Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрешение угловое

Рассчитайте теоретические значения предела разрешения, угловой и линейной дисперсии, области дисперсии и контрастности используемого интерферометра.  [c.85]

Для оценки разрешающей силы телескопа остановимся на условиях разрешения двух близких звезд Si и S2 Пусть угловое расстояние между ними равно йф и в фокальной плоскости объектива наблюдается наложение дифракционных изображений от этих двух некогерентных излучателей (рис. 6.64). Для харак-  [c.335]


Критерий Рэлея в указанной форме неприменим к интерференционным спектральным аппаратам, в которых, как мы видели, переход от максимума к минимуму имеет иную угловую зависимость, нежели в дифракционной решетке ). Поэтому удобнее придать критерию Рэлея несколько иной вид. Если две смежные спектральные линии имеют одинаковую интенсивность и форму, то критерий Рэлея означает, что минимум между линиями составляет около 80% от соседних максимумов. Такой контраст устанавливается вполне уверенно как при визуальных, так и при объективных (фотографических н электрических) методах регистрации. Исходя из этого, нередко предел разрешения определяют требованием, чтобы глубина седловины на интегральной кривой интенсивности двух близких и одинаково интенсивных линий составляла не менее 20% высоты соседних максимумов.  [c.214]

При рассматривании очень удаленных предметов размер их изображения падает до предельного значения, обусловливаемого разрешающей способностью глаза. В таком случае средняя освещенность уже не будет определяться яркостью объекта. Так как размер изображения постоянен, то освещенность пропорциональна потоку, поступающему в глаз, а этот последний зависит от силы света источника и его расстояния до глаза. Поэтому, например, звезды, угловой диаметр которых меньше секунды, не производят слепящего действия, хотя их истинная яркость нередко больше яркости Солнца, слепящее действие которого огромно благодаря заметному угловому диаметру (32 ), значительно превосходящему предел разрешения глаза (около Г).  [c.343]

Рис. 15.1. а) Общий вид дифракционной картины при наблюдении двух удаленных звезд, находящихся на небольшом угловом расстоянии, б) Предел разрешения при изображении двух точек (критерий Рэлея).  [c.347]

Для решения системы (7.23) численными методами она обычно представляется в виде, разрешенном относительно угловых ускорений Ё1 и r,j  [c.148]

Это нелинейное уравнение первого порядка, разрешенное относительно производной, может быть решено численным или графическим методом, как было показано в главе IV. В рассматриваемой механической системе устанавливается режим со средней угловой скоростью Построив график, можно полу-  [c.143]

Ограничение диапазона измеряемых размеров связано в основном со снижением интенсивности дифракционного распределения при уменьшении измеряемого размера, с одной стороны, и с уменьшением угловых размеров дифракционных максимумов и трудностью их разрешения при увеличении размера объекта — с другой.  [c.255]

В центральной части мишени измерения выполнены с угловым разрешением 2 мрад, где L 50 мм — расстояние от торца автокатода до мишени, 6 = 0,1 мм — минимальное расстояние вдоль мишени, задаваемое диаметром сфокусированного электронного луча считывающего прожектора.  [c.99]


Метод Р. к. позволяет создавать детекторы большой светосилы с высокими пространственным и угловым разрешениями, площадью в сотни и тысячи и временем непрерывного набора статистики —2 года. Р. к.  [c.382]

В Я. ф. э. можно измерять рассеяние частицы—ср. угловое отклонение на единицу пути ф е/ри р—импульс частицы). Я. ф, э. можно поместить в сильное магн. поле и измерить импульс частицы и знак её заряда, что позволяет определить заряд, массу и скорость частицы. Достоинства метода Я. ф. э.— высокое пространств, разрешение (можно различать явления, отделённые расстояниями меньше 1 мкм, что для релятивистской частицы соответствует временам пролёта с) и возможность длительного накопления редких событий.  [c.660]

Отсюда на основе критерия Рэлея уравнение (2.06) дает предел углового разрешения для телескопа с размером апертуры а в виде  [c.33]

Теория р-распада отдельного нуклона строится на основе математического аппарата квантовой теории поля, поскольку с помощью этого аппарата можно описывать процессы рождения и поглощения частиц. В квантовой теории поля, как и в нерелятивистской квантовой теории, конкретный вид взаимодействия полностью определяется заданием оператора Гамильтона. Этот оператор Гамильтона действует на векторы состояния, которые имеют довольно сложную математическую природу (являются функционалами). Соответствующий математический аппарат очень сложен. Поэтому мы ограничимся описанием результатов. Из условий релятивистской инвариантности для полного, определяющего Р-рас-падные явления оператора Гамильтона получается выражение, состоящее из довольно большого, но конечного числа слагаемых определенного вида с неизвестным численным коэффициентом при каждом слагаемом. Эти численные коэффициенты могут быть определены только из сравнения предсказаний теории с экспериментальными данными. Для этого следует использовать разрешенные переходы, в которых слабо сказывается влияние структуры ядра. Так, если требовать, чтобы разрешенные Р-спектры имели форму (6.62) с не зависящим от энергии коэффициентом В, то в р-распадном гамильтониане отбрасываются все слагаемые сравнительно сложного вида и остаются только восемь относительно простых слагаемых (их осталось бы всего четыре, если бы в слабых взаимодействиях сохранялась четность). Нахождение коэффициентов при этих восьми слагаемых оказалось громоздкой задачей, решенной лишь к концу пятидесятых годов на основе большого числа различных экспериментов. Укажем, какого рода эксперименты нужны для решений этой задачи. Отличия, как их называют, различных вариантов Р-распада проявляются прежде всего в том, что каждый вариант характеризуется своим отношением числа электронно-антинейтринных (или позитронно-нейтрин-ных) пар, вылетающих с параллельными и антипараллельными спинами. Поэтому существенную информацию о вариантах Р-распада дает изучение относительной роли фермиевских и гамов-теллеровских переходов. Информация о вариантах распада может быть получена также из исследования угловой корреляции между вылетом электрона и нейтрино, т. е. углового распределения нейтрино относительно импульса вылетающего электрона. За счет релятивистских поправок это угловое распределение оказывается неизотропным, причем коэффициент анизотропии мал, но различен для разных вариантов распада. Измерения корреляций очень трудны, так как приходится регистрировать по схеме совпадений (см. гл. IX, 6, п. 3) импульс электрона и очень малый импульс ядра отдачи. Наконец, для однозначного установления варианта Р-распада нужны эксперименты типа опыта By. После длительных исследований было установлено, что в реальном гамильтониане Р-распада остаются только два из всех теоретически возможных слагаемых (эти оставшиеся варианты называются векторным и аксиальным). Тем самым вся теория Р-распада определяется всего лишь двумя опытными константами — коэффициентами при этих двух слагаемых. При этом существенно, что эти две константы определяют не только Р-распадные процессы, но и все другие процессы слабых взаимодействий (см. гл. VH, 8). Сейчас построение теории р-распада нуклонов можно считать в основном завершенным. В гл. Vn, 8 мы увидим, что эта теория является частным случаем общей теории  [c.252]

Как мы уже говорили ( 2, п. 1), в мире элементарных частиц действует принцип все, что не запрещено (законами сохранения), обязательно происходит . Этот принцип позволяет легко разобраться в том, какие реакции и распады будут идти, а какие нет. Для этого достаточно учесть энергетический баланс и законы сохранения момента и зарядов, потому что все остальные законы сохранения накладывают ограничения не на сам процесс, а на его характеристики (интенсивность, угловое распределение и др.). Надо, однако, еще учесть, что если процесс разрешен только для слабых взаимодействий, то он будет протекать с ничтожной интенсивностью. Такого типа реакцию вообще нельзя заметить (если только для этого не приняты сверхособые меры, см. 8, п. 12), а соответствующий распад будет протекать с громадным (например, 10" с) временем жизни. Поэтому наряду с законами сохранения зарядов надо учитывать пр иближенные законы сохранения странности, четности и зарядового сопряжения, нарушаемые только слабыми взаимодействиями. Учтя это последнее замечание, приведем полную сводку условий, пользуясь которыми можно не только легко и быстро сказать, пойдет или нет данный процесс, но и, например, перечислить возможные пути получения тех или иных частиц. Эти условия таковы  [c.309]


Угловая разрешающая способность глаза (т. е. минимальный угол между деталями изображения, которые он различает) равна Г при расстоянии до объекта I = 250 мм и соблюдении указанных выше условий. Линейное разрешение в плоскости ОК е = loL Л1 яй 250-0,0003 0,08 мм. Частотноконтрастная характеристика (ЧКХ) глаза имеет максимум при угловом размере объекта а 1° и спад в областях как низких, так и высоких пространственных частот. Использование увеличивающей ошики (лува, микроскоп) повышает разрешение в число раз, равное увеличению прибора. Применение микроскопов обеспечивает разрешение e ss 1. .. 5 мкм.  [c.51]

Применение когерентного излучения. Высокая степень монохроматичности и малая расходимость когерентного оптического излучения определяют области его практического использования. Излучение с высокой временной когерентностью может быть использовано для передачи информации на оптических частотах при решении задач, связанных с оптической интерференцией (измерение расстояний, линейных и угловых скоростей, деформаций поверхностей и т. д.) в качестве стандарта частоты. Высокая направленность пространственно-когерентного излучения обусловливает ряд его преимуществ перед некогерентным излучением небольшую величину энергетических потерь, связанных с расходимостью пучка высокое угловое разрешение, поз- воляющее точно направить луч на малый объект и существенно сократить помехи возможность пространственной фильтрации при приеме сигналов. Отсюда следует, что узконапрявленное оптическое излучение может быть эффективно использовано при передаче информации на большие расстояния, при оптической локации удаленных объектов (особенно для выделения объекта среди других целей), при измерении углов и расстояний по принципу, на  [c.343]

Для разрешения этой (перчой в 5) задачи обратимся к основному уравнению движения машины, которое положим в основу наших рассуждений, а также воспользуемся графиком угловой скорости" черт. 11.  [c.29]

Таким образом, описанная установка и прибор на базе з. э. л. т. обеспечивают возможность измерения характеристик пространственного и углового распределений с угловым разрешением до 2 мрад эмиссионного тока автоэмиттеров.  [c.99]

Задача решения системы дифференциальных уравнений (5.35) с периодическими коэффициентами, имеет упрощенное решение путем замены переменных или применения новой системы ортогональных координат (I, q, которые вращаются с угловой частотой сОр вместе с рабочим колесом. В этой системе отвод (статор) насоса неподвижный относительно колеса, а поэтому проекции обобщенного вектора на эти оси будут постоянными во времени. Такой подход к разрешению аналогичной задачи, которая случилась при анализе переходных режимов синхронной электрической машины, был предложен Блонделем [49] и получил развитие в трудах Парка и Горева [50,42].  [c.79]

Обе эти ДН сложных А. имеют лепестковую структуру, обусловленную интерференцией волн, излучаемы х и рассеиваемых разл. элементами А. Там, где синфазно складываются поля всех элементов, формируется максимум, наз. главным. ДН (f (0, ф) и F в, ф) обычно изображают в виде объёмной , рельефной картины, контурной карты с линиями равных уровней либо с помощью отдельных плоских сечений, чаще всего двух ортогональных плоских сечений, проходящих через направление гл. максимума и векторы JS и Н (рис. 13). Т. к, осн. часть мощности, излучаемой А., сосредоточена в гл. лепестке, направленность излучения характе-ри.чуется его щирпнои, обычно по уровню половинной мощности Д0о,в1 иногда — углом между ближайшими нулями. Величина Д9ц,г, определяет угловое разрешение А. и может быть приближённо оценена (в радианах) как А д,-, k/D <1 (D — размер А. в измеряемом сечении ДН) для остронаправленЕых А. с максимумом излучения, ориентированным перпендикулярно плоскости излучающего раскрыва (А. с поперечным излучением). Это соотношение совпадает с Рэлея критерием, используемым в оптике для оценки разрешающей способности F(B)  [c.96]

АНТЕННА РАДИОТЕЛЕСКОПА устройство для сбора радиоизлучения космич. объектов. А. р. определяет его чувствительность (миывмально обнаружимый сигнал) и угловое разрешение (способность разделить изл -че-ние близких друг к другу радиоисточыиков). Мощность принимаемого сигнала от радиоисточника с плотностью потока радиоизлучения F равна 0,5 AF, где Д —.эфф. площадь антенны, коэф. 0,5 определяется тем, что принимается лишь одна из поляризаций. Минимально обнаружимый сигнал 8F — 2kT ,/Ay Ti f зависит от величины Л, шумовой температуры радиотелескопа Т, н радиометрич. выигрыша К тА/ здесь Д/— полоса частот принимаемого сигнала, т—время наблюдения источника, k—постоянная Больцмана. Шумовая темп-ра  [c.100]

Судет проектироваться в точку 4 (а точка 2 в точку Л) при рассматривании через участок В точка 3 проектируется в точку 5 (точка 2 в точку 4). Для всего объектива, наведенного на плоскость Рц точка 3 (и, аналогично, точка 2 будет изображаться множеством точек, образую1[[нх в проекции на Р круг диаметра а (пятно размытия). Если этот диаметр меньше нек-рой максимально допустимой величины адош связанной с угловым пределом разрешения глаза, то пятно размы. тия будет восприниматься наблюдателем как точка. В случае =адоп плоскости Р и Рз называются соответственно передним и задним планами, а Г. и. п. в приближении гоомотрической оптики равна (как следует из рис.)  [c.497]

Качество аь устических голографических изображений. Качество акустич. голограмм и восстановленных по ним изображений зависит от большого числа факторов. К ним относятся чувствительность акустич. гологра-фич. системы, угловое разрешение, разрешение по глубине (по продольной координате), наличие геом. и частотных искажений. Чувствительность у — мин. (пороговое) звуковое давление, воспринимаемое приёмной частью голографич. системы обычно выражается в единицах Па/у Гц. У лучших голографич. систем V=10 —10 Па/у Гц. Угловое разрешение 9ф — мин. угловое расстояние между двумя точечными источниками, различаемыми раздельно на голограмме зависит от волнового размера приёмной апертуры акус-  [c.513]


Существует ряд физ. ограничений на реализуемость нек-рых видов Д. н. Так, в случае эл.-магн. волн не может быть реализована строго изотропная Д. н., что обусловлено векторным характером эл.-магн. поля. Практически не может быть реализована сверхнанрав-ленная Д. н. с угловой шириной гл. лепестка меньше I/O радиан (критерии разрешения Рэлея), что связано с волновой природой поля излучения. Т. о., в случае эл.-магн. поля оказываются неосуществимыми оба крайних случая, хотя формальна в заданном объёме может быть построено распределение сторонних источников, Д. н. к-рых аппроксимирует с наперёд заданной точностью любую ограниченную ф-цию ото распределение, однако, становится неустойчивым по отношению к любым малым отклонениям от значений параметров, обеспечивающих сверхнаправленность .  [c.610]

При разрядке высоколежаших состояний ядер происходит очень большое число упереходов. Для их анализа требуются спектрометры, объединяющие высокую эффективность регистрации с высоким энергетич. разрешением. Эти требования осуществляются в системах, состоящих из многих сцинтилляционных и полупроводниковых G -де-текторов. На рис. 3 показана схема спектрометра, установленного на пучке тяжёлых ионов (англ. ядерный центр Дэрсбери). В нём использованы 50 сцинтилляционных спектрометров с кристаллами германата висмута (BGO) и 6 германиевых детекторов высокого разрешения с анти-комптоновской зашитой из окружающих их больших кристаллов Nal (Т1). BGO-детекторы определяют множественность у-переходов, разряжающих исходное состояние ядра, и суммарную энергию каскадных переходов. Энергия индивидуальных переходов определяется сборкой из Ое-детекторов. Кроме энергии у-переходов такие сборки позволяют определять их угл. распределения (см. Угловые распределения и угловые корреляции), а также времена жизни изомерных состояний, к-рые могут возбуждаться в данной реакции (см. Изомерия ядерная).  [c.658]

В [35] однородные метаста-О—N фазы, полученные методом магнетронного осаждения при использовании А1-мишени и Аг—Oj—N2 смеси газов при t = 190 °С и различных давлениях О2 и N2 газов, исследовались методами рентгеновской фотоэлектронной спектроскопии и электронной спектроскопии с угловым разрешением. Обнаружено формирование богатых кислородом нано-кристаллических А1—О—N фаз с кубической (типа 7-AI2O3) структурой богатые азотом фазы имеют вюртцитоподобную гексагональную структуру. При 0/N 1,5 получаемые фазы аморфны.  [c.8]

Эффективным методом диагностики параметров ударно-сжатого вещества является импульсный рентгеноструктурный анализ. В качестве источника рентгеновского излучения используются вакуумные диоды со взрывоэмиссионным катодом, являющиеся нагрузкой мощного емкостного генератора импульсных напряжений или формирующей линии. Разрешающая способность аппаратуры позволяет регистрировать рентгеновские дифрак-тограммы с экспозицией около 50 не и угловым разрешением 0,5 — Г. Применение преград, прозрачных для рентгеновского излучения, позволяет фиксировать давление во время экспозиции. Пример реализации метода ударного сжатия описан в [9].  [c.433]

Рис. 8. Схема установки для сварки взрывом при угловом расположении заряда и плиты (с разрешения Исследовательского института Stanford) 1 — взрывчатое вещество а — исходный угол между верхней и нижней плитой Рис. 8. Схема установки для <a href="/info/7370">сварки взрывом</a> при угловом расположении заряда и плиты (с разрешения Исследовательского института Stanford) 1 — <a href="/info/48230">взрывчатое вещество</a> а — исходный угол между верхней и нижней плитой
Уравнение (2,06) показьшает зависимость диаметра центрального диска диска Эри) от диаметра апертуры и длины волны света. Размер этого диска по существу и определяет предельное разрешение телескопа. Рассмотрим изображение двух звезд с малым угловым расстоянием 0 (рис. 2.6). Поскольку они являются некогерентными по отношению друг к другу источниками, изображение состоит из двух картин интенсивности Эри. Поэтому возможность разрешения двух звезд зависит от размера дисков Эри и расстояния, на котором они перекрываются. Общепринятое граничное условие, критерий Рэлея, представляет собой расстояние, показанное на рис. 2.4,6 и 2.5, в. Согласно этому критерию, две картины разрешаются, если центр диска Эри одной из них налагается на темное кольцо другой. Это обеспечивает провал на 20% в суммарной кривой интенсивности между пиками (которые предполагаются нами одинаковыми по интенсивности). Величина этого провала, хотя и выбрана весьма произвольной, тем не менее является во многих случаях удобным критерием разрешения.  [c.33]


Смотреть страницы где упоминается термин Разрешение угловое : [c.334]    [c.336]    [c.367]    [c.16]    [c.159]    [c.30]    [c.11]    [c.291]    [c.140]    [c.99]    [c.101]    [c.102]    [c.119]    [c.120]    [c.121]    [c.122]    [c.286]    [c.497]    [c.515]    [c.248]    [c.537]    [c.141]   
Распространение и рассеяние волн в случайно-неоднородных средах (0) -- [ c.59 ]



ПОИСК



Детектор с низким угловым разрешением . Учет непара ллельнссти групповой и фазовой скоростей Форма спектральной линии ПР

Разрешения

Угловое разрешение, критерий Рэлея



© 2025 Mash-xxl.info Реклама на сайте