатое колесо К, ось которого 00 па-ра,ялелы1а лучу. Лучи света проходят через промежутки между зубьями, отражаются зеркалом М и направляются обратно через зубчатое колесо и пластинку Р к наблюдателю.  [c.199]

Под электроотрицательностью атома подразумевают величину (Ё+1)/2. Потенциал ионизации I — величина, надежно определяемая экспериментально, а для слагаемого Е (электронного сродства) пока нет однозначных методов определения. Поэтому, задавщись целью построить щкалу ион-  [c.97]

Разработкой теории столь сложного физического влияния, каким является ги,а,равлнче-ский удар, наука обязана Н. Е. Жуковскому. В его работе О гидравлическом ударе в водопроводных трубах, вышедшей в свет в 1899 г., были впервые получены дифференциальные уравнения гидравлического удара и дан их общий интеграл, на основе которого была подробно проанализирована физическая картина процесса, рассмотрены распространение ударных воли в разветвляющихся трубах и их отражение в тупиках, установлен также метод определения наибольших значений дав- лений, возникающих ири быстрых (внезапных) закрытиях за,движек, дается обстоятельная экспериментальная проверка результатов, полученных теоретическим путем, н рассмотрен, наконец, ряд других практически важных вопросов.  [c.135]

Исследования Ф. Г. Галимзянова /33 - 56/ показали, что динамическая скорость не является масштабом скорости для турбулентной вязкости, и определенные допущения следует реализовать уже в математических моделях, которые исключают зависимость конечных соотношений для кинематических и динамических параметров от частных экспериментальных результатов. Кроме этого Ф. Г. Галимзянов дал /33 - 56/ единый метод определения связей (коэффициентов) между распределенными и эквивтентными параметрами потока вязкой среды.  [c.35]

Расчетные и экспериментальные методы определения теплового состояния основных узлов газовых турбин с воздушным охлаждением. Т. 2. Руководящие указания. — Л. ЦКТИ и ИТТФ АН УССР, 1972. Вып. 29, 224 с.  [c.94]

Стандартный метод [4] экспериментального определения параметров То и р основан (рис. 6.1) на 1) вдавливании образца сферической формы, изготовленного из более твердого материала, в направлении нормали к поверхности плоского контробразца, изготовленного из менее твердого материала, с силой, вызывающей пластическую деформацию последнего 2) приведении образца во вращение относительно оси, направленной по нормали к поверхности контробразца 3) измерении моментов, развиваемых силами трения в контакте образца и контробразца, разгружении образцов и измерении размеров отпечатков на контробразце и 4) повторении испытаний при нагрузке на два порядка меньше. При этом считается, что фактическая поверхность контакта равна сферической контурной поверхности зоны вдавливания.  [c.126]



Смотреть страницы где упоминается термин Метод Определение экспериментальное : [c.331]    [c.427]    [c.371]    [c.158]   
Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.534 ]



ПОИСК



Анализ понятия о константе термической инерции на основе теории регулярного режима и физическое обоснование нового метода ее экспериментального определения

Аналитический метод определения показателей и коэффициентов в экспериментальных формулах

Гипотетический метод определения истинных газосодержаний, вывод расчетных зависимостей, их сравнение с экспериментальными данными

Графо-аналитический и экспериментальные методы определения угловых коэффициентов

Деформирование - Методы экспериментального определения сопротивления деформированию

Коэффициент поглощения газа, сечение поглощения и методы их экспериментального определения

Метод Неравномерность распределения Определение экспериментальное

Метод ускоренного определения предела выносливости по результатам измерения длины усталостной трещины в процессе испытания Экспериментальный поверка ускоренных методов испытаний зубьев мелкомодульных зубчатых колес. В. М. Благодарный, Курилов, Е. Г. Головенкин

Метод экспериментального определения механических напряжений в ТВС

Методы экспериментального определения коэффициента сухого трения

Методы экспериментального определения коэффициента трения

Методы экспериментального определения коэффициентов теплоотдачи

Методы экспериментального определения моментов инерции тела

Методы экспериментального определения относительного сопротивления материалов в лабораторных условиях

Методы экспериментального определения сопротивления деформированию

Методы экспериментального определения теплофизическжх свойств веществ

Методы экспериментального определения теплофизическис свойств веществ

Методы экспериментального определения теплофизических характеристик объектов

Методы экспериментального определения топливной экономичности автомобиля

Методы экспериментального определения тяговых качеств автомобиля

Методы экспериментального определения характеристик разрушения

Методы экспериментального определения характеристик трещиностойкости

Методы экспериментального определения центра тяжести тела

Методы экспериментальные определения напряжений

Нагрев, кривые экспериментальные методы Для определения солидуса

ОПРЕДЕЛЕНИЕ ТЕПЛОВЫХ СВОЙСТВ МАТЕРИАЛОВ Первый метод регулярного режима Теория первого метода и его экспериментальное осуществление, Термостаты. Акалориметры

Определение объемов запоминающих устройств и методы экспериментального исследования фрагментов системы

Основные параметры и методы их экспериментального определения

Оценка различных методов экспериментального определения нелинейной восприимчивости второго порядка

Приближенный экспериментальный метод определения поверхностного трения

Расчетно-экспериментальный метод. определения эксплуатационных нагрузок

Расчётно-экспериментальный метод определения материальных функций

Тейлор Чейз, Экспериментальное определение нестационарных Голдсмит. одноосных напряжений в стержне методом динамической фотопластичности

Унифицированные методы расчетного и экспериментального определения напряжений, деформаций, перемещений н усилий

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ДЕМПФИРОВАНИЯ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ СИСТЕМ

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК КОНСТРУКЦИЙ С ЖИДКОСТЬЮ (Г.Н. Микишев)

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВ Метод определения термических свойств веществ

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ УСИЛИИ И ДЕФОРМАЦИИ

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК УСТОЙЧИВОСТИ Метод свободной балансировки для определения коэффициента центра давления

Экспериментальная апробация метода определения коэффициента сопротивления частиц

Экспериментальная проверка метода ускоренного определения режимов резания

Экспериментально-аналитические методы определения структурной энтропии

Экспериментально-теоретический метод определения искажений поверхности линзы при изменении внешних условий

Экспериментальное определение деформаций и напряжений методом тензометрии

Экспериментальное определение скоростных характеристик методом задающего воздействия с постоянным ускорением

Экспериментальные методы

Экспериментальные методы определения ОСН — Экспериментально-расчетный метод определения ОН

Экспериментальные методы определения износа

Экспериментальные методы определения коэффициентов поглощения атмосферных газов

Экспериментальные методы определения критериев качества и диагностических параметров ПР

Экспериментальные методы определения механических свойств покрытий

Экспериментальные методы определения напряжений внутри литой изоляции

Экспериментальные методы определения некоторых характеристик контакта

Экспериментальные методы определения остаточных напряжений

Экспериментальные методы определения площади , фактического контакта

Экспериментальные методы определения поверхностного трения

Экспериментальные методы определения радиационного давления

Экспериментальные методы определения сварочных деформаций и напряжений

Экспериментальные методы определения сварочных деформаций, напряжений и перемещений

Экспериментальные методы определения сварочных напряжений

Экспериментальные методы определения сдвиговой прочности

Экспериментальные методы определения сил, действующих на резец

Экспериментальные методы определения собственных напряжении п перемещений в сварных конструкциях

Экспериментальные методы определения степени черноты покрытия

Экспериментальные методы определения температуры

Экспериментальные методы определения теплопроводности

Экспериментальные методы определения точек ликвидуса

Экспериментальные методы определения точности механизмов, моментов трогания и движущих моментов

Экспериментальные методы определения трешностойкостя материала

Экспериментальные методы определения трещиностойкости материала

Экспериментальные методы определения фазы

Экспериментальный метод определения стабильности затяжки резьбовых соединений



© 2025 Mash-xxl.info Реклама на сайте