Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип напряжения Коши

Принцип напряжения Коши утверждает, что отношения AM/AF стремятся к определенным пределам  [c.27]

ПРИНЦИП НАПРЯЖЕНИЯ КОШИ. ВЕКТОР НАПРЯЖЕНИЯ 69  [c.69]

Принцип напряжения Коши. Вектор напряжения  [c.69]

Средняя сила, отнесенная к единице площади площадки Д5, задается величиной Af /AS. Принцип напряжения Коши утверждает, ЧТО это отношение Af /AS стремится и определенному пределу когда Д5 стягивается в точку Р, в то время как момент силы Af относительно точки Р в пределе стремится к нулю. Результирующий вектор df ldS (сила, отнесенная к единице площади)  [c.70]


Предел упругости 248 Преобразование координат ортогональное 26. 28 Принцип напряжения Коши 70  [c.312]

Последнее обстоятельство приводит к тому, что при конечноэлементной дискретизации уравнений в слабой форме касательная матрица жесткости получается несимметричной [106]. Один из путей преодоления этой трудности состоит в замене тензора напряжений Коши тензором напряжений Кирхгофа (характеризующим силу, отнесенную к площадке в отсчетной конфигурации), что можно сделать для малых упругих деформаций в силу (2.88). Для UL-подхода совпадает с s . В этом случае можно сформулировать вариационный принцип относительно скоростей [73, 79] (см. гл. 3), а касательная матрица жесткости при конечно-элементной дискретизации уравнений будет симметричной [97].  [c.103]

Формулировка вариационного принципа стационарности действия для нелинейно упругого тела в переменных Эйлера и вывод уравнения баланса импульса из него на основе канонического определения тензора напряжений Коши приводятся в [11, с. 190-195].  [c.679]

Эйлерова сила 338 Эклиптика 830 Экструзия через насадок 424 Эллипсоид напряжений Коши 749 Энергетический принцип для пластинки 150, 156, 181 Энергия упругой деформации 72 Эффект Баушингера 103, 523  [c.857]

Важной гипотезой, служащей для механического описания действия внутренних сил в деформируемом теле,является принцип напряжений Эйлера и Коши В каждом поперечном сечении, мысленно проведенном внутри тела, имеет место взаимодействие сил такого же характера, как и распределенных по поверхности нагрузок. Рассмотрим в этой связи деформированное тело, которое под нагрузкой находится в равновесии (рис. 1.1). Воображаемое сечение делит тело на две части объемами У и Уг. Элемент поверхности ДЛ с центром в точке Р поперечного сечения характеризуется единичным вектором нор-  [c.12]

Конечно, по-видимому, более естественно при постановке задач механики сплошных сред исходить из локальных соотношений. Само понятие тензора напряжений является следствием принципа локализации Коши [53]. Далее, от этих локальных соотношений интегрированием можно перейти к вариационному тождеству (1.1), учитывающему уже конкретную постановку краевой задачи.  [c.12]

В настоящей книге при описании механики сплошных сред и теории упругости мы выделили лишь две аксиомы — принцип напряжений Эйлера—Коши ( 2.2) и аксиому независимости материала от системы отсчёта ( 3.3). Таким образом, все остальные понятия считаются заданными априори.  [c.14]


Тело, которое занимает деформированную конфигурацию Я и к которому приложены объёмные силы во внутренних точках, т. е. в точках а на части ГТ = (р(Г1) его границы приложены поверхностные силы ( 2.1), находится в состоянии статического равновесия, если выполнен фундаментальный принцип Эйлера— Коши для напряжений ( 2.2). Эта аксиома является основой механики сплошных сред. Из неё вытекает знаменитая теорема Коши (теорема 2.3-1), согласно которой существует поле симметрических тензоров такое что  [c.90]

Принцип напряжений Эйлера—Коши 93  [c.93]

Принцип напряжений Эйлера—Коши  [c.93]

Аксиома 2.2-1 (принцип напряжений Эйлера—Коши). Пусть тело занимает деформированную конфигурацию Q и на него действуют приложенные силы, которые заданы плотностями i и g -. rf R . Тогда существует векторное поле  [c.93]

Если рассматривать уравнение (6-3.1) как справедливое для любой предыстории, а не только в предельном случае малых деформаций, оно представляет собой пример интегрального уравнения состояния. Физическая предпосылка, лежащая в основе уравнения (6-3.1), ясна предполагается, что все деформации, которые имели место в прошлом и измеряются при помощи тензора Коши, дают линейный вклад в текущее значение напряжения. Весовая функция / (s) представляет собой материальную функцию, которая полностью определяет Частный тип материала, удовлетворяющего такому правилу линейности. Линейное соотношение, выражаемое уравнением (6-3.1), известно также как принцип суперпозиции Больцмана.  [c.216]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]

Итак, уже полтора века мы благодаря Коши располагаем полной системой уравнений пространственной задачи теории упругости ). Но и по сей день получение па их основе точных решений является очень сложной проблемой. Аналитические решения удается построить только для очень простых идеализированных конфигураций, численные же решения для реальных пространственных тел даже с использованием современных ЭВМ получить весьма трудно. К счастью, согласно принципу Сен-Венана пространственные детали картины напряженного состояния существенны только вблизи мест резкого изменения границы или мест приложения сосредоточенных нагрузок, в остальной же части элемента конструкции состояние близко к более простому одномерному или двумерному (растяжению, кручению, изгибу и т. п.).  [c.54]

В этой книге излагается общая теория криволинейных координат и ее применения в механике, в учении о теплоте и теории упругости разъясняется преобразование уравнений теории упругости к криволинейной системе координат и в качестве примера исследуется деформация сферической оболочки. В заключительных главах Ламе подвергает критическому анализу принципы, на основе которых строится вывод основных уравнений теории упругости. Теперь он уже не одобряет вывод уравнений по способу Навье (с привлечением гипотезы молекулярных сил), а отдает предпочтение методу Коши (в котором используется лишь статика твердого тела). Затем он принимает гипотезу Коши, согласно которой компоненты напряжения должны быть линейными функциями компонент деформации. Для изотропных материалов принятие этой гипотезы приводит к сокращению кисла необходимых упругих постоянных до двух, находимых из испытаний на простое растяжение и простое кручение. Таким путем все не-  [c.144]


В некоторых новых теориях механики сплошной среды появляются тензоры напряжений, не являющиеся симметричными. В этих теориях либо допускаются моменты, не являющиеся моментами сил, либо плотность момента количества движения не есть просто момент плотности количества движения, либо имеют место оба эти обстоятельства. В этом курсе в качестве локальных формулировок принципов баланса количества движения и момента количества движения нам будет достаточно классических законов Коши, и упомянутые более общие идеи нам не понадобятся.  [c.143]

Принцип напряжений Коши ставит в соответствие каждой точке А тела (см. рис. 1.7, б) на площадке с нормалью vi вектор напряжения 5v,. Совокупность бесчисленного множества таких векторов напряжений в точке А, действующих на различных площадках, образует физическую величину, называемую тензором напряженийв рассматриваемой точке.  [c.42]

Мы принимаем в качестве постулата принцип напряжений Коши ), утверждающий, что для любой замкнутой поверхности существует распределение вектора напряжений I с результирующей и моментом, эквивалентными полю сил. действующих на сплошную среду,.заключенную внутри , со стороны среды, расположенной вне этой поверхчости ). Предполагается при этом, что в данный момент времени вектор I зависит только от положения и ориентации элемента поверхности da другими словами, если обозначить через п внешнюю нормаль к поверхности <3, то 1 = 1(х, п). Как отмечает Трусделл, принцип Коши обладает гениальной простотой. Его подлинную глубину можно оценить, только представив себе, что целое столетие выдающиеся геометры использовали при исследовании довольно частных задач упругости очень сложные, а иногда и не совсем корректные методы. В их работах нет даже намека на эту основную идею, которая сразу наметила ясные пути обоснования механики сплошных сред 3).  [c.20]

Принцип напряжения Коши ставит в соответствие в произвольной точке Рсплошной среды каждому единичному в-ктору нормали П1, определяюш,ему ориентацию бесконечно малого элемента поверхности, содержащего точку Р, вектор напряжения 4" (рис. 2.3).  [c.71]

Определяющие соотношения любого материала должны удовлетворять условию, чтобы задаваемый ими тензор напряжений Коши Т был индифферентным (принцип материальной нндиффе-  [c.45]

Предполагается, что потенциальная функция W e) имеет непрерывные первые и, по крайней мере, кусочно-непрерывные вторые производные от своих аргументов. Эта функция параметрически зависит от компонент тензора напряжений Коши и от параметров, содержащих всю историю деформирования. Обоснование необходимости записи определяющих соотношений упругопластического материала в потенциальном виде (2.57) представлено в [19, 23, 25] (следствие принципа макродетерминизма). Таким образом, возможность представления определяющих соотношений упругопластического материала в виде (2.57) дает критерий отбора феноменологических теорий пластичности. Например, определяющие соотношения деформационной теории пластичности, сформулированные относительно скоростей, не допускают записи в виде (2.57). Но если игнорировать условие разгрузки по упругому закону то рассматриваемые далее соотношения деформационной теории пластичности для материала с изотропным упрочнением записываются в виде (2.57). Если функциональные зависимости <т(ё) известны и допускают запись в виде (2.57), то по теореме Эйлера об однородных функциях можно получить явный вид потенциальной функции  [c.87]

Принцип напряжений Эйлера и Коши. В каждом поперечном сечении, мысленно проведенном внутри тела, имеет место взаимодействие сил по типу распределенных по поверхности нагрузок. То есть, применяя метод сечений, мы можем действие одной части тела на другую заменять поверхностными усилиями, действуюгцими в сечепии.  [c.16]

Выведем теперь из принципа напряжений некоторые фундаментальные следствия. Первое из них принадлежит Коши au iiy [1823, 1827а]) и является одним из важнейших результатов в механике сплошных сред. Оно устанавливает, что зависимость вектора напряжений Коши i (л , л) от второго аргумента n Si является линейной, т. е. в каждой точке л е существует тензор 7 (л ) е iVf, для которого i (л , л) = = Т х )п при всех n Sx. Второе следствие утверждает, что в каждой точке х е Q тензор Г (л ) симметричен, а третье.  [c.95]

Это утверждение можно назвать обобщенным принципом напряжений Эйлера и Коши (которые рассмотрели аналогичное предположение для случая, когда — вектор напряжения). Нолл [Noll, 1974, теорема IV] установил, что это утверждение— не предположение, а следствие уравнения (2.4.6) и того факта, что зависит от геометрии dBt некоторым определенным образом. Поэтому величина может, вообще говоря,  [c.99]

Последнее из этих уравнений означает, что тензор напряжений Коши /юлжен быть объективным. Как далее будет видно, это накладывает ограничения на его функциональную зависимость. Легко показать, что требование форминвариантности по отношению к сдвигу в пространстве, зависящему от времени и представленному функцией ( ), и сдвигу во времени, описываемому а, приводит к тому, что определяющие уравнения не зависят явным образом от координат события (х, t). Это будет справедливо для всех определяющих уравнений, которые нам встретятся в дальнейшем. Физически принцип объективности означает если два наблюдателя рассматривают одно и то же перемещение материального тела, то они регистрируют один и тот же отклик на него, т. е. одинаковое напряженное состояние . Хотя этот принцип бессознательно используется в повседневной жизни, он несет в себе глубокое операционное значение (подумайте об определении коэффициента упругости пружины в двух системах отсчета, вращающихся относительно друг друга с переменной угловой скоростью внутренние силы в пружине зависят только от деформации пружины относительно самой себя и не зависят от параметров вращения).  [c.107]


Таким образом, шесть независимых компонент о,-/ тензора напряжений должны удовлетворять трем дифференциальным уравнениям равновесия Коши (2.85). Следовательно, задача МДТТ по определению напряжений трижды статически неопределима. Если тело находится в движении, то в соответствии с принципом Даламбера следует учесть силы инерции  [c.60]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

Если и, v,w — истинные перемещения, а е , Ву,. .., г х — истинные деформации, то они удовлетворяют соотношения м Коши (5.17) и, следовательно, для истинного состояния бФ = 0. Наоборот, в силу того, что вариации напряжений 6a.v, бсту, ба ., бт у, бту , бт независимы, а объем V произволен, в том числе и достаточно мал, то из условия бФ = О следуют соотношения Коши, так как условие бФ = О может быть выполнено при произвольных и отличных от нуля вариациях напряжении лишь при равенстве нулю содержимого каждой круглой скобки подынтегрального выражения. Таким образом, условие бФ = О эквивалентно выполнению условий совместности деформаций. Принцип возможных изменений напряженного состояния (принцип Кастильяио) состоит в том, что работа статически возможных напряжений на истинных деформациях и  [c.201]

Полученное соотношение выражает собой так называемый принцип дополнительных виртуальных работ. При выводе формулы (2.23) использовались формулы Коши (1.7), следствием которых являются уравнения совместности деформаций (1.10). Таким образом, исходное напряженное состояние неявно предполагалось не только статически возможным, ио и удовлетворяющим уравиеииям совместности. Напряженное состояние, для которого удовлетворяются уравнения совместности деформаций, будем называть совместным. Из урав-иення (2.23) следует, что для совместного напряженного состояния вариация дополнительной энергии деформации равна вариации дополнительной работы внешних сил.  [c.41]

Вместо галилеевского принципа расчета по предельному, разрушающему состоянию стал утверждаться новый принцип рабочего состояния. Напряжения в рабочем состоянии каждого элемента предполагалось ограничить допустимыми, т. е. такими, чтобы возипкающие в нем изменения не возрастали со временем . Определение же напряженного состояния кан дого кусочка вещества внутри конструкции стало возможно с помощью выведенных Навье и Коши уравнений равновесия. Оказалось, что полная картина напряжений во внутренней точке тела описывается девятью величинами тремя напряженнями растяжения — сжатия и шестью сдвиговыми напряжениями, по они связаны шестью уравнениями равновесия, и независимых среди них, самое большее, три. Имя Пуассона обессмертили не только полученные им уравнения равновесия и колебания стержней, но н известный каждому инженеру коэффициент Пуассона, входящий наряду с модулем Юнга в наснорт любого упругого материала.  [c.22]

Возможен также другой путь получения определяющих уравнений. Пользуясь принципами термодинамики, можно написать дифференциальные уравнения для базисных инвариантов тензора напряжений, рассматриваемых/Как функции базисных инвариантов тензора деформации и температуры. Экспериментальное получение условий Коши для таких уравнений проще, чем в случае дифференциальных уравнений для-термодинамических потенциалов. Вместе с тем в упомянутой работе показано, что если известны зависимости базисных инвариантов тензора напряжений от инвариантов тензора деформации и температуры, то в случае изотропных сред могут быть автоматически написаны определяющие уравнения, связывающие тензор напряжений тензор деформации и тёмпературу. Этот метод может быть обобщен и на случай анизотропных сред.  [c.57]

Первый мемуар Пуассона зб) по рассматриваемому вопросу был прочитан Парижской академии в апреле 1828 г. Этот мемуар интересен заключающимися в нем многочисленными приложениями общей теории к частным задачам. При рассмотрении вопроса об общих уравнениях Пуассон так же, как и Коши, начинает с вывода уравнений равновесия, выраженных в компонентах напряжения, и вычисляет усилие на какой-либо площадке, происходящее от интрамолекулярных сил. Формулу, выражающие напряжения через деформации, содержат суммы, которые берутся по всем молекулам , находящимся в области действия данной молекулы . Пуассон не находит возможным заменить все суммы интегралами и считает, что это может быть сделано лишь при суммировании по телесному углу вокруг данной молекулы , ро не при суммировании по величине,, расстояния, отсчитываемого от нее. Уравнения равновесия и движения, изотропного упругого твердого тела, которые получаются таким образом, не отличаются от уравнений Навье. Принцип, по которому суммирования могут быть заменены интегрированием, разъяснен Коши зз) следующим образом для, объема, содержащего очень много молекул и имеющего малые размеры по сравнению с радиусом той сферы, в которой проявляется заметное молекулярное действие, число молекул можно считать пропорциональным объему если теперь мы оставим в стороне молёкулы находящиеся в непосредственной близости к рассматриваемой молекуле, то действие всех молекул, заключенных в одном из малых объемов, о которых была речь, эквивалентно силе, ухиния действия которой проходит через центр тжкести объема, а величина пропорциональна этому объему и некоторой функции от расстояния между центром тяжести объема и данной рассматриваемой молекулой. Действие более удаленных молекул именуется регулярным , а действие более близких— нерегулярным . Пуассон считал, что нерегулярным действием более  [c.23]


Функция, о которой здесь идет речь, есть взятая с обратным знаком потенциалыая энергия деформированного упругого тела, отнесенная к единице объема и выраженная в компонентах деформации частные производные этой функции по компонентам деформации равны компонентам напряжения. Грин предполагал, что эта функция может быть разложена по степеням и произведениям компонентов деформации, поэтому он представил ее в виде суммы однородных функций этих величин первого, второго, третьего и высших порядков. Первый из этих членов должен быть равен нулю, ибо потенциальная энергия до деформации должна иметь наименьшее значение а так как все деформации малы, то существенное значение имеет только один второй член. Из этого принципа Грин вывел свои уравнения теории упругости, содержащие в общем случае 21 постоянную. В случае изотропии остаются только две постоянные, и уравнения совпадают с теми, которые приведены в первом мемуаре Коши.  [c.25]

Во внутренних точках областей, в которых,х и Т достаточно гладки, уравнения количества движения и момента количества движения выражаются двумя законами движения Коши. Второй закон (III. 5-4) налагает требование симметричности напряжений. Первый закон (III.5-1) связывает поле напряжений с ускорением X в инерциальной системе отсчета, при условии что поле массовых сил Ь известно. Мы будем считать поле которое описывает действие на тело 3S некоторых неконкретизируемых внешних тел, заданным. Хотя на практике в лабораториях и в повседневной жизни встречается лишь несколько специальных массовых сил, например сила тяжести, — а на деле при рассмотрении конкретных задач механики сплошной среды мы даже обычно ограничиваемся случаем Ь = О, — в принципе у нас нет способа как-то очертить класс всех возможных полей массовых сил. Поэтому во всех рассуждениях, относящихся к совокупности всех возможных движений тела, мы вынуждены считать, что Ь не подчинено никаким ограничениям. Каковы бы ни были х и Т, полеЬ, удовлетворяющее уравнению баланса, количества движения, определяется соотношением (III. 5-1) или, если система отсчета неинерциальна, соотношением (III. 5-5). Таким образом, первый закон Коши вообще не налагает никаких ограничений на х и Т.  [c.149]


Смотреть страницы где упоминается термин Принцип напряжения Коши : [c.14]    [c.76]    [c.168]    [c.23]    [c.408]    [c.320]   
Теория и задачи механики сплошных сред (1974) -- [ c.70 ]



ПОИСК



Коши принцип

Коши)

Принцип напряжений

Принцип напряжения Коши. Вектор напряжения



© 2025 Mash-xxl.info Реклама на сайте