Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение неравновесное

Для газов, находящихся в локальном максвелловском равновесии, движение которых описывается уравнениями Эйлера, энтропия, согласно (5.23), переносится вместе с газом, т. е. энтропия макроскопических частиц газа сохраняется постоянной. В течениях неравновесного газа перенос Я-функции (негэнтропии) обусловлен, кроме того, теплопередачей, тензором напряжений и в случае функции распределения более общей, чем (5,21), другими факторами.  [c.65]


Физическая модель течения неравновесных смесей газов  [c.9]

Сформулируем основы феноменологической теории невязкого течения неравновесных смесей газов, последовательно (по мере необходимости) вводя гипотезы и допущения о физических свойствах рассматриваемой среды.  [c.9]

Н=60 км 2—Н=40 КМ 3—]Н=30 км -равновесное течение ----неравновесное течение  [c.294]

Если между различными точками в системе существуют разности температур, давлений и других параметров, то она является неравновесной. В такой системе под действием градиентов параметров возникают потоки теплоты, вещества и другие, стремящиеся вернуть ее в состояние равновесия. Опыт показывает, что изолированная система с течением времени всегда приходит в состояние равновесия и никогда самопроизвольно выйти из него не может. В классической термодинамике рассматриваются только равновесные системы.  [c.8]

В реальных условиях вследствие трения потока о стенки канала процесс истечения оказывается неравновесным, т. е. при течении газа выделяется теплота трения и поэтому энтропия рабочего тела возрастает.  [c.50]

При обычных условиях самопроизвольный процесс окисления топлива очень сильно заторможен, потому что молекулам топлива и окислителя, чтобы подойти друг к другу достаточно близко, нужно преодолеть силы взаимного отталкивания, действующие между ними на малых расстояниях. Если температура недостаточно велика, тепловой анергии молекул может не хватить для преодоления этих сил. Тогда система топливо+окислитель будет в течение долгого времени оставаться неравновесной.  [c.110]

Гл. 4 и 5 монографии посвящены расчетам процессов эжекции и тепломассообмена в многокомпонентных струйных течениях при кавитации и без нее. Не остались без внимания и вопросы расчета фазовых превращений в многокомпонентных средах при неравновесных условиях.  [c.8]

Расчет фазовых превращений в многокомпонентных средах при неравновесных условиях струйных течений  [c.90]

В свободном вихре при повышенной температуре из жидкой фазы испаряются некоторые компоненты, которые вновь попадают в вынужденный вихрь. Таким образом, по течению свободного вихря накапливаются компоненты с высокой температурой испарения, а по течению вынужденного вихря - компоненты с низкой температурой конденсации. Процессы конденсации и испарения в свободном и вынужденном вихрях неравновесные.  [c.161]


При построении этого метода Боголюбовым была предложена единая концепция сокращенного описания неравновесных макроскопических систем. Согласно этой концепции меняется характер вероятностного описания с течением времени. Структура его постепенно упрощается, и вероятностное распределение зависит от меньшего числа параметров. Таким образом, происходит переход от описания с помощью многочастичных функций распределения к одночастичной функции распределения, удовлетворяющей кинетическому уравнению, и затем к гидродинамической стадии процесса. Эта концепция положена в основу нашего изложения курса неравновесной статистической физики.  [c.36]

Изолированные статистические системы находятся или с течением времени приходят в состояние теплового равновесия. При наложении на такую равновесную систему возмущения (например, внешнего механического поля) в системе, которая в результате этого воздействия становится неравновесной, возникают неравновесные необратимые процессы.  [c.164]

Если некоторые параметры системы изменяются со временем, то мы говорим, что в такой системе происходит процесс. Например, при изменении объема происходит процесс расширения системы при изменении характеристик внешнего поля — процесс намагничивания или поляризации системы и т. д. Если система выведена из состояния равновесия и предоставлена самой себе, то, согласно первому исходному положению термодинамики, через некоторое время она снова придет в равновесное состояние. Этот процесс перехода системы из неравновесного состояния в равновесное называется релаксацией, а промежуток времени, в течение которого система возвращается в состояние равновесия, называется временем релаксации  [c.23]

Такой мерой является нарушение симметрии системы. В рассматриваемом случае полиморфного превращения кристалла при понижении температуры возможна утрата симметрии, поскольку кубическая решетка обладает более высокой симметрией. Аналогично, кристалл, возникающий после охлаждения жидкости, менее симметричен (более упорядоченная система), чем исходная жидкость жидкость после возникновения в ней конвекционных течений в задаче Бенара менее симметрична, чем та же покоящаяся жидкость ферромагнетик, где все магнитные моменты отдельных атомов ориентированы в одном направлении, менее симметричен парамагнетика со случайным направлением этих моментов. И вообще, возникновение любой пространственной или временной структуры нарушает однородность среды, т. е. симметрию по отношению к трансляциям в пространстве или во времени. Поэтому турбулентное течение жидкости, возникающее при сильной неравновесности и характеризуемое появлением сложной структуры (самоорганизация), является более упорядоченным (менее хаотическим), чем ламинарное течение.  [c.373]

Для выяснения этого рассмотрим простейший пример. Пусть в начальный момент времени газ находится в неравновесном состоянии, так что его плотность в разных точках разная. С течением времени газ начинает приходить в равновесное состояние (см. 2) и р (, 1 его плотность р = тоЯ (то — масса  [c.14]

Неравновесные процессы возникают при наличии между различными частями системы конечных разностей значений таких параметров, как давление, температура, концентрации, электрический потенциал и др. С течением времени система возвращается в состояние термодинамического равновесия (dS = 0). Но классическая термодинамика не ответит на вопрос, как быстро термодинамическая система вернется в состояние равновесия. Для того чтобы термодинамика могла определить скорость процессов, необходимо расширить круг понятий и постулатов и ввести время в качестве независимой переменной.  [c.234]

В любой момент времени, зафиксировав состояние с определенной энтропией в ходе неравновесного процесса, можно определить энтропию системы, если привести систему к этому состоянию равновесным путем. Если неравновесное состояние связано с перемещением вещества (поток жидкости, газа) и передачей теплоты от одних частей системы к другим, то параметры системы (р, Т, р, с) будут меняться в каждой части системы с течением времени.  [c.235]


Книга представляет собой систематический курс термодинамики равновесных и неравновесных процессов, в котором рассматриваются как состояния равновесия и равновесные процессы изменения состояния тел, так и необратимые процессы, прежде всего процессы течения вязких жидкостей и теплообмена в различных условиях.  [c.2]

Устойчивое равновесие термодинамической системы характеризуется тем, что по устранении причины. Вызвавшей отклонение системы от состояния равновесия, система сама по себе возвращается в первоначальное равновесное состояние. При этом за время, в течение которого устанавливается термодинамическое равновесие (это время называется временем релаксации), в системе происходят различные неравновесные, а следовательно, и необратимые процессы, заключающиеся в затухании механических движений, выравнивании плотностей и температур и т.[д. Чтобы вывести систему из состояния устойчивого равновесия, необходимо совершить над системой (т. е. затратить извне) некоторую работу.  [c.109]

Проведение измерений в многофазовых потоках затрудняется тем, что такие течения в общем случае характеризуются структурной неоднородностью, термической и динамической неравновесностью, т. е. компоненты, составляющие среду, могут иметь различные температуру и скорость при переменном поле концентрации фаз и различных структурных формах течения в ядре потока и на периферии. Поэтому к методам и средствам диагностики неоднородных сред наряду с малой погрешностью измерений, простотой и доступностью применения предъявляют и специальные требования. Это прежде всего нежелательность воздействий, вносящих возмущение в структуру потока и инициирующих фазовые превращения.  [c.239]

Формулировка и рещение задачи в рамках линейной неравновесной термодинамики состоит в следующем. Необходимо написать уравнение (8.22) для плотности потока через измеряемые на опыте величины, решить его для условий стационарного или нестационарного течения процесса, проанализировать решение и получить вытекающие из него следствия. Для этого необходимо вычислить обобщенные термодинамические силы определить, используя принцип Кюри, число перекрестных феноменологических коэффициентов, найти значение прямых и перекрестных коэффициентов. Существенную помощь при этом могут оказать свойства функции диссипации, рассмотренные выше.  [c.204]

Применение термодиффузии для расчета равновесных термодинамических свойств — новое направление, возникшее в течение последних лет в результате развития неравновесной термодинамики. Ранее термодиффузию использовали в основном как метод разделения жидкостей и газов. О величине эффекта разделения можно получить представление, решив уравнение (8.231) для стационарного состояния, когда У]=0.  [c.235]

Предложена двухскоростная двухтемпературная модель течения неравновесной пароводяной смеси в критическом сечении и методика расчета стащюнарного реактивного усилия, основанная на этой модели и учитывающая неравновесность смеси в критическом сечении и по температурам, и по скоростям фаз. Наилучшее совпадение расчетных и экспериментальных значений реактивного усилия в широком диапазоне начальных давлейий получено для случая истечения насыщенной воды (примерно 4%).  [c.176]

Авторами указанных выше работ величины dp dl). и (dpldl) рассчитывались по змеевиковым формулам. С учетом этого обстоятельства можно сделать вывод о независимости параметров (4.18) от конфигурации канала, хотя абсолютные значения потерь давления двухфазного потока в змеевиках выше, чем в прямых трубах. Предположив, что независимость параметров Локкарта— Мартинелли от конфигурации канала сохраняется и при течении неравновесного парожидкостного потока в условиях поверхностного кипения, для расчета потерь давления при поверхностном кипении в змеевиках можно использовать соответствующие прямотрубные зависимости, представленные в виде отношения потерь давления при поверхностном кипении АРцц к потерям давления при течении изотермического потока жидкости Ар . При таком подходе величина Ap в змеевике находится из равенства  [c.56]

Влияние начальных параметров зародьппей вскипания. В используемой модели течения неравновесно вскипаюи ей жидкости к числу недостаточно известных эмпирических параметров относятся начальное число пузырьков щ и начальный зародышевый их радиус о- Изучение влияния этих параметров на процесс  [c.154]

Равновесное состояние внутри объема системы оказываетс.я иаруи1енным. Чем больше разность давлений, тем больше будет скорость перемещения поршня ) тем более неравновесным будет состояние газа в процессе. 1аким образом, в течение неравновесного процесса состояние системы невозможно характеризовать определенными значениями параметров состояния. Поэтому неравновесный процесс невозможно изобразить графически в диаграмме состояний.  [c.47]

Приведенная методика расчета нестационарного охлаждения трубопровода применима лишь к прямым коротким трубопроводам. Для сложных магистралей с местными сопротивлениями (колена, сужения, расширения и т. д.) нет надежной методики расчета. Это объясняется тем, что при их расчете необходимо рассматривать уравнения движения жидкости и пара, которые при одномерном описании содержат члены с коэффициентами трения и местных потерь. В настоящее время экспериментальные данные по гидравлическим потерям в местных сопротивлениях при течении неравновесных дву.хфазных потоков отсутствуют. Кроме того, нет данных о теплоотдаче в стержневом режиме в коленах и гибах труб, а также о влиянии на теплоотдачу неравновесного потока внезапных сужений и расширений.  [c.313]


Действительно, течение в отдельных участках двигателя носит существенно пространственный и нестационарный характер, при этом важен учет как двухфазности течения, так и неравновесного протекания химических реакций. Однако, как уже отмечалось, даже численное решение полной системы уравнений (1 112)... (1.121) весьма затруднительно, поэтому для изучения некоторых качественных закономерностей необходимо сделать упрощающие предположения. Так, на участке смешения горючего с воздухом можно принять течение стационарным и одномерным, не учитывать физико-химических превращений, но обязательно учитывать двухфазность течения. Состав смеси после воспламенения можно определить по соотношениям равновесной термодинамики. В то же время при расчете параметров в цилиндре при прямом и обратном ходе поршня необходимо учитывать нестационарность течения, неравновесное протекание химических реакций, но можно принять течение однофазным и одномерным. При истечении отработанных продуктов сгорания через клапан течение в канале можно считать стационарным и двумерным по аналогии с течением в кольцевых соплах реактивных двигателей. Конечная цель исследования состоит в определении концентраций токсичных компонент в отработанном топливе, в нахождении их, а также термодинамических параметров смеси, как функций времени и таких параметров двигателя, как степень сжатия, частота вращения, коэффициент избытка окислителя и т. д.  [c.231]

ФИЗИКО-ХИМИЧЕСКОЕ ДЕЙСТВИЕ УЛЬТРАЗВУКА. Акустич. колебания могут оказывать существенное влияние на течение неравновесных процессов в замкнутой системе. К ним относится целый ряд процессов химич. технологии — механич., гид-ромеханич., тепловые и массообменные. Характер воздействия УЗ на физико-химич. процессы может быть различным стимулирующим — в тех случаях, когда он является движущей силой процесса, как, наир., в процессах УЗ-вого диспергирования, распыления, эмульгирования, УЗ-вой коагуляции и очистки, интенсифицирующим — в тех случаях, когда УЗ лишь увеличивает скорость процесса (наир., в процессах УЗ-вого растворения, травления, экстрагирования, УЗ-воп кристаллизации и сушки, при воздействии ультразвука на электрохимические процессы), оптимизирующим — в тех случаях, когда УЗ лишь упорядочивает течение процесса, как, напр., в процессах акустич. грануляции и центрифугирования, прп воздействии на режим горения в ультразвуковом поле.  [c.363]

В другом случае на тот же поршень будем накладьшать достаточно большие грузы - целые камни Когда мы положим на поршень очередной камень (см. рис. 1.9), то поршень резко переместится вниз. При этом вблизи поршня возникает зона уплотнения, давление в которой будет выше, чем в других местах. Такое нарушение однородности вызывает импульс давления, который начинает распространяться вниз, отражаться от дниша цилиндра и направляться вверх, отражаться там и снова двигаться вниз. Возникшие колебания будут продолжаться до тех пор, пока за счет внутреннего трения полностью не сгладятся, и не установится новое равновесие между системой и средой. В течение неравновесного процесса из-за неоднородности системы нельзя однозначно определить значения параметров газа, поэтому процесс 1-2 изображают лишь условно. Если изменить знак Ар (резко снимать камни), то процесс пойдет в обратном направлении, но будет протекать по  [c.13]

Разнообразие волновых структур в активных средах проявляется и в сложных структурах конденсированных сред. Следует прежде всего рассмотреть аналогию волновой картины пластической деформации при упругопластическом переходе в вихреобразования в движущейся трубе жидкости при переходе от ламинарного течения к турбулентному. Этому неравновесному фазовому переходу отвечает критическое число Рейнольдса. С другой стороны, переход от упругой деформации (апало1- ламинарного течения) также является неравновесным фазовым переходом, возникающем в результате потери упругой устойчивости деформируемой конденсированной среды, проявляющаяся на различных масштабных уровнях. В обоих случаях переход структуры из одного устойчивого состояния в дру1ое сопровождается порождением aBTOBOjni, как способа диссипации энергии средой в критических точках (см. главу 1).  [c.254]

Обратим внимание на следующее важное обстоятельство. Если турбулентное движение уже установилось (течение вышло на странный аттрактор ), то такое движение диссипативной системы (вязкой жидкости) в принципе не отличается от стохастического движения бездиссипативной системы с меньшей размерностью пространства состояний. Это связано с тем, что для установившегося движения вязкая диссипация энергии в среднем зп большое время компенсируется энергией, поступающей от среднего течения (или от другого источника неравновесности). Следовательно, если следить за эволюцией во времени принадлежащего аттрактору элемента объема (в некотором пространстве, размерность которого определяется размерностью аттрактора), то этот объем в среднем будет сохраняться — его сжатие в одних направлениях будет в среднем компенсироваться растяжением за счет расходимости близких траекторий в других направлениях. Этим свойством можно воспользоваться, чтобы получить иным способом оценку размерности аттрактора.  [c.167]

В 1876 г. И. Лошмидт выступил с возражениями против развитой Больцманом теории об одностороннем изменении -функции (в дальнейшем ее стали называть //-функцией). Суть его замечаний сводилась к следующему. В первоначально неравновесной системе столкновения частиц приводят к тому, что с течением времени и ней установится равновесное максвелловское распределение частиц по скоростям. При этом, по Больцману, Я-функция будет монотонно убывать. Если после достижения равновесия изменить все скорости частиц на противоположные, то эволюция системы будет происходить в сторону удаления ее от равновесия, причем Я-функция будет возрастать. Мысленный парадокс Лошмидта приводил к тому, что у Я-функции имеется столько же возможностей возрастать, сколько и убывать. Это логически противоречит тому, что механические уравнения 01шсывают обратимые процессы, в то время как результаты Больцмана описывают необратимые процессы.  [c.85]

В технологических процессах, аппаратах, установках и системах, в которых используются многокомпонентные струйные течения, происходят быстропротекаю-щие термогазодинамические процессы, сопровождающиеся фазовыми превращениями многокомпонентных сред, при которых часть компонентов переходит в жидкую фазу и наоборот. В струйных течениях при быстропротекающих термогазодинамических процессах из-за малого срока действия на многокомпонентную среду давления Р и температуры Т не происходит полного перехода компонентов из одной фазы в другую. Описание процессов фазовых превращений, протекающих в многокомпонентных средах при неравновесных условиях быстропротекающих термогазодинамических процессов в струйных течениях является сложной математической задачей. С целью упрощения такого описания использовались фундаментальные представления о фазовых превращениях в многокомпонентных средах в предельных равновесных условиях с коррекцией на неравновесность.  [c.90]

Рис. 4.1. 1>лок-схема расчета фаювых превращений и основных парамепров многокомпонентных сред при неравновесных условиях струйных течений  [c.99]

Для выяснения этого рассмотрим простейший пример. Пусть в начальный момент времени газ находится в неравновесном состоянии, так что его плотность в разных точках разная. С течением времени газ начинает приходить в равновесное состояние (см. 2) и его плотность р = тоП (то — масса молекулы, — концентрация молекул), изменяясь, приобретает некоторое макроскопически постоянное, равновесное значение ро (рис. 1). Оно может быть определено как среднее значение плотности р за больпюй промежуток времени Т  [c.16]


В настоящее время приведение спиновой системы в состояние с отрицательной абсолютной температурой достигается с помощью 180-градусного высокочастотного импульса, который, действуя на образец в течение промежутка времени At, сравнимого с Х2, поворачивает макроскопический магнитный момент на 180°. Таким образом, процесс перехода системы от положительных термодинамических температур к отрицательным является принципиально неравновесным, так как изменение внешнего параметра (напряженности поля), приводящее к такому переходу, происходит за время, сравнимое с временем релаксации Тз- Очевидно, что для необычных систем возможны случаи, когда состояния, достижимые из данного состояния нестатически, недостижимы из него квазистатически.  [c.141]

Как уже было отмечено в гл. 7, термодинамическое описание неравновесных систем основано на постулате о наличии локального равновесия. Термодинамические параметры (температура, давление, энтропия и т. д.) в общем случае являются функциями пространственно-временных координат. С методической точки зрения целесообразно выделить два класса неравновесных систем непрерывные и прерывные. В непрерывных системах интенсив11ые параметры состояния являются не только функциями времени, но также непрерывными функциями пространственных координат. В них протекают неравновесные процессы переноса теплоты (теплопроводность), импульса (вязкое течение), массы (различные виды диффузии) и химические реакции.  [c.195]


Смотреть страницы где упоминается термин Течение неравновесное : [c.600]    [c.112]    [c.271]    [c.288]    [c.118]    [c.134]    [c.3]    [c.177]   
Численные методы газовой динамики (1987) -- [ c.45 , c.119 ]



ПОИСК



Вариационные задачи газовой динамики неравновесных и равновесных течений. Крайко

Влияние сжимаемости на гидродинамику течения вскипающей жидОпределение критического расхода адиабатно-вскипающих потоков Неравновесные критические параметры в выходном сечении цилиндрических насадков

Математическая модель неравновесного течения

Неравновесная конденсация при одномерном течении переохлажденного водяного пара

Неравновесное течение в осесимметричном сопле

Неравновесное течение в сопле Лаваля Метод мгновенного замораживания

Неравновесные течения газовых смесей

Понятие о неравновесных течениях

Равновесные и неравновесные течения

Расчет неравновесных течений газа

Расчет фазовых превращений в многокомпонентных средах при неравновесных условиях струйных течений

Структура химически неравновесных течений при скачкообразном изменении температуры и каталитических свойств поверхности

Течения с неравновесной конденсацией

Течения с неравновесными химическими реакциями

Уравнения газовой динамики пространственных неравновесных течений идеального газа в обобщенных координатах Мизеса Двумерные и одномерные течения

Учет химической неравновесности течения

Физическая модель течения неравновесных смесей газов

Характеристические свойства уравнений неравновесного течения газа



© 2025 Mash-xxl.info Реклама на сайте