Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод Лагранжа для непрерывных систем

До сих пор методы Лагранжа и Гамильтона излагались применительно к системам, имеющим конечное число степеней свободы. Целью настоящей главы является распространение этих методов на непрерывные системы, в которых число степеней свободы бесконечно велико. Это нетрудно сделать, если выбрана подходящая функция Лагранжа однако в отношении формы параметров, от которых зависят различные функции, имеется известный элемент неожиданности.  [c.117]


Следующим новшеством этой книги является включение в нее механики непрерывных систем и полей (гл. 11). Вообще говоря, эти вопросы охватывают теорию упругости, гидродинамику и акустику, однако в таком объеме они выходят за рамки настоящей книги и, кроме того, по ним имеется соответствующая литература. В противоположность этому не существует хорошей литературы по применению классических вариационных принципов к непрерывным системам, хотя роль этих принципов в теории полей элементарных частиц все время возрастает. Вообще теорию поля можно развить достаточно глубоко и широко еще до рассмотрения квантования. Например, вполне возможно рассматривать тензор напряжение — энергия, микроскопические уравнения неразрывности, пространство обобщенных импульсов и т. д., целиком оставаясь при этом в рамках классической физики. Однако строгое рассмотрение этих вопросов предъявило бы чрезмерно высокие требования к студентам. Поэтому было решено (по крайней мере в этом издании) ограничиться лишь элементарным изложением методов Лагранжа и Гамильтона в применении к полям.  [c.9]

Для сплошных материальных систем польза данного аналитического метода заключается главным образом в той легкости, с какой можно сделать переход к системе координат, отличной от декартовой и удобной для решения конкретных задач. Это, конечно, привлекает внимание к методу Лагранжа. Известное применение получил и метод Гамильтона в связи, главным образом, с исследованием квантовых свойств непрерывных материальных сред. Примечательным является пример из гидродинамики, когда удалось добиться некоторого успеха при описании движения невязкой жид-  [c.134]

Этот простой пример хорошо иллюстрирует метод перехода от дискретной системы к непрерывной. Особенно важно правильно понять здесь роль координаты х, которая не является обобщенной координатой, а представляет непрерывный номер частицы, аналогичный дискретному номеру i. В дискретной системе каждому значению i соответствует определенная обобщенная координата т] . Здесь же каждому значению х соответствует обобщенная координата ii(x). Но так как т] зависит также и от t, то лучше писать не ti(x), а г х, i), указывая тем самым, что X и t можно рассматривать как параметры лагранжиана.  [c.380]

Установив необходимый для эффективной работы машины закон ускорений механизма катящегося рычага, последовательно приближая заданную и получающуюся диаграммы ускорений, можно, пользуясь диаграммой углов поворота, построить подвижную центроиду, обеспечивающую предусмотренный режим работы машины. Учитывая динамический угол откоса материала, масса которого переменна, применяя интерполяционный полином Лагранжа при составлении дифференциального уравнения движения и метод Кельвина для решения этого уравнения, представляется возможным решить основные задачи динамики рассматриваемой системы, параметры которой непрерывно изменяются.  [c.208]


Это, по-видимому, позволило Лагранжу объединить исследования движения систем с конечным и неограниченно большим числом степеней свободы, например решения задач о движении системы материальных точек и решения задач о движении жидкости. По существу же методы решения этих задач, предложенные Лагранжем, мало сходны между собой. Несходство их отражает глубокие физические различия между механикой дискретных систем и механикой непрерывной среды.  [c.5]

В этой главе мы расскажем о том, как можно посту пать с уравнениями движения для непрерывных систем Б точно такой же манере, как мы поступали с системами обсуждавшимися в предшествующих главах. Мы исполь зуем здесь для получения канонических уравнений движе ния, описывающих такие непрерывные системы, метод состоящий во введении и использовании компонент Фу рье от величин Q (л ), описывающих систему. Далее описываются те видопз.ченения, которые необходимо ввести в формализм Лагранжа и Гамильтома, чтобы использовать его и для непрерывных систем. Во втором параграфе этой главы теория, развитая в первом параграфе, применяется к звуковым волнам и электромагнитному полю.  [c.205]

Укажем еще на один класс задач, которые решаются аналитически. Это задачи акустической оптимизации машинных конструкций, являющихся соединением однородных структур. В качестве примера можно привести крутильные колебания системы валов и колес, изображенной на рис. 7.38. Пусть, например, моменты инерции колес постоянны, а площади поиеречных сечений валов Si могут изменяться. Требуется найти такие 6, , которые давали бы минимальную массу при заданной собственной частоте. Схема решения этой задачи методом Лагранжа такая же, как и выше. Однако вместо уравнений типа (7.65), (7.66), (7.73) здесь получается система трансцендентных уравнений относительно неизвестных параметров решение которой значительно проще решения системы дифференциальных уравнений. По этой причине с вычислительной точки зрения часто бывает удобнее представить непрерывную конструкцию ступенчатой, т. е. соединением однородных структур. Получающиеся при этом решения обычно быстро стремятся к точному (непрерывному) при увеличении числа ступенек. На рис. 7.39 графически изображена ошибка полученного таким образом решения в % к точному решению (7.70) в зависимости от числа разбиений  [c.265]

Кроме того, при определении главных напряжений нормальное напряжение Ог полагается равным нулю. Дифференциальные уравнения и граничные условия получены из вариационного принципа Лагранжа. Для решения задачи на собственные значения применяется метод разделения переменных в сочетании с методом кусочных полиномов, согласно которому искомые функции для произвольного малого интервала вдоль меридиана аппроксимируются полиномами третьей степени с непрерывными функциями и их первыми производными в концах этого интервала. В конечном итоге авторы получают систему 14(Л -М) однородных алгебраических уравнений относительно 14(Л -Ы) неизвестных, где N — число интервалов деления меридиана. Равенство нулю определителя этой системы дает условия для определения собственных частот, а затем и форм колебаний. Описанная вььше методика была применена к исследованию неосесимметричных (т=1 и м = = 2,3,4 п и т — число окружных и продольных полуволн) по-  [c.197]

Что касается самой Ковалевской [9], то она, исходя из факта, что все до нее вполне изученные гироскопические случаи (т. е. движение Пуансо и гироскоп Лагранжа) решаются в т. н. мероморф-ных (т. е. представляющих непосредственное обобщение рациональных дробей) однозначных функциях времени и в виду совершенства, достигнутого теорией таких функций, к которым причисляются все более сложные тригонометрические вроде тангенса, эллиптические функции и т. п., поставила себе целью найти все типы тяжелых гироскопов, для которых общее, т. е. при всяких системах начальных условий, решение задачи об их движении возможно в подобных (хотя бы и не периодических, как до сих пор) функциях. Для этой цели исследовательница применила собственно метод неопределенных коэффициентов, но к разложениям около так называемых особых точек, т. е. здесь таких значений I, где обычные разложения в ряды Тэйлора неприменимы (в случае мероморфности непременно так называемых полюсов). Она справедливо полагала, что разыскания в области особых точек (хотя для задачи динамики обычно и обладающих комплексными аффиксами, ибо для действительных I решения тут вообще однозначны и непрерывны) при всей их, так сказать, отвлеченности могут дать для характеристики предполагаемого решения гораздо больше, чем рассмотрение тэйлоровских разложений около обыкновенных точек с их сильно нивелирующими 4  [c.64]



Классическая механика (1975) -- [ c.377 , c.380 ]



ПОИСК



Лагранжа метод

Лагранжа непрерывности

Лагранжева система

Лагранжевы методы

Метод непрерывности

Метод систем

Методы Лагранжа и Гамильтона для непрерывных систем и полей

Система Лагранжа

Система непрерывная



© 2025 Mash-xxl.info Реклама на сайте