Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Угловые меры, характеристика

Угловые меры, характеристика т. I,  [c.375]

Формула расчета деления окружности в угловой мере для любой характеристики делительной головки имеет вид  [c.164]

Наиболее существенными характеристиками таких спектральных приборов являются дисперсия (т. е. изменение положения интерференционных максимумов, выраженное в линейной или угловой мере в зависимости от изменения длины волны) и разрешающая сила, под которой понимается до некоторой степени условная величина.  [c.22]


В то время как величины А и /г согласно их определению (п. 28) дают каждое, по крайней мере с точностью до множителя однород- ости, постоянные и К" интегралов живых сил и момента количеств движения, величина X = /-/р есть отношение между постоянной угловой скоростью (произвольной) г перманентного вращения и постоянной р, которая является характеристикой рассматриваемого гироскопа и имеет размерность угловой скорости. Поэтому, принимая это р за единицу угловой скорости (естественная единица для угловой скорости гироскопа), можно истолковать X как меру угловой скорости, относящейся к перманентному вращению гироскопа. Ест ест-венно, что X так же, как и г, можно задавать произвольно, но во всяком перманентном вращении гироскопа вокруг его вертикально располо-  [c.132]

Характеристика режима противовращения гидромуфты может быть представлена из двух участков (см. рис. 8, в). На участке III действует основной цикл циркуляции Q, но скорость циркуляции Ст по мере увеличения угловой скорости выходного вала интенсивно уменьшается, что обуславливает резкое снижение коэффициента момента.  [c.28]

Из полученного выражения (55) следует, что изменение крутящего момента по мере изменения угловой скорости, т. е. форма регуляторной характеристики, зависит  [c.103]

Корректор в виде упругого упора рейки топливного насоса (фиг. 178) используется при наличии всережимных механических регуляторов с переменной предварительной затяжкой пружины. Максимальная затяжка пружины 2 соответствует предельной регуляторной характеристике двигателя (кривая 5 на фиг. 130). По мере увеличения нагрузки угловая скорость грузов регулятора уменьшается, в связи с чем пружина 2 перемещает рейку 4 топливного насоса в сторону увеличения подачи топлива. При номинальной нагрузке (точка С, фиг. 130) рейка 4 (фиг. 178) коснется упругого  [c.231]

Ключевыми характеристиками нерегулярности фрактальных профилей являются шероховатость поверхности / /,(б), связанная D [75], и угловое распределение линейных отрезков, аппроксимирующих профиль [81, 82]. Угловое распределение вводится в качестве локальной-меры отклонения траектории трещины и определяется как среднее угловое отклонение а [81] (как правило, рассматривается среднее отклонение нормали к аппроксимирующему отрезку от предварительно выбранного направления).  [c.56]

Повышение температуры воздуха возможно в пределах, ограниченных технико-экономическими условиями распределения тепловосприятия в элементах котла, надежностью работы воздухоподогревателя и механических топок при слоевом сжигании топлива. Рекомендуемые исходя из этих положений температуры подогрева воздуха приведены в [1]. Температура продуктов сгорания на выходе из топки в значительной мере определяет обш,ие технико-экономические характеристики котла, в том числе надежность и бесперебойность его работы. При сжигании твердого топлива повышение температуры продуктов сгорания на выходе из топки лимитируется условиями шлакования поверхностей нагрева экранов и расположенных за топкой поверхностей нагрева. При сжигании мазута и газа температура продуктов сгорания на выходе из топки определяется рациональным распределением тепловосприятия радиационных и конвективных поверхностей нагрева. Этот вопрос и рекомендуемые температуры продуктов сгорания невыходе из топки при сжигании различных видов топлива и конструкциях топки рассмотрены в гл. 4, 6, 8. Коэффициент тепловой эффективности может быть повышен за счет увеличения углового коэффициента х поверхности нагрева, в частности, путем применения двухсветных экранов и ширм, а также за счет поддержания чистыми поверхностей нагрева при систематической их очистке от загрязнений обдувкой или за счет механического воздействия на трубы.  [c.210]


Мера завихренности. Трусделл ) заметил, что величина мгновенной угловой скорости ш далеко не всегда правильно определяет роль, которую играет вращение в движении жидкости. Недостатком этой характеристики является также зависимость величины ш от выбранной системы единиц измерения. Трусделл привел убедительные доводы в пользу  [c.76]

Электроприводы имеют ряд особенностей 1) большую гибкость в управлении, осуществление любой программы 2) возможность использования нормализованных или стандартных устройств 3) каждый электропривод имеет две части цепь передачи движения (и энергии) и цепь управления 4) по мере увеличения числа оборотов и мощности рабочих машин все шире применяется непрерывное, а не ступенчатое, изменение угловых скоростей электроприводов 5) непрерывное изменение числа оборотов можно осуществлять только в электродвигателях постоянного тока. В электродвигателях переменного тока возможно только ступенчатое (до 4 ступеней) изменение чисел оборотов на выходном валу 6) соленоидный привод в ряде случаев может быть использован вместо механического при инерционной нагрузке 7) применение электромагнитных муфт особенно выгодно, когда необходимы частые включения, выключения и реверсы. Все более актуальной становится задача изучения энергетических условий работы авто.матических поточных линий с целью уменьшения удельных затрат энергии и разработки методов определения оптимальных значений энергетических характеристик проектируемых машин и линий.  [c.118]

Магнитное состояние пленки описывается следующими статистическими параметрами коэрцитивной силой Н , характеризующей критическое поле движения доменной стенки полем анизотропии Я , которое служит мерой сил анизотропии, противодействующих повороту вектора намагниченности, и характеристикой процесса вращения углом скоса а, характеризующим отклонение вектора намагниченности по оси легкого намагничивания угловой дисперсией Да, описывающей поперечные колебания легких осей. Типичные цилиндрические магнитные пленки имеют параметры = 120 А/м Я = 300 А/м а < Г Да < 2°.  [c.330]

Значительная податливость амортизаторов и близость к резонансу приводят к возрастанию балансировочных чувствительностей до 1000 — 1500 мкм кг, что подчас сильно затрудняет балансировку. В подобном случае целесообразно снять частотную характеристику машины. Первый резонанс обычно находится при угловой скорости ниже рабочей, второй резонанс может иметь место вблизи рабочей скорости и даже иногда совпадает с ней. В этом случае необходимо произвести отстройку резонанса, например, сменой амортизаторов или изменением их количества. Поскольку затухание в подобных колебательных системах невелико, резонансные пики имеют острую форму и указанных мер обычно достаточно для необходимого изменения резонансной скорости.  [c.186]

Из рассмотрения безразмерных характеристик (рис. 5) видно, что чем больше крутящий момент ведомого звена передачи, тем меньше величина передаточного отношения механизма. Из этого следует, что при колебании внешней нагрузки имеет место автоматическое изменение кинематических параметров гидродинамических передач обоих видов. У гидротрансформатора при небольшой угловой скорости турбинного колеса oj ( 2) крутящий момент Mj (Л-м.) существенно превышает момент сил насосного колеса (А,м,). По мере уменьшения сопротивления на ведомом валу его угловая скорость увеличивается.  [c.16]

Индикатриса рассеяния за счет грубодисперсной фракции морского аэрозоля имеет большую вытянутость в области малых углов рассеяния (по крайней мере, в видимой области спектра). Многолетние исследования прибрежных дымок показали [25], что для больших углов рассеяния в видимой области спектра в целом применимы формулы (4.9), т. е. однопараметрический подход для описания угловых характеристик рассеяния.  [c.139]


Характеристики направленности излучения. Направленность излучения, проявляющаяся в концентрации энергии излучаемых ультразвуковых волн в узкий пучок, является одной из важных характеристик эхолокатора и в значительной мере определяет его помехоустойчивость, дальность действия, угловое разрешение и эффективность при обнаружении цели. При оценке направленных свойств излучающей и приемной систем обычно пользуются понятием ширины диаграммы направленности, что представляет собой угол между двумя направлениями, в пределах которого звуковое давление или  [c.451]

Интенсивность вихрей является прямой характеристикой вихревого движения, но ее нельзя неиосредствеино измерить. Кроме того, в некоторых расчетах удобнее оперировать такой мерой вихревого движения, которая выражалась бы не через угловую, а через посту штельную скорость . )гому отвечает понятие циркуляции K[c.47]

Как мы уже говорили ( 2, п. 1), в мире элементарных частиц действует принцип все, что не запрещено (законами сохранения), обязательно происходит . Этот принцип позволяет легко разобраться в том, какие реакции и распады будут идти, а какие нет. Для этого достаточно учесть энергетический баланс и законы сохранения момента и зарядов, потому что все остальные законы сохранения накладывают ограничения не на сам процесс, а на его характеристики (интенсивность, угловое распределение и др.). Надо, однако, еще учесть, что если процесс разрешен только для слабых взаимодействий, то он будет протекать с ничтожной интенсивностью. Такого типа реакцию вообще нельзя заметить (если только для этого не приняты сверхособые меры, см. 8, п. 12), а соответствующий распад будет протекать с громадным (например, 10" с) временем жизни. Поэтому наряду с законами сохранения зарядов надо учитывать пр иближенные законы сохранения странности, четности и зарядового сопряжения, нарушаемые только слабыми взаимодействиями. Учтя это последнее замечание, приведем полную сводку условий, пользуясь которыми можно не только легко и быстро сказать, пойдет или нет данный процесс, но и, например, перечислить возможные пути получения тех или иных частиц. Эти условия таковы  [c.309]

Эти оба явления, приводящие к автоколебательным процессам в приводе, могут возникнуть только при определенных невыгодных условиях. Одним из таких условий является податливость характеристик привода, при которой случайное возмущение может привести к столь значительному изменению угловой скорости турбины, при котором смогут установиться незатухающие колебания, питаемые энергией от приводного двигателя. Поэтому важно иметь характеристики двигателя жесткими. Результирующая жесткость характеристик привода не всегда может быть увеличена за счет повышения жесткости характеристик гидромуфты, так как только увеличением жесткости характеристики гидромуфты невозможно избежать поцадания в зону автоколебаний, поскольку работа на таких критических скольжениях может оказаться необходимой по условию выполнения заданной технологической операции. Поэтому следует переходить к таким конструкциям гидромуфт, в которых невозможны перестроения потока и исключено или в значительной мере ослаблено регулирующее воздействие дополнительного объема.  [c.263]

В зависимости от условий эксплуатации к форме регуляторных характеристик предъявляются различные требования. Характеристики 2, 4 я 5 (фиг. 83) называются статическими, так как по мере изменения крутящего момента двигателя изменяется угловая скорость. Автоматические регуляторы, устанавливаемые на транспортных, судовых и стационарных двигателях, во многих случаях обеспечивают работу по таким (статическим) регуляторным характеристикам. Уменьшение диапазона изменения угловой скорости й в пределах одной регуляторной характеристики приближает статическую характеристику к кривой 3, которая называется астатической. Обычные автоматические регуляторы не могут обеспечить устойчивость режимов при работе по атстатической характеристике. Исключение составляют регуляторы с упруго присоединенным катарактом (см. п. 6, 20) или изодромные (см. п. 2, 21) непрямого действия.  [c.104]

Изменение г . Уменьшение параметра (фиг. 215) может быть осуществлено за счет уменьшения диапазона перемеш,ения грузов r j в пределах одной регуляторной характеристики при заданном значении Гер. Следовательно, путем уменьшения r j на минимальном регулируемом скоростном режиме можно снизить значение б до желательного предела и тем самым расширить диапазон всережимности. Однако уменьшение r j на минимальном скоростном режиме приведет к уменьшению 6 также и на номинальном скоростном режиме, где б и так невелико (2—4%). Это может привести к потере устойчивости режимов работы при повышенных угловых скоростях, так как регуляторная характеристика может приблизиться к астатической (вертикальной). Таким образом, метод снижения на минимальных скоростных режимах с целью расширения диапазона всережимного может быть использован только в том случае, если конструкция автоматического регулятора допускает постепенное увеличение по мере роста регулируемого скоростного режима.  [c.301]

Основными параметрами несущего винта, подлежащими выбору на стадии предварительного проектирования, являются нагрузка на ометаемую поверхность, концевая скорость и коэффициент заполнения. Для заданной полетной массы нагрузка на ометаемую поверхность определяет радиус несущего винта. Нагрузка является также основным фактором, от которого зависит потребная мощность, в частности индуктивная мощность на режиме висения. Нагрузка влияет на скорость скоса потока и скорость снижения на режиме авторотации. Концевая скорость выбирается с учетом явлений срыва и сжимаемости. Высокая концевая скорость приводит к увеличению числа Маха на наступающей лопасти, а следовательно, к увеличению профильных потерь мощности, нагрузки на лопасть, вибраций и шума. Низкая концевая скорость ведет к увеличению угла атаки на отстающей лопасти, при котором начинается недопустимый рост профильных потерь мощности, нагрузок в проводке управления к вибраций вследствие срыва. Таким образом, существует ограниченный диапазон приемлемых концевых скоростей, который сужается по мере увеличения скорости полета вертолета (см. разд. 7.4). Если радиус винта задан, то концевая скорость определяет угловую скорость вращения винта. Высокая угловая скорость обеспечивает хорошие характеристики авторотацни и низкий крутящий момент (и, следовательно, малую массу трансмиссии). Коэффициент заполнения и соответственно площадь лопасти определяются ограничениями нагрузки на ометаемую поверхность из-за срыва. Пределы, ограничивающие эксплуатационное значение коэффициента подъемной силы, а следовательно, и Ст/а, требуют некоторого минимального значения (QR) A для заданной полетной массы. Масса несущего винта и профильные потери возрастают с увеличением хорды лопасти, поэтому выбирается наименьшая площадь лопасти, удовлетворяющая ограничениям по срыву. Такие параметры, как крутка лопасти, ее форма в плане, число и профиль лопастей, выбираются из соображений оптимизации аэродинамических характеристик винта. Окончательный выбор является компромиссным для различных рассматриваемых эксплуатационных режимов вертолета. В процессе предварительного проектирования исполь-  [c.302]


Ширина спектральной полосы — одна из наиболее тонких характеристик лазера. Измерение спектральной характеристики лазера затрудняется тем, что лазерное излучение, если не принимать особых мер, состоит из ряда дискретных спектральных компонент, испускаемых одновременно. В идеальном случае эти отдельные компоненты соответствуют собственным типам колебаний (модам) совокупности резонатора и усиливающей среды, составляюидих лазер. В газовом лазере эти спектральные компоненты сильно зависят от собственных мод резонатора и довольно медленно изменяются со временем (что обусловлено механической нестабильностью резонатора). В твердотельном лазере, где усиление на единицу длины и число Френеля очень велики и где, кроме того, оптические свойства среды за время выходного импульса меняются почти неконтролируемым образом, для того, чтобы обеспечить спектральное разрешение при регистрации полного развития сложного спектра выходного импульса, необходимы как временное разрешение, так и значительный спектральный интервал. В твердотельных лазерах расстояния между осевыми и угловыми модами могут быть настолько малы, что дискретные спектральные компоненты могут отличаться лишь на 100 Мгц.  [c.361]

Измерений углов и конусов может производиться различными методами и средствами, которые можно разделить на инструменты и приборы, предназначенные для определения величины угла непосредственно в дуговой мере (гониометрические методы), и на инструменты и приборы, определяющие линейные величины, необходимые для последующего определения величины проверяемого угла (тригонометрические мегоды). Кроме того, применяются методы, основанные на использовании жесткой образцовой меры (угловые плитки, шаблоны, угольники и калибры). Ниже приводится характеристика наиболее распространенных измерительных средств для контроля углов и конусов всех трех групп.  [c.134]

Практикуемое в спектрофотометрах перезаполнение входной щели монохроматора путем создания изображения источника излучения с размерами, превышающими максимальные размеры щели, обеспечивает в определенной мере компенсацию потерь энергии, вызванных расфокусировкой пучка вследствие остаточных аберраций приставки, и одновременно снижает требования к точности установки оптических элементов приставки. Однако при повышении требований к точности угловых измерений оценка качества приставки, основанная на энергетической характеристике, становится недостаточной.  [c.209]

В неработающей машине, когда угловая скорость вала равна нулю, его цапфа занимает положение в подшипнике, как это показано на рис. 12.7, б. Зазор в подшипнике полностью заполнен смазочным материалом. При пуске машины, по мере возрастания угловой скорости вала, вращающаяся цапфа, увлекая за собой смазочный материал, всплывает, а ее центр смещается в сторону вращения относительно центра вкладыша (рис. 12.7, б). Образовавшийся клиновой зазор непрерывно заполняется смазочным материалом, увлекаемым вращающейся цапфой, вследствие чего и образуется гидродина.мическая подъемная сила. При дальнейшем возрастании угловой скорости и соблюдении рассмотренных ниже условий появляется сплошной устойчивый гидродинамический клин, полностью разделяющий поверхности трения. Исследования показывают, что для подшипников с определенными геометрическими параметрами толщина слоя смазочного материала Н является некоторой функцией характеристики рабочего режима подшипника  [c.307]

Из расслютрения вопроса об разрешающей способности дифракционной решетки и призмы следует, что имеет место связь между разрешающей способностью и угловой дисперсией спектральных приборов. Однако эта связь носит сложный характер. Действительно, в некоторых случаях увеличение угловой дисперсии сопровождается увеличением в такой же мере и разрешающей способности. В других случаях этого может и не быть. Наоборот, возможно увеличение разрешающей способности прибора без увеличения его угловой дисперсии. Следовательно, в последних случаях эти две важнейшие характеристики приборов оказываются как бы независимыми.  [c.93]

Заметим, что наиболее совершенными являются интерферометры с переносом спектра при помощи двухчастотных лазеров и акусто-оптических модуляторов лазерного излучения. В последнем случае удается в значительной мере ослабить паразитные комбинационные гармоники, возникающие в рассмотренных ранее двухчастотных интерферометрах за счет несовершенства характеристик поляризационных элементов. В интерферометрах с акустооптическими модуляторами излучение лазера дифрагирует на бегущих ультразвуковых волнах. Лучи нулевого и первого порядков дифракции имеют различные оптические частоты и угловые направления, что допускает их сравнительно несложное разделение. Нейдеальность пространственного разделения, влйянйе отраженных волн и другие факторы приводят к искажениям спектра интерференционного сигнала, однако эти искажения можно снизить до сотых долей процента.  [c.193]

Решение (19.15) позволяет проследить эволюцию конечного возмущения, состоящего в обтекании угловой точки, по мере перехода перавповесного течения к равновесному. В неравновесном течении характеристики по-прежнему являются носителями возмущений, т.е., как и в совершенном газе, разделяют области течения с разными дифференциальными свойствами. Однако, в отличие от совершенного газа, амплитуда возмущения вдоль граничной характеристики не остается постоянной, а затухает на длине порядка характерной длины релаксации при переходе из области почти замороженного течения в область почти равновесного течения. Возмущение как бы уходит с первой характеристики веера, определяемой скоростью звука а , по мере удаления от угла и концентрируется в окрестности характеристики, определяемой скоростью звука ае, так что в предельном равновесном течении на бесконечном расстоянии от угловой точки первой  [c.151]

Из приведенных выше скоростных характеристик следует, что эффективная мощность двигателя по мере увеличения угловой скорости сначала увеличивается, а затем, достигнув максимального значения, уменьшается. Максимальную мощность Л ешах двигатель развивает в тот момент, когда повышение мощности при увеличении угловой скорости (частоты циклов) полностью компенсируется уменьшением среднего эффективного давления р . С повышением угловой скорости давление р уменьшается из-за ухудшения наполнения двигателя и увеличения механических потерь.  [c.65]

В карбюраторных двигателях по мере прикрытия дроссельной заслонки крутящий момент все более резко падает при увеличении угловой скорости коленчатого вала (рис. 2.3, а). Такое протекание характеристик крутящего момента связано в основном с тем, что в карбюраторных двигателях при работе на частичных скоростных характеристиках сопротивление впускной системы больще благодаря диффузору карбюратора по мере же  [c.90]

Качественные тенденции пространственной фильтрации процессов с дисперсией (а 0, рэ О), приводящей к разрушению пространственных структур при их конвекции мимо фильтрующего устройства (дифракционной рещетки), и процессов, сохраняющих пространственные масштабы (а = 0, Р = 0), в основном совпадают, хотя количественные соотношения, характеризующие глубину фильтрации (оптическую резкость полос), существенно ухудшаются по мере роста дисперсионных эффектов. В обоих случаях увеличение числа приемников N при фиксировайном йх приводит к увеличению остроты характеристик направленности основных максимумов, а увеличение при любом изменении числа N или его сохранении-к увеличению углового интервала (скважности) между основными максимумами. При увеличении коэффициента а значение максимума, не меняя своего положения, уменьшается по амплитуде тем больше, чем больше значение хт.  [c.114]


В заключительной главе монографии излагается теория аппроксимации оптических характеристик рассеивающей компоненты атмосферы. Типичной задачей, которая решается в рамках этой теории, является восстановление непрерывного спектрального хода любой из характеристик светорассеяния по дискретному набору приближенных измерений. В атмосферно-оптических исследованиях выбор этих измерений увязывается с так называемыми окнами прозрачности. Изложенный в главе метод решения ап-проксимационных задач (метод обратной задачи) позволяет одновременно осуществлять интерполяцию и экстраполяцию характеристик в спектральные интервалы, где их непосредственное измерение недоступно из-за сильного молекулярного поглощения либо в силу каких-то иных причин. В последнем случае типичным примером является прогноз аэрозольных характеристик рассеяния в ближние УФ- и ИК-области по измерениям в видимом диапазоне. Методы аппроксимации в полной мере применимы и для угловых характеристик. Иллюстрацией этого служат примеры восстановления непрерывного углового хода аэрозольных индикатрис рассеяния по некоторым опорным ее измерениям в центральной области углов. При этом оказывается возможной оценка значений индикатрисы (то же самое коэффициента направленного светорассеяния) для таких важных направлений, как рассеяние строго вперед или назад.  [c.11]

Высота конца активного участка и дальность активного участка мало меняются при варьировании управления на активном участке. Поэтому их влиянием при выборе оптимальной траектории перелета к Луне можно в первом приближении пренебречь. Наиболее существенными параметрами являются начальная скорость V и угол наклона траектории 0ь Как отмечалось ранее, задача достижения Луны при большой угловой дальности перелета предъявляет более низкие требования к энергетическим характеристикам ракеты-носителя, чем при малой угловой дальности. Дело в том, что при угловой дальности перелета, стремящейся к я, траектория приближается к энергетически оптимальной (типа Гоманна), Поэтому запуск же Северного полушария обычно проводится в то время, когда Луна находится вблизи своей нижней точки кульминации. Широта точки старта существенно влияет на потребные энергетические затраты для достижения Луны. По мере уменьшения широты точки старта до ф1 л затраты приблиягаются к величине, которая необходима для реализации компланарного перелета в плоскости орбиты Луны.  [c.276]

С, В которую попадает первая характеристика, отраженная от поверхности тангенциального разрыва. Правее точки С теченпе в пристеночном слое чувствует наличие внутреннего слоя. Возрастание давления связано с тем, что нри одном и том же угле поворота потока в течении Прандтля — Мейера давление в потоке с большим "У уменьшается сильнее, чем в истоке с меньшим -у. При относительно больших толш,инах пристеночного слоя влияние внутреннего слоя ощущается в основном правее точки D. В точке D производная давления терпит разрыв и начинает изменяться более интенсивно, а давлепие приближается к давлению в однослойном течении, поатому начиная с точки D течение в пристеночном слое определяется в основном внутренним слоем. До точки D возмущения, вносимые внутренним слоем, ослабляются волной разрежения, исходящей из точки А. При малых толщинах пристеночного слоя влияние внутреннего слоя сказывается в неносредственной окрестности угловой точки. Давление в пристеночном слое стремится сравняться с давлением во внутреннем слое, а так как последнее (нри повороте на один и тот же угол) больше, то происходит возрастание давления. Естественно, что по мере уменьшения толщины слоя различие между статическими давлениями в одпослопном и двухслойном течениях па степке сопла уменьшается, однако при этом число Маха в этих течениях могут существенно различаться за счет различия в показателе адиабаты. Отметим, что возрастание давления при обтекании угловой точки имеет место лишь в случае, когда показатель адиабаты в пристеночном слое больше показателя адиабаты в ядре потока. Как показывают расчеты, возрастания давления не наблюдается, если контур сопла в окрестности угловой точки скруглить с помощью окружности радиуса — 0,5)г .  [c.192]

Из рис. 11.2 видно, что способность обеспечивать разрешение близко находящихся целей обратно пропорциональна ширине полосы пространственного фильтра. Кроме того, точность оценки направления на цель улучшается по мере уменьшения г зв. Таким образом, характеристика пространственного фильтра с точки зрения выполнения им тех функций, для которых он предназначен, улучшается при уменьшении ширины его характеристики в угловой области. Хотя дру1ие системные соображения могут в известной мере изменить этот вывод, уменьшение 1153 часто является основной задачей прн проектировании пространственного фильтра.  [c.284]

КИ наблюдения от этого объекта. Вблизи поршневого излучателя звука при ( ближняя , илп прожекторная , зона) поле в основном образовано цилиндрич. пучком лучей, исходяш их из излучателя, и в пределах пучка имеет в целом характер плоской волны с интенсивностью, постоянной по сечению и не за-висяш ей от расстояния, в соответствии с законами геометрич. акустики, а дифракционные эффекты выражаются только в размывании границ пучка. По мере удаления от излучателя дифракционные эффекты усиливаются, и при Р —1 поле теряет характер плоской волны и представляет собой сложную интерференционную картину. На еш ё больших расстояниях, при Р>1 ( дальняя зона), пучок превраш ается в сферически расходяш уюся волну с интенсивностью, убывающей обратно пропорционально квадрату расстояния, и с угловым распределением интенсивности, не зависящим от расстояния в этой области поле снова подчиняется законам геометрич. акустики. Аналогичная картина наблюдается в нучке, вырезаемом из плоской волны отверстием в экране (рис. 1). Угловая ширина главного лепестка характеристики направленности вдали от поршневого излучателя или экрана составляет по порядку величины к В. Если требуется сузить УЗ-вой пучок в ближней зоне, то поперечник излучателя (или отверстия) следует уменьшить, а в дальней зоне — увеличить сужение характеристики направленности требует увеличения размеров излучающей системы. При размерах излучателя (или отверстия в экране), малых но сравнению с прожекторная зона отсутствует и звуковое поле представляет собой расходящуюся волну уже на расстояниях порядка к. При этом резко падают  [c.125]

На корабле Apollo в системах управления и навигации командного отсека и лунного корабля был впервые в практике летательных аппаратов применен ЦАП. Анализ результатов полетов показал хорошее совпадение предсказанных и фактически наблюдаемых процессов управления, поведение угловой ошибки ориентации, отклонений ЖРД на кардане и ошибки поперечной скорости. ЦАП во многих отношениях превосходит аналоговую систему, он не только обеспечивает требуемые динамические характеристики, но и обладает свойствами, недоступными для аналоговой системы. К этим свойствам относятся оценка ориентации и коррекция эксцентриситета вектора тяги, автоматическое изменение коэффициентов усиления по мере выгорания топлива, возможность осуществления различных режимов управления ориентацией и стабилизации.  [c.216]

На практике это имеет значение для возбуждения наклонно падающих гпоперечных звуковых лучей в так называемых наклонных искателях (см. раздел 10.4.2). Если после преломления луча продольной волны возбуждается лоперечная волна, то она имеет угловую характеристику согласно уравнению (4.16), симметричную по отношению к оси, рассчитанной по закону преломления (2.3). Эта угловая характеристика является геометрической . Однако. она может сформироваться только при достаточно большом отношении, 0Д>1. По мере уменьшения D/A, на нее все в большей мере накладывается точечная характеристика по рис. 4.23. Вследствие этого расчетный угол звука изменяется, и угол раскрытия в плоскости получается неодинаковым i обеих сторон оси. Следовательно, характеристика получается несимметрич-яой (Вюстенберг [1644]).  [c.94]

Во-вторых, в случае дефектов, размеры которых уже нельзя считать слишком большими по сравнению с длиной волны, угловые распределения эхо-волн и теневых волн уже не разделяются,, как это было показано на рис. 5.13, а сливаются в одну совместную рассеянную волну. Эта рассеянная волна по мере уменьшения отношения диаметра к длине волны принимает форму , все более приближающуюся к сферической (см. рис. 5.8), так. что в конечном счете влияние наклонного положения для небольших дефектов полностью исчезает, причем и звуковое давление тоже получается очень малым. Поэтому при выборе более низкой частоты (т. е. большей длины волны) можно сделать (в некоторых практических границах) характеристику обратного излучения наклонно расположенных небольших дефектов более эффективной для их обнаружения и оценки их. величины эхо-методом. Этому вопросу посвящены измерения Кляйнта [799] см. также [1742] и раздел 19.4.  [c.127]



Смотреть страницы где упоминается термин Угловые меры, характеристика : [c.624]    [c.327]    [c.212]    [c.546]    [c.132]    [c.311]    [c.34]    [c.173]    [c.157]    [c.262]    [c.251]   
Монтаж технологического оборудования Том 2 (1976) -- [ c.294 ]



ПОИСК



Меры угловые

Угловая характеристика



© 2025 Mash-xxl.info Реклама на сайте