Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение механическая - Динамика

Описание задания. Цель расчета — приобретение опыта кинематического и кинетостатического описания движения плоских механизмов, ознакомление с методикой решения обратных задач динамики механических систем.  [c.76]

Решение второй задачи динамики для криволинейного движения свободной точки. Изложение методов решения второй задачи динамики составляет, по существу, основное содержание всех разделов динамики точки и динамики механической системы, в частности, твердого тела. Для материальной точки, как уже было сказано, эта задача состоит в том, чтобы по заданным силам, действующим на точку, массе точки и начальным условиям движения точки (начальному ее положению и начальной скорости) определить закон движения этой точки.  [c.456]


Следует, однако, отметить, что этот порядок решения второй задачи динамики механической системы обычно не применяется, так как он слишком сложен и почти всегда связан с непреодолимыми математическими трудностями. Кроме того, в большинстве случаев при решении динамических задач бывает достаточно знать некоторые суммарные характеристики движения механической системы в целом, а не движение каждой из ее точек в отдельности. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики механической системы, являющихся следствиями уравнений (4). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии.  [c.570]

Принцип Даламбера дает общий метод составления уравнений движения любой несвободной механической системы, причем эти уравнения имеют ту же форму, что и уравнения статики. Этот метод оказывается особенно полезным при решении тех задач динамики, где требуется найти динамические реакции связей, т. е. реакции, возникающие при движении системы. При этом, если пользоваться уравнениями (7), то из рассмотрения будут исключены все наперед неизвестные внутренние силы. В случаях, когда требуется определить реакции внутренних связей, необходимо данную механическую систему расчленить на части так, чтобы по отношению к этим частям искомые силы стали внешними. С помощью принципа Даламбера решаются также многие задачи, в которых требуется определить ускорения тел, входящих в состав данной механической системы.  [c.727]

Какие меры механического движения м.т. используются при решении второй задачи динамики Как они определяются  [c.182]

Механизм представляет собой механическую систему с двусторонними не зависящими от времени связями, движущуюся под действием сил. Поэтому при решении некоторых вопросов динамики механизмов с одной степенью свободы можно применить закон изменения кинетической энергии.  [c.203]

В настоящей главе рассмотрим решение прямой задачи динамики машин —определение движения машины по заданным силам [16]. При изучении этого вопроса представляется целесообразным рассматривать основные разновидности машин (машины-двигатели и исполнительные машины) не разобщенно, а совместно, особенно в тех случаях, которые являются характерными для современного машиностроения (когда машина-двигатель и исполнительная машина соединяются между собой непосредственно через муфту или через индивидуальный привод, образуя так называемый машинный агрегат). Примером таких агрегатов служат турбогенераторы тепловых и гидравлических электростанций. В турбогенераторе тепловой электростанции вал паровой или газовой турбины непосредственно соединяется с валом генератора переменного или постоянного тока. В такой установке двигатель непрерывно преобразует тепловую энергию в механическую работу, которая передается генератору электрического тока и в нем опять непрерывно преобразуется в электрическую энергию.  [c.199]


Как уже упоминалось, полученных уравнений неразрывности, количеств движения и полной энергии, а также теоремы моментов, приведшей к установлению симметрии тензора напряжений, недостаточно для решения конкретных задач динамики жидкости и газа. Дальнейшее продвижение в этом направлении требует дополнительных, оправдываемых практикой допущений, относящихся как к общим свойствам движущейся среды, так и к различным приближенным подходам к описанию общих механических и физических процессов, сопровождающих ее движение.  [c.78]

Нелинейные механические системы, нагруженные случайными силами, имеют широкое применение в технике. Например, в амортизаторах систем виброзащиты приборов, машин, конструкций, а также в системах управления летательными аппаратами и т.д. Решение нелинейных задач динамики, как правило, связано с большими трудностями. Как известно, получить решение нелинейного уравнения общего вида в аналитической форме (даже для наиболее простого уравнения второго порядка) нельзя — не говоря уже о решении системы нелинейных уравнений движения механических систем, нагруженных детерминированными или случайными силами.  [c.217]

Изложенный выше метод статистической линеаризации дает приближенное решение простейших задач динамики нелинейных систем, справедливое при ряде ограничений на входное воздействие и механическую систему. К таким ограничениям относят следующие малость нелинейных членов в левой части уравнения (5.180) и предположение, что закон распределения решения близок к нормальному. Эти ограничения существенно уменьшают информацию о случайном процессе, позволяя получить только приближенные значения вероятностных характеристик решения. Для случая, когда нелинейности нельзя рассматривать как малые, а также при анализе нестационарных процессов метод статистической линеаризации не применяют.  [c.226]

При изучении движений тел, при решении механических задач возникают недоразумения вследствие того, что не сразу уясняется различие закономерностей, вытекающих из второго и третьего законов динамики. Покажем это на примерах.  [c.69]

Принципы не всегда вносят новое физическое содержание в механику или упрощают практическое решение механических задач. Тем не менее они в ряде случаев более удобны для общего анализа движения механических систем. Так, интегральные принципы Гамильтона и Якоби позволили построить такой метод интегрирования уравнений динамики, благодаря которому было решено много задач, представлявшихся до того неразрешимыми.  [c.501]

Модели точки комплексной массы и точки переменной массы. Потребность в понятиях точка комплексной массы и точка переменной массы возникла при решении конкретных задач динамики некоторых механических систем.  [c.18]

При теоретическом исследовании и инженерных расчетах любой реальной механической системы составляют ее физическую модель, так как полное описание процессов, происходящих в реальной механической системе, не представляется возможным и вместе с тем необходимым. При решении задач динамики используют динами, ческую модель.  [c.119]

В динамике изучается движение механических систем в связи с действующими на них силами. Простейшим объектом механики является материальная точка — тело, размерами которого при решении данной задачи можно пренебречь.  [c.236]

Решение многих проблем по динамике механических систем сопряжено с большими трудностями математического характера. Интегрирующие машины в очень многих случаях дают возможность преодолеть эти трудности.  [c.273]

Но из систем дифференциальных уравнений движения выведены так называемые всеобщие уравнения движения, часто приводящие более коротким путем к решению динамических задач. В этих всеобщих уравнениях мы встречаемся с двумя кинетическими мерами движения, с важнейшими в динамике понятиями количество движения (и его момент) и кинетическая энергия. Напомним, что, изучая механическое движение в кинематике, мы не интересовались ни силами, приложенными к движущемуся объекту, ни его массой, ни ее распределением. В кинематике мы интересовались только вопросом как движется вне зависимости от что движется . Но в кинетике, в дополнение к кинематическим мерам движения, мы вводим две кинетические меры, зависящие не только от скорости, но и от масс движущихся материальных частиц.  [c.132]


Ряд важнейших исследований по аналитическим методам решения задач механики принадлежит знаменитому русскому математику и механику М. В. Остроградскому (1801 —1861). Он установил очень важный вариационный принцип динамики — принцип наименьшего действия, позволяющий сводить изучение движения механических систем к некоторой экстремальной задаче. Этот принцип называется принципом Остроградского — Гамильтона, так как независимо от Остроградского и в несколько менее общем виде он одновременно также был дан английским ученым Гамильтоном (1805— 1865). М. В. Остроградский решил также много частных механических задач в области гидростатики, гидродинамики, теории упругости, теории притяжения и баллистики.  [c.16]

Что касается вычисления работы, входящей в правые части уравнений (27) и (29), то здесь работа каждой из сил (как внешних, так и внутренних) при любом перемещении точек приложения этих сил вычисляется по отдельности точно теми же способами, которые применялись при решении задач динамики точки, после чего полученные работы всех сил суммируются алгебраически. Пусть, например, нам требуется определить работу сил тяжести механической системы материальных точек. Эту работу мы должны определить как сумму работ сил тяжести отдельных точек, составляющих механическую систему, т. е.  [c.646]

В теории сначала рассматривается применение для решения задач общих теорем динамики механических систем. Начнем с первой из них.  [c.120]

Как записывается и формулируется общее уравнение динамики для механических систем Для решения каких задач оно используется  [c.186]

Жидкости, занимая по молекулярному строению промежуточное положение между газами и твердыми телами, проявляют свойства, присущие как газам, так и деформируемым твердым телам. Это позволяет описать механическое движение всех упомянутых сред едиными дифференциальными уравнениями, составляющими основу механики сплошной среды. Решение этих уравнений требует учета специфических свойств каждой из упомянутых сред, поэтому механика сплошных сред разделяется на ряд самостоятельных дисциплин гидромеханику, газовую динамику, теорию упругости, теорию пластичности и др.  [c.6]

Учебник написан в соответствии с 85-часовой программой курса теоретической механики для студентов немашиностроительных специальностей втузов. В нем излагаются основы кинематики, динамики материальной точки п механической системы, а также статики твердого тела даются методические указания к решению задач, примеры этих решений, элементы самоконтроля и задачи для самостоятельной работы студентов. Приложение, содержит элементы векторного исчисления.  [c.2]

С помощью дифференциальных уравнений движения свободной материальной точки (7.2) —(7.4), несвободной точки (7.8) и (7.10) и дифференциальных уравнений относительного движения (7.17) можно решить две основные задачи динамики точки (следует отметить что эти же две задачи ставятся при решении задач динамики механической системы).  [c.110]

Данная система дифференциальных уравнений движения механической системы в обобщенных координатах — уравнений Лагранжа второго рода — дает единый и достаточно простой метод решения задач динамики. Их вид и число не зависят ни от количества тел, входящих в рассматриваемую систему, ни от того, как эти тела движутся, и определяются лишь числом степеней свободы. Кроме того, при идеальных связях в правые части уравнений входят только активные силы. Следовательно, эти уравнения позволяют заранее исключить из рассмотрения все неизвестные заранее реакции связей.  [c.303]

Уравнения Аппеля. Применение уравнений Лагранжа с неопределенными множителями при составлении уравнений движения механизма с неголономными связями приводит к необходимости совместного решения системы уравнений, число которых превышает число степеней свободы на удвоенное число неголономных связей. Поэтому для изучения динамики механических систем с неголономными связями неоднократно предлагались дифференциальные уравнения, применение которых позволяет уменьшить число совместно решаемых уравнений. Из этих уравнений рассмотрим лишь уравнения Аппеля ).  [c.157]

Идея о нахождении фундаментальной функции, из которой при помощи дифференцирования и конечных преобразований без всякого интегрирования могли бы быть получены все решения уравнений движения, принадлежит Гамильтону. Он первый доказал существование такой функции в геометрической оптике, назвав ее там характеристической функцией эта функция оказалась необычайно полезной в целом ряде задач. Позднее, в своих исследованиях по динамике, Гамильтон снова столкнулся с той же самой функцией, назвав ее на этот раз главной функцией . Ввиду общей вариационной основы у оптики и механики, эти две концепции эквивалентны и открытие Гамильтона относится по существу к вариационному исчислению, а специальная форма вариационного интеграла несущественна. (Этот интеграл определяет время в оптическом принципе Ферма и действие в механическом принципе Лагранжа.)  [c.257]

Однако ведь и задачи классической динамики могут быть сведены к дифференциальному уравнению в частных производных, а именно к уравнению Гамильтона. При этом множество решений подобной задачи вовсе не соответствует множеству решений у. Г. Любой полный интеграл у. Г. уже полностью решает механическую проблему, каждый другой полный интеграл приводит к тем же траекториям, множество которых лишь по-иному составлено.  [c.693]


Простейшими моделями в динамике являются такие, в которых дифференциальные уравнения движения получаются линейными. Решение линейных уравнений в принципе тривиально. Сами модели, однако, не тривиальны в том смысле, что позволяют уловить ряд важных эффектов в поведении механических систем.  [c.14]

В связи с этим перед составлением уравнений движения трансмиссию машины представляют в виде условной механической схемы, называемой/ прцве енногг эквивалентной схемой машины. Эта схема должна быть действительно эквивалентна реальной трансмиссии, т. е. правильно отражать ее основные динамические характеристики. Составление приведенной расчетной схемы — важнейший этап решения задач прикладной динамики машин. Ошибка, внесенная на этом этапе, сводит на нет все решение задачи и его исследование.  [c.7]

При решении различных задач динамики системы Л. Эйлер применял петербургский принцип (см. гл. VI). В наиболее четкой форме этот принцип дан Эйлером в одной иэ его работ по теории гидрореактивной турбины Там Эйлер вводит в рассмотрение три категории сил актуальные (активные внешние силы, приложенные к частицам системы), требуемые , т. е.. те, которые обеспечили бы истинные движения точек системы при отсутствии связей, и силы реакции связей, а также формулирует принцип эквивалентности системы актуальных сил системе требуемых сил в связанном движении точек механической системы (т. е. при учете сил реакций связей).  [c.182]

На макроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных—уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрадии частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и У в уравнениях (4.2) фигурируют дифференциальные и интегральные операторы. Уравнения (4.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.  [c.146]

Для решения задач динамики механических систем со многими степенями свободы методы, принятые в классической теории механизмов и машин, оказываются несостоятельными. Эти задачи требуют более мощного аппарата общей механики и математики, в частности применения дифференциальных уравнений движения механических систем в лагранжевых и канонических 1еременных, а также теории линейных и нелинейных колебаний.  [c.53]

В области небесной механики много великолепных работ дали два француза — Алексис Клеро (1713—1765) и Жан ле Рои Д Аламбер (1717—1783), издавший в 1743 г, свой знаменитый Трактат по динамике . В этом трактате Д Аламбер показал, между прочим, как привести уравнение движения точек, связанных между собой, к задаче динамического равновесия. В течение XVIII в. были решены многие вопросы теоретической механики и перед механикой встала задача — дать общий метод, при помощи которого возможно было бы решение всех механических проблем чисто аналитически. Такой метод нашел Луи Лагранж (1736—1813). Его знаменитая Аналитическая механика изложена без единого чертежа, на основе общего метода.  [c.15]

Инерционность звеньев способствует или препятствует движению рабочих органов механизмов. В соответствии с известными положениями динамики материального тела, рассматриваемого как системы материальных точек, силы инерции учитываются при решении ди( х[)еренциальных уравнений движения. звеньев, решение которых позволяет определить истинный закон движения. При инженерных расчетах часто вместо учета истинного закона [тзменення внешних сил при силовом расчете движущегося звена решением дифференциальных уравнений движения учитывают действие нагрузок на звено в конкретных его положениях, придавая уравнениям движения форму уравнений статики. Этот расчет проводится в соответствии с принципом Д Аламбера (с.м. прил.) механическая система может считаться находящейся в равновесии, если ко всем действующим на нее силам добавлены силы инерции. Следовательно, для выполнения силового расчета механизма необходимо определить силы и моменты сил инерции его звеньев для рассматриваемых их положений.  [c.244]

Предмет динамики. Как указывалось во введеппи к курсу, динамика изучает механическое движение материальных тел в связи с факторами, это движение обусловливающими. Такп и факторами являются механическое взаимодействие между этиле и телами (мерой которого является спла — см. п. 2.2 гл. I), инертность этих тел и наличие связей, наложенных на эти тела. Динамика изучает общие законы механического движишя материальных тел, а отдельные виды их движения рассматриваются с точки зрения применения этих общих законов к решению частных задач.  [c.234]

Но такой метод решения для большинства практических задач неприемлем из-за математической сложности. Трудности возникают также из-за того, что ни внутренние силы, ни реакции связей, как правило, заранее неизвестны. Однако в большинстве задач не требуется определять движение каждой точви системы, а достаточно найти параметры, характеризующие движение системы в целом. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики, являющихся следствием дифференциальных уравнений движения системы (9.1). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии. Эти теоремы применимы как для точки, так и для системы материальных точек.  [c.145]

В современной астрофизике анализ и пониманне внутренних движений в звёздах, эволюции звёзд и эволюции различных туманностей невозможны в рамках динамики систем дискретных материальных точек или в рамках гидростатики жидких масс— теорий, которые до последнего времени служили основным источником различного рода моделей и представлений в классической астрономии. В настоящее время изучение движений небесных объектов как газообразных тел должно дать ключ для решения главных проблем космогонии, и только таким путём можно найти объяснение и толкование ряда наблюдаемых эффектов. Сейчас стало очевидным, что в основу концепций для исследования небесных явлений необходимо положить постановки и решения ряда динамических задач о движениях газа, которые можно рассматривать как теоретические модели, охватываю-ш,ие суш ественные особенности движения и эволюции звёзд и туманностей. Для построения и исследования таких моделей необходимо использовать методы, аппарат и представления современной теоретической газовой динамики—аэродинамики— и применительно к проблемам астрофизики поставить и разрешить соответствующие механические задачи.  [c.273]


Динамика промышленных робртов. В отличие от копирующих манипуляторов с ручным приводом промышленные роботы представляют собой механическую сис[гему, в которой динамические нагрузки (нагрузки от сил инерции) могут быть значительными. Эти нагрузки определяются из решения системы уравнений движения. Для составления уравнений движения пространственного механизма с несколькими степенями свободы применяются два метода метод уравнений Лагранжа второго рода и кинетостатический метод. Поясним оба метода на примере простейшего промышленного робота с тремя степенями свободы при цилиндрической зоне обслуживания (рис. 149).  [c.272]

Высокая степень систематичности изложения аналитического аппарата статики и динамики материальных систем, достиг-иутая в Аналитической механике Лагранжа, прекрасно осознавалась ее автором. Следуя стилю рационалистического механистического мировоззрения, прогрессивного для 18 века, Лагранж выражал это свое мнение, говоря, что он предложил себе свести теорию механики и способ решения относящихся к ней задач к общим формулам, простое развертывание которых дает все уравнения, необходимые для решения любой задачи . Та н е самая мысль выражена и в конце предисловия к первому изда-иию 1811 г., где Лагранж говорит, что методы, которые здесь излагаются, не требуют ни построений, ни геометрических или. механических рассуждений, но нуждаются исключительно в алгебраических операциях, подчиненных правильному и единообразному течению и что те, кто любит анализ, увидят с удовольствием, что механика сделалась его новой ветвью .  [c.3]


Смотреть страницы где упоминается термин Решение механическая - Динамика : [c.13]    [c.103]    [c.74]    [c.15]    [c.653]    [c.29]    [c.61]    [c.61]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.32 ]



ПОИСК



Динамика статистическая механических Методы решения с использованием кинетических уравнений 515—В17 —



© 2025 Mash-xxl.info Реклама на сайте