Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение механической системы точек

В частности, если добавление или отбрасывание некоторой системы сил не изменяет движение механической системы, то говорят, что эта система сил является уравновешенной или эквивалентной нулю.  [c.121]

Этот результат называется законом сохранения количества движения механической системы точек. Математическое выра-жение закона сохранения количества движения можно представить в виде  [c.372]

Пусть движение механической системы точек с s степенями свободы определяется 2s каноническими уравнениями Гамильтона  [c.517]


Замкнутой механической системой точек мы называем такую систему, в которой движение частиц обусловлено только силами взаимодействия, или внутренними силами. Закон сохранения количества движения можно доказать, исходя из теоремы о количестве движения для системы точек постоянной массы. В самом деле, теорема об изменении количества движения механической системы точек утверждает, что производная по времени от вектора количества движения системы точек равна результирующей  [c.14]

N векторных условий (6) или (7) выражаю г принцип Даламбера для сисгемы при движении механической системы активная сила и реакция связей вместе с сшит инерции составляют равновесную систему сил для каждой точки системы.  [c.362]

Количеством движения механической системы называется вектор, равный геометрической сумме главному вектору) количеств движения всех материальных точек этой системы.  [c.132]

Если главный вектор внешних сил за рассматриваемый промежуток времени равен нулю, то количество движения механической системы постоянно.  [c.133]

Если проекция главного вектора внешних сил на какую-либо ось за рассматриваемый промежуток времени равна нулю, то проекция количества движения механической системы на эту ось постоянна.  [c.133]

Установим теперь зависимость между изменением количества движения механической системы и импульсами действующих на эту систему сил. Разделим силы, приложенные к точкам механической системы, на внешние силы Pf и внутренние силы  [c.134]

Уравнение (98.1) выражает теорему об изменении количества движения механической системы при ударе изменение количества движения механической системы за время удара равно геометрической сумме всех внешних ударных импульсов, приложенных к точкам системы.  [c.259]

Кинематика изучает движение механической системы, в частности абсолютно твердого тела, независимо от сил, действующих на эту систему. Так как при движении твердого тела различные его точки могут двигаться различно, то в кинематике сначала изучается движение более простого объекта, а именно движение точки, а затем — движение твердого тела.  [c.142]


Неудерживающие связи математически представляются в виде неравенств. Ёаш в процессе движения механической системы все неудерживающие связи напряжены, то реакции их могут быть учтены в уравнениях движения с помощью множителей Лагранжа [5], которые должны иметь определенный знак.  [c.57]

ФАЗОВАЯ ТРАЕКТОРИЯ -совокупность изображающих точек, характеризующих движение механической системы с заданными начальными условиями при некотором изменении времени.  [c.83]

Если система не свободна, а на нее наложены связи, выражающие некоторую зависимость между координатами точек механической системы, то бывает возможным сократить число дифференциальных уравнений движения, о чем буде 1 подробнее сказано в 52 и 53.  [c.272]

В самом деле, определить движение механической системы (в нашем случае плоской фигуры) — значит дать положение каждой ее точки в заданный момент времени. Написанные три уравнения позволяют определить местонахождение любой точки фигуры в данное мгновение. Определим, например, где на плоскости хОу находится точка К (рис. 28), координаты которой в подвижной системе обозначим через х и у. Подвижные оси координат х Еу и точка К неизменно связаны с фигурой, поэтому координаты х и у точки К в подвижной системе постоянны. Для определения координат хну точки к в основной системе хОу воспользуемся формулой преобразования координат, аналитической геометрии и очевидной из  [c.66]

Если на систему наложены связи (система не свободна), выражающие некоторую зависимость между координатами точек механической системы, то можно сократить число дифференциальных уравнений движения, о чем будет подробнее сказано в 41. В ряде случаев оказывается целесообразным классифицировать все силы, действующие на материальные точки механической системы, на две категории по иному признаку, а именно на активные силы и реакции связей. Как уже было сказано, реакции связей часто зависят от движения системы и не могут быть найдены, пока не определено движение системы. Обозначая проекции равнодействующей всех активных сил, действующих на к-ю точку, Х , У1 и а проекции равнодействующей всех реакций связей, приложенных к /с-й точке, Л к, У к и получим систему 3/г дифференциальных уравнений второго порядка  [c.120]

Этот принцип переводит реакции связей в класс активных сил, благодаря чему они входят в принцип Лагранжа — Даламбера. Принцип освобождаемости связей увеличивает число степеней свободы механической системы, т. е. изменяется ее кинематика, в то время как динамическая картина остается неизменной. Следует заметить, что введение реакций связей в равенство (34.22) приводит к появлению новых неизвестных, в результате чего оно не всегда полностью описывает движение механической системы.  [c.54]

В частном случае, если механическая система состоит из одной точки, то выражение (42.12) приводит к основному равенству динамики точки [см. формулу (41.11)]. Следовательно, теорему о количестве движения механической системы можно рассматривать как обобщение основного равенства динамики на случай системы материальных точек.  [c.58]

Таким образом, определяется движение механической системы в конечной форме и отпадает необходимость интегрирования дифференциальных уравнений движения системы. Если известно меньше 6/г первых интегралов, то вопрос интеграции исходных уравнений движения упрощается. Например, если рассматривать движение свободной материальной точки и известно три первых интеграла  [c.70]

Если известно 2s первых интегралов (46.14), то на основании их можно найти Qk как функции времени t и 2s произвольных постоянных, определяемых из начальных условий. Следовательно, получена конечная форма уравнения движения механической системы.  [c.71]

Из общего решения следует, что каждая обобщенная координата системы совершает сложное колебательное движение, которое является наложением двух главных колебаний системы различных частот ki и 2. Этот результат называют принципом наложения малых колебаний. Так как в общем случае ki и fes несоизмеримы, то движение механической системы не будет периодическим.  [c.214]


Рассмотренные вынужденные колебания системы могут служить примером целесообразности введения нормальных координат, благодаря которым уравнения движения сводятся к уравнениям движения точки по прямой, что без труда позволяет исследовать характер движения механической системы.  [c.218]

Систему N дифференциальных уравнений (3) называют дифференциальными уравнениями движения механической системы в векторной форме. Если спроектировать векторные дифференциальные уравнения (3) на прямоугольные декартовы оси координат, то получим систему ЗN дифференциальных уравнений, описывающих движение точек механической системы.  [c.255]

Для нахождения движения механической системы по заданным силам и начальным условиям для каждой точки системы нужно проинтегрировать, гь следовательно, систему дифференциальных уравнений. Эту задачу не удается точно решить в общем случае даже для одной точки. Она исключительно трудна в случае двух материальных точек, которые движутся только под действием сил взаимодействия по закону всемирного притяжения (задача о двух телах) и совершенно неразрешима в случае трех взаимодействующих точек (задача о трех телах).  [c.255]

Теорему Резаля можно сформулировать так при движении механической системы скорость точки, совпадающей с концом вектора кинетического момента при движении по годографу этого вектора, равна по величине и параллельна по направлению главному моменту всех внешних сил системы. Точка, относительно которой вычисляются кинетический момент системы и главный момент внешних сил, одна и та же.  [c.311]

Если задано движение механической системы, то известны 3v. Исключив из равенств (52.23) — (51.25) av, найдем и + Р уравнений, которые совместно с 3 я уравнениями, являющимися проекциями соотношений (51.23), служат для оиределення F, /. и р,. Из равенств (51.22) находят Nv.  [c.80]

Аналогично и леорему об изменении количесгва движения для системы можно сформулировать в форме георемы Резаля для количества движения при движении механической системы скорость точки, совпадающей с концом вектора количества движения при движении по его годографу, равна по величине и параллелыш по направлению главному вектору всех внешних сил, действующих на систему.  [c.188]

ГЛАВА VIII. ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КОЛИЧЕСТВА ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ И КОЛИЧЕСТВА ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.126]

Проекция количества движения механической системы на каждую координатную ось, равная сумме проекций количеств движения всгх точек системы на эту ось, определяется произведением массы системы на проекцию скорости центра масс на эту же ось.  [c.133]

Кинетическим моментом или главным моментом количеств движения механической системы относительно данного центра называют вектор, равный геомет.рической сумме моментов количеств дви-жения всех материальных точек системы относительно этмго центра.  [c.152]

Состави.м дифференциальные уравнения, описывающие движение механической системы (рис. 197, а). К колесу В приложены вращающий момент М, сила тяжести G = mgg, нормальная реакция в опорной точке К и сила сцепления Есп, предположительно направленная вправо. На тело А действуют сила тяжести Q = т , приложенная в центре тяжести С, реакция Yp, сила трения Xo=fYo и реактивный момент корпуса двигателя М. Силы взаимодействия в точке О. между телом А и колесом В являются реакциями внутренних идеальных связей и не показаны на рисунке. При расчленении системы на части (рис. 197, б, в) в точках О прикладываются силы взаимодействия Хо = Х о и Yq = Y q между телами Л и В.  [c.271]

Равенство (72.13) составляет содержание принципа Лагранжа — Даламбера при движении механической системы в неинерци-альной системе координат в неинерциальной системе координат, если на механическую систему наложены удерживающие идеальные связи, то сумма элементарных работ всех сил инерции, активных сил, переносных сил инерции и сил инерции Кориолиса, действующих на механическую систему на любом виртуальном перемещении, равна нулю в каждый данный момент времени.  [c.107]

Таким образом, движение механической системы при минимуме потенциальной энергии в точке О будет происходить в области D. Следовательно, равновесие системы будет устойчивым и теорема Лагранжа— Дирихле доказана.  [c.199]

Аналогично и теорему об изменении количества движения для системы можно сформулировать в форме теоремы Резаля для количества движения ири движении механической системы скорость точки, совпа-даюихей с концом вектора количества движения, равна по величине и параллельна ио направлению главному вектору всех ьнешинх сил, действующих на систему.  [c.283]

Разложим движение механической системы па переносное поступательное вместе с центром масс системы и относительное по отношению 1. системе координат, движущейся поступательно вместе с центром г,.асе. Аналогично тому, как это ироизводилось ири выводе формулы для кинетического момента ирн таком разложении абсолютного движения, для каждой точки системы (с.м. рис. 227) имеем  [c.294]

При движении механической системы координаты точек и их производные по времени, входящие в уравнения связей, могут зависеть от времени Кроме того, в уравнения связей время может входить явно, помимо координат и их производных. Связи, в уравнения которых время явно не входит, называются стационарньши или склерономными. Если время входит явно в уравнение связи, то связь называется нестационарной или peo-номной. Нестационарные связи обычно реализуются посредством движущихся или деформирующихся тел. В простейшем случае одной точки нестационарная геометрическая связь в форме движущейся или деформируемой поверхности имеет уравнение. ,  [c.371]



Смотреть страницы где упоминается термин Движение механической системы точек : [c.482]    [c.216]    [c.295]    [c.60]    [c.75]    [c.87]    [c.89]    [c.163]   
Техническая энциклопедия Том 1 (0) -- [ c.172 ]



ПОИСК



Движение механическое

Движение механической системы точек 172, XIII

Движение системы

Движение точки по заданной траектории Система отсчета для механических явлений

Динамика точки. Теоремы о движении механических систем Две задачи динамики свободной точки

Закон сохранения механической энергии материальной точки и механической системы при движении в потенциальном силовом поле

Механические системы механических систем

Система механическая

Система точек

Специальные вопросы теоретической механики Уравнения движения точки и механической системы в неинерциальных координатах Дифференциальное уравнение движения точки в неинерциальных координатах

Теорема об изменении количества движения материальной точки и механической системы

Теорема об изменении количества движения материальной точки и механической системы движения материальной точки

Теорема об изменении момента количества движения материальной точки и об изменении кинетического момента механической системы

Теоремы об изменении количества движения материальной точки и количества движения механической системы

Точка — Движение



© 2025 Mash-xxl.info Реклама на сайте