Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинематические непрерывного действия

Снижению веса машин способствуют прогрессивные технические задания, новые требования их эксплуатации, применение более совершенных конструктивных решений, кинематических схем и приводов, точных расчетов и нагрузок, а также повышение уровня технологии их изготовления. За счет новой технологии широкие возможности для снижения веса машин откроются при освоении непрерывной разливки стали. Это дает возможность создания стана непрерывного действия, питаемого непосредственно от кристаллизаторов, устанавливаемых перед станом. В этом случае отпадает необходимость в блюмингах и слябингах и во втором нагреве. Исходная заготовка должна получаться в кристаллизаторе и из него через печь для выравнивания температуры поступать в стан для прокатки готовой продукции. Такое изменение технологии  [c.179]


Рис. 10.8. Двухвальный смеситель непрерывного действия (а) и кинематическая схема его Рис. 10.8. Двухвальный <a href="/info/117717">смеситель непрерывного действия</a> (а) и кинематическая схема его
Элементарные процессы или операции в зависимости от конструктивной и кинематической схемы машины могут производиться, как уже было указано (см. 2), в определенной последовательности, образуя повторяющиеся рабочие циклы (машины цикличного или прерывного действия, например, одноковшовый погрузчик, кран, одноковшовый экскаватор), либо одновременно (машины непрерывного действия), более или менее длительно, с короткими перерывами, вызванными технологией работы (например, многоковшовый экскаватор, землесос, бетономешалка непрерывного действия).  [c.43]

Специфическим видом транспортных устройств линий непрерывного действия являются транспортные роторы автоматических линий роторного типа. Типовая единичная группа роторной линии, состоящая из рабочего и двух транспортных роторов, показана на рис. 1У.34. Как видно, все три ротора кинематически жестко связаны между собой, причем скорость транспортного движения зависит от радиусов и угловой скорости транспортных роторов. Скорость транспортного перемещения инструментальных блоков рабочего ротора зависит от заданного технологического режима обработки, т. е. от скоростей резания, штамповки, запрессовки, сборки и т. д.  [c.283]

В последние годы все большее распространение получают электронные потенциометры, которые имеют ряд преимуществ перед обычными механическими главными преимуществами являются непрерывность действия, простота устройства кинематического механизма, большая чувствительность.  [c.22]

Описаны кинематические схемы и конструкции погрузочно-разгрузочных машин и оборудования, применяемых на железнодорожном транспорте приведены их технические и эксплуатационные характеристики и режимы использования. Рассказано о назначении и классификационных признаках машин периодического и непрерывного действия, системах и методах рационального управления машинами, исполнительных механизмах машин. 2-е изд. вышло в 1978 г.  [c.176]


Книга содержит описание конструкций и кинематических схем современных погрузочно-разгрузочных машин и вспомогательного оборудования, применяемых на железнодорожном транспорте их технические и эксплуатационные характеристики теорию и расчет основных базовых и эксплуатационных параметров этих машин. Рассматриваются составные части, режимы работы, назначение погрузочно-разгрузочных машин прерывного и непрерывного действия, а также требования, предъявляемые к ним вспомогательные устройства, инвентарь и оборудование.  [c.2]

После включения реле замыкается его нормально разомкнутый контакт и соединяет первую обмотку реле 1Р с ЭП затем реле 1Р включается и размыкает свой нормально замкнутый контакт реле 2Р отключается, а сигнал обратной связи с потенциометра обеспечивает сведение электродов и возобновление процесса обработки. Диоды Д1, Да и Дз служат для разделения цепей постоянного и переменного тока. Высокие мгновенные скорости перемещения электрода, обеспечиваемые гидравлическим регулятором подачи, позволяют разводить электроды на расстояние до 1 мм и затем вновь вводить их в работу за время, измеряемое десятыми долями секунды. Нетрудно видеть, что сложные кинематические схемы и системы управления обусловлены прежде всего дискретностью работы суппортов, рабочих щпинделей (зажим и разжим) поворотного стола и др. Существенное упрощение кинематической схемы и конструкции механизмов управления возможно лишь при переходе к автоматам непрерывного действия, где доминирующими являются непрерывные перемещения исполнительных устройств по окружности с минимальным количеством или даже при отсутствии дискретных элементов, требующих наличия соответствующих команд управления.  [c.40]

В качестве примера на рис. 1Х-22 показана кинематическая схема вертикального автомата непрерывного действия типа КА-350.  [c.40]

Нетрудно видеть, что столь сложная кинематика и система управления обусловлены прежде всего дискретностью работы суппорта, рабочих шпинделей, поворотного стола и др. Существенное упрощение кинематики и конструкции механизмов управления возможно лишь при переходе к автоматам непрерывного действия, где доминирующими являются непрерывные перемещения исполнительных устройств по окружности, с минимальным количеством или даже при отсутствии дискретных элементов, требующих наличия соответствующих команд управления. В качестве примера на рис. Х-19 показана кинематическая схема вертикального автомата непрерывного действия КА-350 конструкции автора. Общий вид автомата был приведен выше на рис. 1Х-25. Привод главного движения автомата осуществляется от электродвигателя 7 (А02-81-4 N == 40 кВт). Движение через муфту 6 передается на первичный вал коробки скоростей, откуда через колеса 3, 4 я 5 на сменные колеса 8 скоростей.  [c.293]

Оба рассмотренных станка —1265 и КА-350 могут быть налажены на обработку одних и тех же деталей, т. е. с точки зрения технологического диапазона они идентичны. Однако сравнение кинематических схем показывает, что непрерывность действия в сочетании с прогрессивным методом обработки — попутным точением позволила резко уменьшить конструктивную сложность автомата при несоизмеримо более высокой его производительности. Автомат КА-350 по принципу агрегатирования относится к машинам параллельно-последовательного действия (см. гл. V). В частном случае, если на станке имеется лишь один комплект режущих инструментов для обработки деталей, имеем пример последовательного агрегатирования, когда деталь в каждом шпинделе последовательно обрабатывается всеми резцами.  [c.294]

Мелких частиц, являющихся звеньями сложных кинема тических цепей. В точке контакта частиц действуют силы трения и одностороннего сжатия. В момент перехода от статического состояния к состоянию относительного движения (начало истечения) происходит разрыв в этой сложной кинематической цепи. В результате возникает новое сочетание контактов, в которых возрастающие силы стремятся восстановить состояние относительного покоя. Этому сопутствует изменение кривизны силовых линий, пока относительный покой вновь не сменится относительным движением, что приведет к очередному срыву. При непрерывном истечении процесс будет периодически повторяться.  [c.307]


Дискретизируют непрерывные связи по контуру в соответствии с шагом сетки, аппроксимирующей рассматриваемую область. Таким образом, при переходе от заданной области к основной системе вместо кинематических связей на контуре будут действовать неизвестные усилия, число которых равно числу t снятых дискретных связей в дальнейшем будем обозначать эти усилия X i=, 2,. .., ).  [c.114]

Заметим, что при применении метода Рэлея требование удовлетворения функцией v z) всех граничных условий является излишним. Разрывы вторых производных функций и (г) соответствуют приложенным сосредоточенным моментам, разрывы третьих производных — сосредоточенным силам. Следовательно, если функция v z) непрерывна вместе с первой производной и удовлетворяет граничным условиям, наложенным на прогиб и угол поворота, она всегда может быть представлена как функция прогиба некоторой балки под действием распределенной нагрузки, сосредоточенных сил и моментов и доказательство теоремы Рэлея сохраняет силу. Будем называть граничные условия, налагаемые на v z) и v z) кинематическими условиями, а на момент и перерезывающую силу, т. е. на и" (z) и и " (z) — динамическими условиями.  [c.203]

ВИЯМИ. При силовом замыкании решают динамическую задачу подбора силы, обеспечивающей непрерывный контакт звеньев, образующих высшую пару. Такой силой в кулачковых механизмах является сила упругости пружины, а в тихоходных механизмах — сила тяжести звеньев. Произведя анализ сил, действующих на звенья и кинематические пары исследуемого механизма, определяют приведенный момент М, который характеризует в технологических машинах общее действие сил сопротивления на ведущее (входное) звено, а в машинах-двигателях—действие движущих сил на кривошип или главный вал. Знание величины приведенного момента уИ и характера изменения его за цикл работы технологической машины позволяет определить необходимую мощность двигателя.  [c.270]

По признаку длительности работы механизмы можно подразделить на механизмы непрерывного и кратковременного действия. Примером первых могут служить конвейеры, транспортирующие машины, кинематические цепи станков и т. п. При проектной нагрузке установившееся движение этих машин происходит с равновесной номинальной скоростью и характеризуется номинальной мощностью, которую должен развивать двигатель. Важнейшим показателем качества этих машин является величина вредных сопротивлений, оцениваемая к. п. д. К механизмам кратковременного действия относятся всевозможные пусковые устройства, серводвигатели систем автоматического управления, реле, выключатели и т. п. Их важнейшей характеристикой, зависящей от величины приведенного момента инерции, является время срабатывания, характеризующее быстродействие.  [c.71]

Механизмы одностороннего действия связывают две кинематические цепи и передают движение только в одном направлении. Эти механизмы нашли широкое применение в различных областях современного машиностроения и используются, например, в стопорных механизмах (остановах) для предотвращения движения в обратном направлении, в обгонных механизмах (муфтах) для автоматического включения и выключения ведущего и ведомого элементов машин в зависимости от соотношения скоростей этих элементов. В механизмах подач они используются для преобразования колебательного движения в прерывистое поступательное. В импульсных передачах они служат для преобразования колебательного движения в непрерывное вращательное движение в одном направлении. Механизмы одностороннего действия часто используются как предохранительные устройства от обратного хода. Так, например, гибкие проволочные валы могут передавать  [c.3]

Под кулачковым механизмом понимают совокупность трех элементов стойки — базы механизма, ведущего звена — кулачка и ведомого звена— толкателя или коромысла. Кулачок и толкатель, соприкасаясь, образуют высшую кинематическую пару. Кулачок задает движение толкателю по определенному закону. Кулачок большей частью имеет непрерывное вращательное движение. С целью замены трения скольжения между кулачком и толкателем на трение качения толкатель снабжают роликом. При этом коэффициент полезного действия механизма повышается, а при соответствующем подборе материала и размеров кулачка и ролика снижается их износ.  [c.112]

Опустим руку в воду и начнем ее перемещать, изменяя скорость движения руки. Очевидно, при этом будет ощущаться возрастающее сопротивление воды. Последнее объясняется не тем, что скорость руки увеличилась — это следствие, а тем, что движущая сила руки (мускульное напряжение) увеличилась, вызвав увеличение силы сопротивления воды, и оба эти обстоятельства — и именно только эти — определили скорость перемещения руки. Возникло действие (усиленное мускульное напряжение), которое вызывало противодействие (упругость воды), как в любой кинематической паре по закону Ньютона, и это непрерывное взаимодействие упомянутых сил обусловило закон изменения скорости руки в воде.  [c.24]

Для сокращения погрешностей, возникающих в кинематических цепях системы СПИД, можно использовать также систему адаптивного управления размером динамической настройки фд. Стабилизировать размер динамической настройки фд кинематической цепи можно, как это выше было рассмотрено, за счет сохранения крутящего момента, действующего во время обработки. Это может быть достигнуто путем изменения рабочей подачи. В тех случаях, когда изменение величины рабочей подачи вызывает опасное увеличение нагрузки на зуб фрезы или большую шероховатость обрабатываемой поверхности, одновременно с возрастанием рабочей подачи повышается и скорость резания. Управляя размером динамической настройки фд кинематической цепи системы СПИД, одновременно с повышением точности достигается и увеличение производительности обработки. Это дало наиболее эффективные результаты при нарезке косозубых зубчатых колес, при которой момент резания в период врезания непрерывно возрастает, а в период выхода фрезы убывает до величины момента холостого хода. Следовательно, обработка с увеличенной подачей в момент начала обработки (и надлежащей скоростью резания) и постоянно убывающей до величины, установленной для периода установившегося резания, а затем с постепенно. возрастающей подачей до первоначальной величины, позволяет сократить машинное время в среднем до 30%. Стабилизация размера динамической настройки фд позволяет при этом повысить точность обработки на один класс и увеличить размерную стойкость фрез до 30%. Управлять размером динамической настройки фд кинематической цепи можно также и путем изменения жесткости или упругого закручивания ее звеньев.  [c.30]


В связи с изложенным все звенья кинематических и размерных цепей системы СПИД непрерывно изменяют свои параметры (размеры, повороты поверхностей и т. п.), поэтому систему СПИД рассматривают как упругую систему со многими степенями свободы. Результатом действия рассмотренных факторов являются погрешности размеров, относительных поворотов и отклонений от геометрических форм поверхностей обрабатываемых деталей.  [c.194]

Подводя итог, можно сказать, что непрерывное возрастание гидродинамического давления в слое смазки достигается совместным действием таких факторов, как клиновая форма масляного слоя, вязкость смазки и скорость относительного скольжения смазанных тел. При этом клиновая форма не должна нарушаться какими-либо конструктивными особенностями поверхностей смазанных твердых тел. Немаловажное значение здесь имеют и такие факторы, как точность и чистота изготовления элементов кинематических пар.  [c.215]

Условимся сопротивлением самоустанавливаемости называть силу (или момент), которая расходуется на добавочное движение, необходимое для самоустанавливаемости механизма. При непрерывной самоустанавливаемости оно ухудшает распределение сил в кинематических парах, что необходимо учитывать. При одинарной самоустанавливаемости его сопротивление действует только при первых оборотах и в дальнейшем на распределение сйл не влияет.  [c.44]

Сообщим точкам тела, находящегося в равновесии под действием заданных сил и перемещений, бесконечно малые и непрерывные смещения бм,-, совместимые с граничными условиями кинематически возможные смещения), предполагается, что при этом не возникает разгрузка (точнее, будем рассматривать минимальный принцип для  [c.313]

Собственный вес и силы инерции. Предыдущие формулы относятся к стержням постоянного сечения, нагруженным силами на концах. Может случиться, что силы распределены непрерывным образом по поверхности или объему стержня. Так, например, замурованный в стену стержень, если вытягивать его за конец, встречает сопротивление со стороны скрепляющего его со стеной цемента по всей поверхности заделки. Пример распределенной по объему силы — 9Т0 сила тяжести. При рассмотрении динамических задач о напряжениях в движущихся стержнях можно, согласно принципу Даламбера, вводить непрерывно распределенные по объему силы инерции. Во многих случаях ввиду малости деформаций достаточно определять кинематические элементы движения так, как если бы тело было абсолютно жестким. Таким образом ускорения, а следовательно, и силы инерции могут быть найдены заранее. Способ решения таких задач, которые можно назвать квазистатическими, ничем не отличается от способа решения статических задач сопротивления материалов. Специфика динамических задач обнаруживается тогда, когда нельзя пренебречь силами инерции, происходящими от движения, связанного с деформацией. Таковы, например, задачи о колебаниях стержней и о действии ударной нагрузки.  [c.38]

ДЛЯ коротких тел вращения колец, фланцев, втулок, шестерен. Однако для обработки валов по схеме TAB потребовались бы не десятки, а сотни резцов. В результате автомат непрерывного действия непрерывно простаивал бы из-за частой смены вышедших из строя резцов. Для надежной роторной обработки валов необходимо значительно уменьшить число резцов. Это возможно при замене конструктивного смещения резцов по длине обрабатываемой заготовки (см. рис. 7.8, а) на кинематическое движение подачи Ds (V ) (рис1 7.8, б). Новый способ определяется сочетанием трех движений по формуле AjTBA . Применительно к токарной обработке соотношение скоростей определяется формулой (10. .. 20)TB10" т.е. окружная скорость заготовки на полтора порядка выше окружной скорости шпиндельного блока (кругового движения подачи) и на три порядка - скорости поступательного движения резца (подачи) [А.с. 465274 (СССР)]. Для роторной обработки валов в горизонтальном положении используется блок  [c.230]

В большинстве случаев компенсаторы имеют иное назначение — уничтожать чрезмерно большие зазоры в передачах, подшипниках, направляющих и т. п. и таким образом замыкать кинематическую цепь. Иначе под действием переменных по величине и направлению усилий во время работы станка точность движений его частей, например, шпинделя, супорта, стола и т. д., не могла бы быть дос 1игнута. Такие компенсаторы также могут быть сконструированы как непрерывно действующие однако в отличие от коррекционных устройств они не компенсируют погрешностей, обусловленных неточностью изготовления и сборки. Поэтому во многих случаях компенсаторы этого рода конструируют не как автоматические, а как периодически регулируемые от руки. Примеры таких компенсаторов изображены на фиг, 21 и 22.  [c.66]

Оба рассмотренных станка 1К282 и КА-350 могут применяться для обработки одних и тех же изделий, т. е. с точки зрения технологического диапазона они идентичны. Однако сравнение кинематических схем показывает, что непрерывность действия в сочетании с прогрессивным методом обработки — попутным точением — позволяет резко уменьшить конструктивную сложность автомата при несоизмеримо более высокой его производительности.  [c.42]

В мешалках непрерывного действия геометрические размеры и кинематические параметры подбираются такими, чтобы наряду с заданной производительностью было обеспечено требуемое время перё-мешивания для получения качественной смеси. Это время зависит от свойств приготавливаемой смеси и находится лабораторным путем.  [c.336]

Бегущая волна деформации на гибких и упругих телах обладает многими замечательными кинематическими свойствами, нозволяющими использовать ее как звено различных механизмов. К таким св011ствам относятся редуцирующее действие (частицы тела движутся медленнее бегущей по нему волны), преобразующее действие (волна движется непрерывно, а частицы тела совершают шаговые движения), свойство массоиереиоса в прямом либо обратном нанравлениях, свойство волнового само-  [c.9]

Тем не менее на практике весьма многие мыслительные процессы смоделировать гораздо легче, чем воспроизвести столь бесхитростные с отвлеченно философской точки зрения движения руки. Сегодня специалисты еще не ставят перед собой задачу точно скопировать живую руку с ее бесконечно богатым набором функций. Достаточно сказать, что у руки 27 степеней свободы. Такой подвижности пока нет ни у одного механизма. В реализации сложных движений одновременно участвуют десятки подвижных сочленений, связок, мышц и сухожилий, причем их действия непрерывно контролируются и направляются мозгом с помощью разветвленной цепи рецепторов. Даже сильно упрощенная модель руки, которую представляет собой сегодняшний манипулятор — ис-кл-ючительно сложный пространственный механизм с многочисленными шарнирами, кинематическими парами, независимо перемещающимися звеньями (фотография такого манипулятора помещена на обложке этой книги). Каждый, кто в студенческие годы, столкнувшись с элементарным расчетом кривошипно-шатунного механизма или простого маховика, расшифровывал курс ТММ (теория механизмов и машин) словами тут моя могила , сразу представит себе громоздкие математические формулы, густо нафаршированные корнями и тригонометрическими функциями, бесконечными рядами и интегралами, без которых не обойдешься при проектировании простейших манипуляторов.  [c.287]

Сообщим точкам тела, находящегося в равновесии под действием заданных сил и перемещений, бесконечно малые и непрерывные смеид,ения Ьи , 8и, Ьи , совместимые с граничными условиями кинематически возможные смещения)-, предполагается, что при этом не возникает разгрузка. Согласно началу возможных перемещений сумма работ всех внешних и внутренних сил на возможных перемещениях около состояния равновесия равна нулю. Работа внешних сил  [c.67]


Но Гюйгенс, применив такие соображения с целью установить наличие центробежной силы, из этих же кинематических соображений вывел и зависимость этой силы от скорости и радиуса окружности. Это согласовывалось с его общим релятивистским кредо механика, и здесь он верен Декарту. Ньютон тоже опирается на Декарта, но он ищет меру той реальной силы, которая искажает инерционное прямолинейное движение, в механизме воздействия этой силы. Таким зримым, ощутимым механизмом могло быть только действие одного тела на другое при соприкосновении, при ударе. В той задаче о центростремительной силе, которую рассматривал Ньютон, воздействие осуществляется непрерывно, без ударов но Ньютон их вводит, аппроксимируя ими непрерывное движение, и вводит потому, что есть мера ударного воздействия — изменение количества движения. Доказательством тому, что все оправдано на этом пути, будет закон для центростремительной силы, который Ньютон впоследствии вывел независимо от Гюйгенса, и все те грандиозные результаты в небесной механике, которые он получил и проверял, прежде чем опубликовать их в Prin ipia .  [c.115]

Успех научного исследования во многом зависит от удачного выделения главной части явления и умелого отвлечения от деталей, быть может и важных самих по себе, но с точки зрения целей данного исследования играющих второстепенную роль. Так, инженер, изучающий движение некоторого механизма, будет сначала рассматривать отдельные звенья этого механизма как абсолютно твердые тела, определит кинематическую картину движения механизма и действие сил в нем, после этого, желая рассчитать механизм на прочность, откажется от абсолютной твердости звеньев, учтет их упругость, а при некоторых условиях, и пластичность. При этих расчетах ему придется воспользоваться существующими схемами упругого и пластичного тела, основанными на рассмотрении реальных твердых тел как сплошных, непрерывных образований, подчиняющихся законам теории упругости или пластичности. Основные элементарные законы макромеханики твердого тела, принимаемые в классической теории как некоторые фундаментальные допущения, могут быть с тем или другим приближением выведены из законов микромеханики атомов.  [c.13]

Основное механическое оборудование кузнечных цехов обычно классифицируют по кинематическим и динамическим признакам. При такой классификации наиболее типичные машины, используемые в кузнечных цехах, можно, подразделять на четыре группы (рис. 221) I группа — молоты, которые осуществляют ударную деформацию металла за счет энергии, накапливаемой падающими частями к моменту соприкосновения их с заготовкой. Молоты подразделяют на пневматические ковочные, паро-воздушные для ковки и штамповки, фрикционные штамповочные и рычажные ковочные. По характеру действия к этой группе машин — орудий примыкают также фрикционные винтовые, прессы И группа—гидравлические прессы, объединяющие группу машин с гидравлическим или парогидравлическим приводом, осуществляющих деформацию металла давлением за счет энергии, непрерывно подводимой в течение всего периода деформации металла, а группа машин в конструктивном отношении весьма разнообразна и имеет широкое распространение П1 группа — кривошипные машины — представляет собой обширную группу эксцентриковых, коленчатых, кулачковых и коленорычажных машин. Эти машины обрабатывают металл давлением в основном за счет энергии, накапливаемой вращающимися на холостом ходу деталями (маховик и т. д.), и частично за счет энергии, подводимой в процессе деформации. Применяют кривошипные машины для разнообразных штамповочных операций, некоторые типы машин используются и для ковки IV группа — ротационные машины — объединяет различные штамповочные маханизмы, у которых рабочий инструмент имеет вращательное движение. Энергия, расходуемая на деформацию металла этими машинами, подводится в течение всего периода обработки металла.  [c.371]

Основой кинематического построения станка является то, что движение обката и деления осуществляется наиболее простым и надежным способом при похмощи непрерывного зацепления зубчатых колес. Качательное движение люльки осуществляется при помощи особого реверсивного механизма с составным зубчатым колесом, которое находится в постоянном зацеплении с шестерней, связывающей его с остальной кинематической цепью. В цени обката и деления нет никаких делительных или других механизмов прерывистого действия, поэтому станок работает плавно при самых высоких режимах резания. Зубчатые передачи обеспечивают непрерывную и жесткую связь между обкатной люлькой и шпинделем бабки изделия. В результате станок не разлаживается во время работы, а простота и жесткость этой цепи обеспечивают многолетнюю эксплуатацию его без ремонта.  [c.230]

Основное механическое оборудование кузнечных цехов обычно подразделяют по кинематическим и динамическим признакам на четыре группы I группа — молоты, которые осуществляют ударную деформацию металла за счет энергии, накапливаемой падающими частями к моменту соприкосновения их с заготовкой. Молоты подразделяют на пневматические ковочные, паровоздущные для ковки и штамповки, фрикционные штамповочные и рычажные ковочные. По характеру действия к этой группе машин-орудий относят также фрикционные винтовые прессы II группа — гидравлические прессы, объединяющие группу машин с гидравлическим или парогидравлическим приводом, осуществляющих деформацию металла давлением за счет энергии, непрерывно подводимой в течение всего периода деформации металла. Эта группа машин в конструктивном отношении  [c.487]

Должна лежать в соприкасающейся плоскости той кривой, по которой располагается изогнутая ось, и когДа Бине (В1пе1) ввел уравнение моментов относительно касательной, то Пуассон на основании этого уравнения пришел к заключению,-что крутящий момент постоянен. Лишь постепенно возникло представление о двух изгибающих пара в двух главных плоскостях, и был найден способ определения меры закручивания. Когда эти элементы теории были получены, стало ясно, что, зная соотношения, связывающие, изгибающие и крутящие моменты с кривизной и степенью кручения и пользуясь обычными условиями равновесия, можно определить форму изогнутой оси, степень кручения стержня вокруг этой оси, а также растягивающую и Перерезы вающую силу в любом данном сечении. Изгибающие и крутящие. пары, а также растягивающая и перерезывающая силы, происходят от усилий, приложенных к, элементам поперечных сечений, и правильные выражения для этих пар и сил следует искать при помощи общей теории. Но здесь возникает затруднение, состоящее в том, Что общие уравнения применимы лишь тогда, когда смещения малы между тем для таких тел, как спиральные пружины, смещения ни в коем случае нельзя считать малыми. КирхГоф (КтеЬЬоК) первый преодолел Это затруднение. Он показал, что общие уравнения применимы со всей строгостью к малой части тонкого стержня, все линейные размеры которой того же порядка малости, что и диаметры, поперечного сечения. Он считал, что уравнения равновесия или движения такой части можно в первом приближении упростить, пренебрегая силами -инерции и массовыми силами. Исследования, содержащиеся в теории Кирхгофа, носят в значительной своей части кинематический, характер. Когда тонкий стержень подвергается изгибу и скручиванию, то каждый его элемент испытывает деформацию, аналогичную тем деформациям,. которые имеют место в призмах Сен-Венана но соседние элементы должны непрерывным образом переходить один в Другой. Для того чтобы выразить непрерывность этого рода, необходимы некоторые условия. Эти условия принимают форму диференциальных уравнений, которые связывают относительные смещения точек малой части стержня с относительными координатами этих точек и с величинами, которые определяют положение данной части относительно всего стержня в целом. Из этих диференциальных уравнений Кирхгоф получил картину деформации в элементе стерл я и нашел выражение для потенциальной энергии, отнесенной к единице -длины, через относительное удлинение, компоненты кривизны и степень кручения. Он получил уравнения равновесия и колебаний, варьируя функцию, Выражающую энергию. В случае, когда тонкий стержень подвергается действию внешних сил, приложенных лишь иа его концах, уравнения, которыми определяется форма изогнутой оси, идентичны, как показал Кирхгоф, с уравнениями движения тяжелого твердого тела вокруг неподвижной точки. Эта теорема носит название кинетической аналогии Кирхгофа .  [c.36]


Смотреть страницы где упоминается термин Кинематические непрерывного действия : [c.437]    [c.67]    [c.294]    [c.21]    [c.20]    [c.213]    [c.25]    [c.193]    [c.443]   
Машиностроение Энциклопедический справочник Раздел 4 Том 9 (1950) -- [ c.323 ]



ПОИСК



Непрерывное действие



© 2025 Mash-xxl.info Реклама на сайте