Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжа непрерывности

При соответствующем обобщении понятий, функции, аналогичные функции Лагранжа, описывают состояние других физических систем (непрерывной среды, гравитационного или электромагнитного поля и др.) Поэтому уравнения Лагранжа вида (129) играют важную роль в ряде областей физики.  [c.379]

Формально для доказательства теоремы требуется лишь непрерывность функции V (q). В механике, однако, предполагается существование производных dV/dq, так как только тогда имеют смысл понятия обобщенная сила , уравнения Лагранжа и т. д.  [c.225]


С другой стороны, выпуская движение из точки a = (q, q ) в силу условия теоремы получаем, что обязательно существует такой конечный момент времени (, для которого d (/)/Л < О (здесь ( ) — значение энергии в движении Р ). Поэтому Е (t) а Е . Следовательно, значения энергии в движениях Р и в движении Р в момент времени t отличаются на конечную величину Е — Е ), несмотря на то, что начальные точки (<7 qs) и q, q ) этих движений сколь угодно близки, а это противоречит теореме о непрерывной зависимости решений дифференциальных уравнений от начальных данных. Уравнения же Лагранжа всегда алгебраически разрешимы относительно старших производных, и предполагается, что для них теорема эта верна. Мы пришли к противоречию, показывающему, что предположение >0 ошибочно. Теорема доказана.  [c.232]

Координаты Лагранжа определяют положение точек деформируемой среды независимо от процесса деформирования, если деформации достаточно малы, так что не нарушается непрерывность арифметизации.  [c.504]

Приведем краткое описание первого этапа начнем с конечных элементов Лагранжа. Зададим F = F(x) в виде комбинации некоторых функций с неопределенными параметрами, эти параметры будем определять, потребовав, чтобы заданный набор точек 1,р на f переходил в заданный набор точек "Lp Ti. Естественное ограничение состоит в требовании непрерывности F х) при переходе от данного элемента Ti к соседнему (между смежными элементами не должно быть щелей ). Заметим, что набор 2/7 вовсе не обязан совпадать с множеством Е если то соответ-  [c.199]

Рассмотрим изопараметрические конечные элементы Лагранжа. Указанному выше условию непрерывности проще всего удовлетворить, задав F х) в виде комбинации тех же базисных функций, с помощью которых производится аппроксимация  [c.199]

Во всех предыдущих вариантах метода конечных элементов предполагалось, что приближенное решение принадлежит некоторому подпространству исходного функционального пространства например, при построении конечных элементов Лагранжа для решения задач теории упругости требовалось, чтобы объединения Я-интерполяций были непрерывны при переходе через границы конечных элементов.  [c.208]

Роль операторов в данном случае будут играть функции. Пусть имеется функция действительного переменного / (х), определенная на отрезке [а, Ь, непрерывная на нем вместе со своей первой производной. Тогда по теореме Лагранжа для любых л , и Х2 G [а, >1 будем иметь  [c.74]

В основу изучения кинематики жидкости положена гипотеза о непрерывности изменения кинематических параметров потока. Иногда это свойство может нарушаться, например в особых точках, на линиях или поверхностях разрыва. При кинематическом исследовании жидкой среды используют либо метод Лагранжа, согласно которому рассматривают движение индивидуальных жидких частиц и определяют для каждой из них траектории, т. е.  [c.39]


Если эта последовательность сходится, то она сходится к корню уравнения. Метод (1.74) называется методом простой итерации. Если во всех точках рассматриваемого интервала Га, Ь] функция ф(х)е[а, Ь], существует и непрерывна ф (л ) и ф (л ) <1, то итерации (1.74) сходятся при хо [а, f ]. Это легко показать, воспользовавшись формулой Лагранжа  [c.28]

Найдя аналитическое решение для любого числа делений, можно предельным переходом (п —> оо) получить результат, соответствующий непрерывной струне. Для исследования системы с п массами удобно использовать уравнения Лагранжа второго рода, которые имеют вид  [c.41]

Таким образом, любые бесконечно малые непрерывные функции би будут возможными перемещениями, если они не нарушают кинематических краевых условий. В механике одним из основополагающих принципов является принцип возможных перемещений Лагранжа, который служит эквивалентом уравнений механики — уравнений равновесия в статике и уравнений движения в динамике.  [c.188]

Тогда, считая, что значения qik и Uk определяются в режиме обучения манипулятора, можно найти непрерывные значения обобщенных координат qi, представляя каждую координату интерполяционным многочленом Лагранжа  [c.563]

Уравнение непрерывности. — Уравнение непрерывности выражает то обстоятельство, что масса жидкости остается во время движения неизменной. Это уравнение принимает различные формы в переменных Лагранжа и в переменных Эйлера. Мы сначала применим метод Лагранжа.  [c.293]

Ляпунов доказал теорему, которая обобщает теорему Лагранжа. Он обратил внимание на то, что при доказательстве теоремы Лагранжа можно вместо энергии Е взять любую непрерывную с непрерывными частными производными первого порядка) функцию V (9, q , имеющую  [c.204]

Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]

Следующим новшеством этой книги является включение в нее механики непрерывных систем и полей (гл. 11). Вообще говоря, эти вопросы охватывают теорию упругости, гидродинамику и акустику, однако в таком объеме они выходят за рамки настоящей книги и, кроме того, по ним имеется соответствующая литература. В противоположность этому не существует хорошей литературы по применению классических вариационных принципов к непрерывным системам, хотя роль этих принципов в теории полей элементарных частиц все время возрастает. Вообще теорию поля можно развить достаточно глубоко и широко еще до рассмотрения квантования. Например, вполне возможно рассматривать тензор напряжение — энергия, микроскопические уравнения неразрывности, пространство обобщенных импульсов и т. д., целиком оставаясь при этом в рамках классической физики. Однако строгое рассмотрение этих вопросов предъявило бы чрезмерно высокие требования к студентам. Поэтому было решено (по крайней мере в этом издании) ограничиться лишь элементарным изложением методов Лагранжа и Гамильтона в применении к полям.  [c.9]

МЕТОДЫ ЛАГРАНЖА И ГАМИЛЬТОНА ДЛЯ НЕПРЕРЫВНЫХ СИСТЕМ И ПОЛЕЙ  [c.377]

Этот простой пример хорошо иллюстрирует метод перехода от дискретной системы к непрерывной. Особенно важно правильно понять здесь роль координаты х, которая не является обобщенной координатой, а представляет непрерывный номер частицы, аналогичный дискретному номеру i. В дискретной системе каждому значению i соответствует определенная обобщенная координата т] . Здесь же каждому значению х соответствует обобщенная координата ii(x). Но так как т] зависит также и от t, то лучше писать не ti(x), а г х, i), указывая тем самым, что X и t можно рассматривать как параметры лагранжиана.  [c.380]


Уравнения Лагранжа для непрерывных систем. Из формулы (11.9) видно, что в случае упругого стержня 2 содер-  [c.380]

Таким образом, х т t являются здесь равноправными параметрами удельного лагранжиана. В общем случае 8 будет, конечно, функцией не только этих производных, но и самого т], t а X. Если же рассматриваемая непрерывная система является трехмерной, то ее удельный лагранжиан будет иметь вид  [c.380]

УРАВНЕНИЯ ЛАГРАНЖА ДЛЯ НЕПРЕРЫВНЫХ СИСТЕМ  [c.381]

Лагранжа для непрерывных систем 377, 380  [c.413]

До сих пор методы Лагранжа и Гамильтона излагались применительно к системам, имеющим конечное число степеней свободы. Целью настоящей главы является распространение этих методов на непрерывные системы, в которых число степеней свободы бесконечно велико. Это нетрудно сделать, если выбрана подходящая функция Лагранжа однако в отношении формы параметров, от которых зависят различные функции, имеется известный элемент неожиданности.  [c.117]

В этой главе был разработан несколько устрашающий аппарат для распространения методов Лагранжа и Гамильтона на непрерывные среды. Оказалось, что можно без  [c.133]

Для сплошных материальных систем польза данного аналитического метода заключается главным образом в той легкости, с какой можно сделать переход к системе координат, отличной от декартовой и удобной для решения конкретных задач. Это, конечно, привлекает внимание к методу Лагранжа. Известное применение получил и метод Гамильтона в связи, главным образом, с исследованием квантовых свойств непрерывных материальных сред. Примечательным является пример из гидродинамики, когда удалось добиться некоторого успеха при описании движения невязкой жид-  [c.134]

Наиболее замечательные результаты применения методов Лагранжа и Гамильтона к непрерывным средам получаются при изучении идеализированных сред, называемых полями. Еще одной особенностью, которая должна быть здесь отмечена, является релятивистская инвариантность. Оказалось, однако, что изложенную здесь теорию можно принять в сущности без изменений. Этому вопросу будет посвящена гл. XI.  [c.135]

Общее положение в теории поля несколько отличается от того, какое имеет место в теории непрерывных материальных сред. Обычно поведение систем последнего типа достаточно хорошо понятно в своих основных чертах, и аналитический метод применяется для упрощения способа записи уравнений движения в форме, удобной для решения конкретных задач. В теории поля предварительные сведения об основных свойствах процесса обычно отсутствуют, и аналитический метод применяется как исходный пункт теоретического описания. Рассмотрение различных простейших видов плотности функции Лагранжа позволяет надеяться на успешное объяснение некоторых наблюдаемых явлений. Аналитический метод является эмпирическим в той же степени, что и метод, при котором делаются непосредственные предположения относительно формы уравнений поля, но при его использовании область возможностей значительно сужена.  [c.153]

Как известно из теории дифференциальных уравнений, при некоторых ограничениях на Gi (например, при существовании непрерывных частных производных у функций G, которое в механике всегда предполагается) система уравнений (24) имеет единственное решение при произвольных начальных данных qi = qi = при 1 = 1 (г = 1, 3,. .., п). Таким образом, уравнения Лагранжа удовлетворяют условию детерминированности движения (см. п. 45).  [c.274]

Законы Ньютона. Построение механики из аксиомы непрерывности, из гипотезы твердого тела и частицы. Построение ее на основе принципа Лагранжа и принципа сохранения энергии. Неклассические формы динамики. Непротиворечивость.  [c.440]

Теорема (Лагранжа— Дирихле )). Есш в некотором положении консервативной системы потенциальная энергия, являющаяся непрерывной функцией q, имеет строгий изолированный  [c.225]

Равенства (IV. 79) можно рассматривать как формулы точечного преобразования, позволяющие поставить в соответствие точке N( / ) деформированного пространства, арифметизирован-ного координатами Лагранжа, точку М(х ) пространства, ариф-метизированного координатами Эйлера, Мы будем предполагать, что такое соответствие взаимно однозначно и функции гс непрерывны и дифференцируемы.  [c.503]

Задачи об относительном движении в неидерциальных системах отсчета отличаются от соответствующих задач о движении в инерциальных системах только тем, что в уравнениях движения первых задач будут присутствовать массовые силы инерции, подобные силе тяжести. Наличие этих сил инерции приведет к появлению соответствующего, связанного с гидростатическим давлением члена в интеграле Коши — Лагранжа. Если обратиться к формулам (16.1), то станет очевидным, что суммарная сила и суммарный момент будут отличаться от соответствующих сил и моментов, определенных для относительных скоростей и (16.16), только гидростатическими слагаемыми, определенными по значениям сил инерции. При определении этих сил нужно учесть, что роль ускорения силы тяжести д теперь будет играть величина — и ост1й1, где производная по времени берется относительно неподвижной инерциальной системы координат. В частности, если тело в порывистом потоке идеальной жидкости неподвижно, то на него со стороны жидкости будет действовать сила Архимеда, равная — pVdUuo т dt, где V — объем тела. Эта сила направлена не по скорости ветра, а по его ускорению. Очевидно, что эта сила может быть противоположна скорости ветра. Однако надо иметь в виду, что в данном случае рассматривается непрерывное движение идеальной несжимаемой жидкости и при отсутствии ускорения внешнего потока имеет место парадокс Даламбера.  [c.210]


Имея разложения (38) — (39), вычисляем энергию деформации и кинетическую энергию для каждой отдельной ячейки. Последующее осреднение по ячейке дает среднюю энергию, полностью определяемую своим значением в центре волокна. После этого осуществляется завершающий этап перехода от системы дискретных ячеек к однородной континуальной модели, который состоит во введении полей кинематических и динамических переменных, непрерывных по всем координатам. Значения этих переменных на средних линиях волокон совпадают со значениями соответствующих параметров, вычисленными для системы дискретных ячеек. Следовательно, кинетическую энергию и энергию деформации, подсчитываемые так, как это описано выше, можно интерпретировать как плотности энергий для вновь введенной непрерывной и однородной среды. Плотность энергии деформации содержит не только члены, зависящие от эффективных модулей, но и члены, зависящие от некоторых констант, включающих характеристики как физических, так и геометрических свойств компонентов композита (т. е. от эффективных жесткостей ). Этим и объясняется название теории — теория эффективных жесткостей . Определяющие уравнения этой теории были получены при помощи принципа Гамильтона в совокупности с условиями непрерывности и с использованием множителей Лагранжа. Аналогичная теория для композитов, армированных упорядоченной системой прямоугольных волокон, была разработана Бартоломью и Торвиком [11].  [c.377]

Эйлер н Лагранж первые открыли в точном виде принцип наименьшего действия, заключающийся в следующем Соединим точки и Р., произвольной пробной траекторне/ . По всей вероятности, эта траектория, в качестве которой может быть выбрана любая непрерывная кривая, не совпадает с действительной траекторией, избранной для движения природой. Однако мы можем постепенно исправлять наше пробное решение и прийти в конце концов к некоторой кривой, которую можно считать действительной траекторией движения.  [c.16]

Нестационарные связи. При выводе уравнений Лагранжа было предположено, что форма геометрических соотношений, определяющих абсолютное положение данной точки системы через обобщенные координаты, не изменяется. Но Вией [Vielle (1849)] показал, что при непрерывном изменении рассматриваемых соотношений в зависимости от времени, выражаемом уравнениями типа  [c.195]

Предлагаемая вниманию читателя очень коротенькая книжка английского ученого Лича тоже посвящена теоретической механике. Но в ней нет ни подробного разбора частных задач, ни исследования каких-либо отдельных механических систем, примечательных по характеру их движения. В книге Лича содержится в достаточно лаконичном виде изложение самых основных вопросов и теорий аналитической механики, вызванных к жизни известными уравнениями Лагранжа и Гамильтона. И главная цель автора состояла в том, чтобы надлежащим изложением методов аналитической механики в их классическом виде привести читателя книги к пониманию аналитической механики непрерывных сред и особенно к знакомству с осног-ными вопросами механики специальной теории относительности и началами теории поля. Этим последним вопросам отведена примерно треть книги.  [c.5]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]

Классическое исследование, в котором вопросы рассматриваются подробно и с большой ясностью. Редкое употребление векторных обозначений. Том I — кинематика, статика и динамика частицы. Том II — системы голономные и неголо-номпые, уравнения Лагранжа и Гамильтона и связанная с ними общая теория, удар, взрыв, столкновение. Три дополнительных тома — непрерывные среды, вращение жидких масс и тензорное исчисление.  [c.439]


Смотреть страницы где упоминается термин Лагранжа непрерывности : [c.140]    [c.88]    [c.638]    [c.153]    [c.294]    [c.203]    [c.583]    [c.856]    [c.913]   
Основные принципы классической механики и классической теории поля (1976) -- [ c.119 ]



ПОИСК



Аналитическая механика непрерывной среды в лагранжевом и эйлеровом представлениях

Метод Лагранжа для непрерывных систем

Методы Лагранжа и Гамильтона для непрерывных систем и полей

Современная лагранжева и гамильтонова механика непрерывной среды

Уравнения Лагранжа для непрерывных систем

Формализм Лагранжа и Гамильтона применительно к непрерывным величинам



© 2025 Mash-xxl.info Реклама на сайте