Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мощность индуктивная

Съемник мощности индуктивный  [c.184]

Коэффициент мощности (индуктивный) 0,9 0.9 0,9 0,9 0,9 0,9 0,9 0,9 0,9  [c.333]

Первоначально И.И. Сикорский был вынужден устранять проскальзывание приводного ремня и разбалансировку лопастей винтов. Затем он столкнулся со столь характерной для вертолетов проблемой отстройки резонансных частот и уменьшения вибраций. Из-за недостаточной жесткости вала верхнего винта при частоте вращения 120 об/мин наступал резонанс. Увеличив жесткость вала путем размещения внутри него деревянного стержня, Сикорский увеличил частоту собственных колебаний вала до 175 кол/мин, т.е. выше рабочей частоты вращения. Опыт решения проблем динамической прочности впоследствии очень пригодился Сикорскому при доводке других летательных аппаратов. Во избежание опасности опрокидывание аппарата из-за его недостаточной весовой и путевой балансировки, а также боковых порывов ветра вертолет был жестко закреплен на весах. Испытания показали, что подъемная сила винтов была на 45 кг меньше веса пустого вертолета, равного 205 кг. Кроме того, Сикорский сделал вывод о нецелесообразности использования для управления поверхностей под винтами из-за недостаточной мощности индуктивного потока. После серии испытаний различных винтов в октябре 1909 г. вертолет был разобран. Постройка вертолета И.И. Сикорского для отечественного вертолетостроения имела огромное значение это был первый аппарат такого типа, построенный и доведенный до натурных испытаний.  [c.122]


Например, в быстрых расчетных моделях СГ средней и малой мощности можно выделить следующие типовые блоки 1) расчет геометрии активных частей 2) расчет обмоточных данных 3) расчет ненасыщенных параметров (активных и индуктивных сопротивлений) 4) расчет магнитной цепи в установившемся режиме 5) расчет насыщенных параметров 6) расчет потерь и КПД  [c.124]

При горении дуги возникают высокочастотные колебания, создающие помехи радиоприемным устройствам. Для подавления этих колебаний служит фильтр, состоящий из резистора R11 и катушки индуктивности L. Также с целью предотвращения помех мощность источника питания всей установки должна не менее чем в 10 раз превышать мощность, потребляемую установкой. Установку оборудуют устройством для измерения времени горения дуги, а при его отсутствии время горения измеряют секундомером.  [c.127]

Установки на частоту 50 Гц небольшой мощности проектируются обычно на стандартное напряжение 127, 220, 380 и 660 В и подключаются непосредственно к промышленной сети. Если коэффициент мощности ниже 0,8, то следует предварительно скомпенсировать реактивную мощность с помощью конденсаторов до значения соз <р = 0,92 -т- 0,95 при индуктивном характере цепи. Регулирование режима может осуществляться изменением числа витков индуктора, автотрансформатором, вольтодобавочным трансформатором или тиристорным широтно-импульсным регулятором (ШИР). Если напряжение индуктора по условиям техники безопасности или изготовления меньше стандартного, используются понижающие трансформаторы — печные, сварочные и т. и.  [c.167]

На практике для уменьшения взаимной индуктивности обмоток между ними иногда помещают полюсы магнитопроводов. При этом образуется глубокий, но узкий провал мощности р а в зоне стыка. Равномерность нагрева заготовок достигается правильным выбором соотношения между их длиной н длиной обмоток, чтобы при перемещении заготовок провал мощности не приходился на одну и ту же их часть. Выравнивание температуры происходит за счет теплопроводности.  [c.203]

Схема симметрирования с дросселем-делителем (рис. 14-22, б) позволяет симметрировать нагрузку с активно-индуктивной реакцией, характерной для индукционных установок, и благодаря этому дает сокращение суммарной реактивной мощности, необходимой для компенсации и симметрирования.  [c.251]

Магнитомягкие ферриты используют для изготовлений сердечников трансформаторов, катушек индуктивности, магнитных антенн, статоров и роторов высокочастотных небольшой мощности электрических моторов, деталей отклоняющих систем телевизионной аппаратуры. Ферриты обладают более низкой индукцией насыщения, чем металлические ферромагнетики, поэтому в сильных полях их применять нецелесообразно, однако в высокочастотных полях ферриты могут иметь более высокую индукцию, так как отсутствует размагничивающее действие вихревых токов.  [c.102]


Индуктивность, равная 1 Гн, создает скорость изменения потока, равную 1 В-с/А. Если сопротивление цепи равно нулю, то для поддержания этого потока требуется мощность  [c.253]

Принципиальная электрическая схема прибора показана на рис. 67. Переменный ток заданной частоты после усиления по мощности поступает на дифференциальную измерительную схему, содержащую индуктивный датчик ДЧ  [c.76]

Мощность выходного сигнала датчиков силы с индуктивными преобразователями почти всегда такова, что возникает необходимость его усиления. Частота тока питания индуктивных  [c.360]

На выходе электронного реле мод. 238 — 2 установлено реле типа РЭН-18, износоустойчивость выходных контактов которого 1 млн. срабатываний при индуктивной нагрузке не более двух генри и разрывной мощности не более 50 вт в цепи постоянного тока, не более 500 вт в цепи переменного тока (величина тока через контактную пару допускается не более 5 а).  [c.41]

Прибор состоит из следующих функциональных узлов измерительной головки с индуктивным датчиком электронного усилителя, предназначенного для преобразования и усиления сигналов, поступающих от датчика показывающего прибора—милливольтметра, шкала которого проградуирована в микронах, подключенного на выходе электронного усилителя блока электронных и электромагнитных реле, подающих команды исполнительным органам станка электронного стабилизатора напряжения для питания схемы. В случае, если колебание напряжения в сети превышает 12%, рекомендуется установка дополнительного стабилизатора, мощность которого должна быть не менее 250 ва.  [c.182]

При необходимости выбора направления создания гибридных интегральных микросхем толстопленочная технология обладает преимуществами по сравнению с тонкопленочной в условиях большого рассеяния мощности, необходимости внесения корректировки в параметры схемы в процессе производства, малого количества резисторов, отсутствии жестких допусков на параметры пассивных элементов, необходимости создания индуктивностей.  [c.414]

При сварке на постоянном токе полярность электродов остаётся неизменной, а при переменном токе меняется 100 раз в 1 сек., поэтому условия для существования дуги затруднены. Для устойчивого горения дуги переменного тока необходимо наличие индуктивности в сварочной цепи, создающей сдвиг фаз между током и напряжением такой величины,, чтобы после перехода тока через нуль напряжение трансформатора было достаточным для зажигания дуги, а при уменьшении напряжения дуга поддерживалась бы за счёт возникающей электродвижущей силы самоиндукции. Благодаря этому сварочный аппарат, обладая значительной индуктивностью, должен иметь коэфициент мощности os 9 порядка 0,35 — 0,45. С экономической точки зрения желательно иметь os 9 по возможности выше, в пределах, допускаемых условиями устойчивого горения дуги. Напряжение холостого хода по-  [c.285]

Экономия электроэнергии до 50<>/о достигается а) отсутствием потерь на разбрызгивание, угар и лучеиспускание и концентрированным нагревом основного металла, в результате чего коэфициент полезного действия дуги доводится до 0,65 против 0,35 при ручной сварке б) значительным увеличением коэфициента мощности ( os <р) в случае сварки без индуктивности в сварочной цепи на максимуме мощности и при сварке по присадочной проволоке в) меньшим расходом электроэнергии благодаря меньшему количеству расплавляемого металла.  [c.326]

Третий способ — при напряжении холостого хода сварочного трансформатора превосходящем напряжение дуги в 1,4—1,6 раза. Каждому напряжению дуги Uq соответствует своё напряжение холостого хода трансформатора 7 . Коэфициент мощности os р при третьем способе равен 0,65—0,75. Применяется специальный трансформатор с повышенной собственной индуктивностью и обычные трансформаторы. Режим сварки при этом способе наиболее устойчив и позволяет варить при напряжении дуги 18— 45 в, а случайные изменения длины дуги в процессе сварки в значительно меньшей степени отражаются на мощности дуги, чем при первых двух способах. Подбор режима сводится к установлению заданного напряжения  [c.344]


Сила сварочного тока. Сила тока /2 зависит от мощности машины, её сопротивления и напряжения во вторичной цепи. Существенно влияет на силу тока индуктивное сопротивление вторичного контура (см. фиг. 181). При сварке длинных полых изделий иногда приходится в процессе сварки менять ступень трансформатора, чтобы компенсировать падение силы тока 2. Разработаны также схемы, автоматически поддерживающие постоянство /2 [52].  [c.381]

Следует отметить, что энергоснабжение поезда составляет значительную часть нагрузки дизеля и может колебаться в широких пределах в зависимости от количества вагонов и режима работы потребителей, от погоды и др. Это вызывает значительное колебание мощности дизеля, отдаваемой на тягу. Для обеспечения требуемой мощности и напряжения для цепей энергоснабжения должна быть повышена минимальная частота вращения вала дизеля. По опыту работы тепловоза УЗОО при включенном энергоснабжении диапазон частоты принят от 0,63 п ах до Птах. Кроме того, во избежание перегрузки дизеля должна быть снижена селективная характеристика, а диапазон регулирования мощности индуктивным датчиком расширен.  [c.270]

В эрозионных станках используют различные генераторы импульсов электрических разрядов R (ре-шстор-емкость) RL (L — индуктивность) L ламповые генераторы. В промышленности применяют широкодиапазонные транзисторные генераторы импульсов. Э-ги генераторы потребляют мощность 4—18 кВт при силе тока 16— 126 А. Производительность обработки составляет 75—1900 мм /мин при шероховатости обработанной поверхности 4—0,2 мкм.  [c.402]

Для демонстрации широких возможиостей ППП Динамика ЭЭС представляются примеры моделирования ЭЭС, структурно-функциональная схема которой дана на рис. 7.11. На рис. 7.13, а приведены кривые переходных процессов по напряжению СГ для случая PH с широтно-импульсной модуляцией и импульсной активно-индуктивной нагрузкой. Параметры нагрузки характеризуются коэффициентом мощности 0,9 диапазоном относительного изменения 0,4—1,0 длительностью импульса 20 м-с длительностью паузы 5 м/с. Последовательность моделируемых режимов такова включение возбуждения СГ, наброс статической нагрузки мощностью 0,4 от номинальной мощности, включение импульсной нагрузки.  [c.230]

В 1889 г. второй Международный конгресс электриков включил в состав системы еще три единицы джоуль — единицу энергии, равную 10 единиц энергии СГСМ ватт — единицу мощности, равную 10 единиц мощности СГСМ квадрант (впоследствии генри )—единицу индуктивности, равную 10 единиц индуктивности СГСМ.  [c.88]

Однако близкое расположение обмоток, в особенности при сгущении витков у краев, увеличивает их взаимную индуктивность, что приводит к неравномерной загрузке фаз питающей сети (эффект переноса мощности из одной фазы в другую). Рассмотрим этот эффект подробнее для простейшего случая — двух одинаковых индукторов с сопротивлениями 2, равными по модулю токами / = / и /2 / ехр (— /ф) и сопротивлением взаимной индуктив-  [c.202]

Печь, работающая на частоте 50 Гц, представляет собой однофазную нагрузку, которая при значительной мощности может вызвать недопустимую несимметрию токов и напряжений в питающей трехфазной сети. Это обстоятельство обусловливает необходимость применения специальных симметрирующих устройств, схемы- которых приведены на рис. 14-22. Наиболее распространенная схема Штейнметца (рис. 14-22, а) обеспечивает полное симметрирование при чисто акт ивной постоянной однофазной нагрузке, т. е. при неизменных параметрах печи ( п) и компенсации ее индуктивности емкостью С до коэффициента мощности, равного единице. Принцип действия схемы иллюстрирует векторная диаграмма на рис. 14-23. Если емкость Сс и индуктивность симметрирующего устройства подобраны так, чтобы токи в них /лв и вс отвечали условию  [c.251]

В цепях переменного тока рассеяние мощности в катушках индуктивности иногда оценивают тангенсом угла магнитных потерь. Тороидальную катушку индуктивности с сердечником из магнитного материала, собственной емкостью и сопротивлением обмотки 1чОторой можно пренебречь, представим в виде схемы, состоящей из последовательно соединенных индуктивности L и сопротивления 1квивалентн0г0 всем видам потерь мощности в магнетике (рис. 9-10) для этого случая из векторной диаграммы получим  [c.273]

Сопротивление линии электропередачи длиной 400 км для постоянного тока составляет 8 Ом/км и для переменного тока — 9 Ом/км. Активное сопротивление нагрузки 9000 Ом, индуктивное 1000 Ом. При каком напряжении потери в линии электропередачи составят 1 % мощности нэгрузки  [c.242]

В отличие от возбуждения и приема ультразвука с помощью пьезодатчико,в при ЭМА способе возбуждения и Приама преобразование электромагнитной энергии в звуковую и обратно происходит на поверхности контролируемого изделия. Потери мощности сигнала при таком преобразовании по мере ее передачи от генератора к нагрузке обусловлены рядом причин. Установлено, что при возбуждении ультразвука ЭМА методом с помощью контура ударного возбуждения, если индуктивным элементом или частью его служит высокочастотная катушка датчика, его комплексное сопротивление есть функция зазора [1], что необходимо учитывать, рассматривая вопрос о согласовании. Вследствие этого характеристики датчика зависят от условий включения их в устройствах и являются параметрами системы генератор — внешняя цепь. КрО)ме того, имеются источники потерь в самом датчике, а также джоулевы потери в соединительных электрических элементах. Следовательно, для получения требуемых характеристик ЭМА датчиков в устройствах необходимо определенным образом выбирать параметры датчиков в целом на стадии изготовления ЭМА датчиков и сборки ультразвуковых систем. С другой стороны, если параметры ЭМА датчиков уже заданы, характеристики ультразвуковых устройств можно варьировать только с помощью изменения условий включения их в радиотракт.  [c.119]


Возьмем для описания высокочастотной катушки в режиме излучения параллельный R, L, С-контур ударного возбуждения, настроенный на собственную частоту, которая определяет частоту возбуждения ультразвука в металле, с добротностью Q. В качестве индуктивности контура может служить плоская катушка в виде спирали Архимеда , бабочки или рамок. Если генератор посылает на контур мощность Р, индуктивность катушки в коитуре L (Q — его добротность, время нарастания и спада импульса от 0,1 до 0,9 в катушке Tr, Ыс — собственная частота контура), то пиковая амплитуда тока в контуре [2]  [c.120]

На рис. 117 представлена блок-схема устройства ЭСУ-12. Звуковой генератор 2 питает током несущей частоты индуктивный датчик 1 и через выпрямитель 3 — датчик эталонных сигналов 4. Сигнал от датчика поступает на катодный повторитель 5 и через выпрямитель 6 — на прибор 7, который после соответствующего тарирования показывает величину стабилизируемой нагрузки или деформации. Катодный повторитель 5 служит для усиления сигнала датчика по мощности, выходное" напряжение катодного повторителя через, выпрямители 8 16 сподводится соответственно к схеме сравнения с эталонным напряжением. 9 (и далее через диодный ограничитель к мостовому усилителю постоянного напряжения 10) -, к включенным параллельно ограничителю максимума нагрузки 17 и через диодный ограничитель 18 — к ограничителю минимума нагрузки 19.  [c.177]

Генератор несущей частоты устройства ЭСУ-12 представляет собой источник синусоидальных колебаний фиксированной частоты, питающий через разъем 2 индуктивный датчик и через выпрямитель ЗВ — потенциометры эталонных напряжений. В схеме генератора предусмотрено плавное регулирование выходного напряжения потенциометром Rh и ступенчатое регулирование эталонного напряжения переключением выводов вторичной секционированной обмотки Wi трансфорл1атора Тр. Выходная мощность генератора достигает 10 вт. Устройство ЭСУ-12 питается от сети переменного тока напряжением 220 в, частотой 50 гц через три силовых трансформатора 1Тр, 2Тр и ЗТр.  [c.180]

Аппаратура регистрации состоит из датчика, в который входят первичный преобразователь (ПП) и управляемый генератор (УГ). В качестве первичного преобразователя может быть применен емкостный индуктивный преобразователь, а также преобразователь на тензосопротивлении. Для передачи параметров измеряемого объекта можно использовать как радиоканал, так и проводную связь. Использование радиоканала является более предпочтительным, так как позволяет обеспечить съем информации с вращаклцихся объектов (в нашем случае — баллоны автобуса при измерении давления). Так как при измерении параметров используется частотная модуляция высокочастотного сигнала, радиоканал является естественной связью между датчиком и аппаратурой преобразования сигнала. Усилитель мощности (УМ) усиливает сигнал, а смеситель (С) выделяет разностную частоту между средней частотой управляемого генератора и гетеродина (Г). Клапан (К) с помощью схемы коммутации (X) обеспечивает определенную последовательность включения датчиков на приемное устройство (ПУ), которое перерабатывает сигнал с целью удобства последующей его индикации на цифровом индикаторе среднестатистического количества пассажиров (ЦИСКП) и записи в блоке за-  [c.413]

Т La fo g j I щегося для сети чисто ёмкостным током. При недовозбуждении генератора ток, потребляемый им из сети, будет чисто индуктивным. Таким образом, изменение возбуждения генератора, работающего в параллель с другим, может вызвать только перераспределение реактивной мощности между ними.  [c.536]

Первый способ — при напряжении холостого хода трансформатора 65—70 в и значительном индуктивном сопротивлении сварочной цепи. Этот способ, не отличаясь от способа питания дуги при ручной сварке, имеет низкий коэфициент мощности ( os <р = 0,35 — 0,5) и требует применения трансформаторов и отдельных дросселей. При работе головки в условиях колебания сетевого напряжения получаются значительные изменения режима сварки, а следовательно, и качества швов. Подбор заданного режима ведётся путём изменения индуктивности сварочной цепи дросселем и установлением заданной скорости подачи электрода (изменением числа оборотов мотора, импульсной подачей электрода, изменением диаметра подающих роликов). Первый способ нашел широкое применение и молгет быть назван сваркой на высоком напряжении холостого хода трансформатора.  [c.344]

Второй способ — при напряжении низкой стороны сварочного трансформатора, практически почти равном напряжению на дуге без отдельного индуктивного сопротивления в сварочной цепи. Отличаясь высоким коэфициен-том мощности os ср, приближающимся к единице, второй способ требует наличия только одного трансформатора. Колебания сетевого напряжения сказываются в меньшей степени, чем при сварке по первому способу. Подбор заданного режима сварки ведется путём установления заданного напряжения на дуге и скорости подачи электродной проволоки. При сварке на низком напряжении холостого хода трансформатора качественные швы получаются только при определённых условиях (при ограниченных режимах сварки, при качественной сборке и пр.), поэтому этот способ применим не для всех видов швов. Второй способ можно назвать сваркой на низком напряжении холостого хода трансформатора.  [c.344]


Смотреть страницы где упоминается термин Мощность индуктивная : [c.185]    [c.519]    [c.1014]    [c.1024]    [c.16]    [c.99]    [c.171]    [c.172]    [c.285]    [c.77]    [c.212]    [c.10]    [c.119]    [c.60]    [c.338]    [c.219]   
Теория вертолета (1983) -- [ c.17 , c.43 , c.48 , c.111 , c.134 , c.136 , c.267 ]



ПОИСК



6441-А индуктивные

Включение активных, индуктивных и емкостных приемников в цепь переменного тока. Мощность переменного тока и коэффициент мощности

Индуктивность

Коэффициент индуктивной мощности

Мощность индуктивная минимальная



© 2025 Mash-xxl.info Реклама на сайте