Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электромагнитный Применение

Структуроскопы скоростные — Принцип работы 1 кн. 227 — Технические характеристики 1 кн. 228 --электромагнитные — Применение  [c.323]

Электромагнитная муфта Y1 (рис. 465) питается постоянным током, напряжение которого по условиям техники безопасности не должно превышать 24 В. При напряжении сети переменного тока 380 В питание электромагнитной муфты YI осуществляется через однофазный трансформатор TI (с ферромагнитным сердечником) и выпрямительное устройство VI (выполненное с применением полу-  [c.278]


На газодобывающих предприятиях Западной Канады оптимальным способом обнаружения язвенной коррозии в трубопроводах влажного кислого газа признано применение скребков с электромагнитными контрольно-измерительными приборами. После идентификации поврежденных участков для детального изучения характера повреждений с большим эффектом используют сочетание ультразвуковых измерений и у-радиографии [180].  [c.338]

На применении электромагнитных колебаний основана работа электромоторов, приводящих в действие станки на заводах и фабриках, движущих электровозы.  [c.237]

Если приемник радиации реагирует (как это обычно бывает) на , то можно измерить расстояние между двумя узлами или двумя пучностями Е и определить длину волны. Такой метод, впервые примененный в классических экспериментах Герца с дециметровыми волнами, нетрудно проиллюстрировать, используя технику УКВ (Х 3 см), что облегчается высокой степенью монохроматичности излучения клистрона. В этом опыте электромагнитная волна падает под прямым углом на поверхность какого-либо вещества, хорошо отражающего УКВ, например на лист металла. Приемник УКВ, перемещаемый вдоль линии распространения волны (рис. 2.4), будет регистрировать пучности вектора Е, расстояние между которыми составит примерно 1,5 см.  [c.77]

В целом в современной физике построение Гюйгенса может рассматриваться как следствие электромагнитной теории света, существенно облегчающее ее применение для решения многих конкретных задач.  [c.134]

Сложная задача взаимодействия электромагнитного поля с веществом может решаться методами как классической, так и квантовой физики. Следует учитывать, что при использовании гармонического осциллятора в качестве модели излучающего атома результаты квантовой и классической теории дисперсии совпадают При применении другой модели (например, атома водорода, где нужно учитывать кулоновское взаимодействие, а не квазиупругую силу) результаты квантового и классического описания будут существенно различны. В последующем изложении, проводимом в приближении классической физики, фак-  [c.138]

Электромагнитная теория света, заменившая старую волновую теорию, позволила существенно упростить постановку задачи. Но при ее применении к проблеме интерференции возникают трудности, связанные с тем, что в оптике, как правило, имеют дело не с монохроматическими волнами, а с импульсами, или волновыми пакетами. "Синусоидальная идеализация", которая оказалась вполне пригодной для описания широкого класса явлений, рассмотренных в предыдущих разделах, требует видоизменения при истолковании более тонких интерференционных эффектов.  [c.175]


Строго говоря, при осуществлении таких опытов мы несколько отходим от первоначальной формулировки задачи (которая, впрочем, не очень уточнялась для упрощения рассуждений). Дело в том, что свойства экрана должны в какой-то мере сказываться на результатах дифракционных опытов. Рассматривая проводящий экран, надо учесть взаимодействие с ним электромагнитной волны, определить, хорошо ли он отражает 0 = 1) или плохо (// = 0), и т. д. Применение непроводящего экрана затруднительно по другим причинам. Но все приведенные оговорки несущественны, так как опыт показывает фактическую идентичность дифракционных картин во всех подобных случаях. Действительно, нетрудно заметить, что все нарушения возникают  [c.262]

Резюмируя, можно утверждать, 4jo введение понятия эйконала и вывод основных уравнений (для А —> О позволили строго обосновать взаимосвязь геометрической оптики и электромагнитной теории света. Выявилось также, что постулаты, часто используемые для обоснований построений и законов геометрической оптики (например, принцип Ферма), могут рассматриваться как прямые следствия общей теории распространения электромагнитных волн и целесообразность их применения определяется лишь удобством решения тех или иных задач.  [c.277]

Традиционной областью применения метода аналогий является его обучающий аспект, основанный на соответствующей визуализации того или иного явления. Иными словами, если явление слишком сложное или его невозможно представить визуально (как представить себе электромагнитное поле), используют метод аналогий. Так, для визуализации электромагнитного поля используют линии, в которых напряженность поля одинакова. Далее будут представлены некоторые примеры использования метода аналогий.  [c.11]

Рассмотренный случай дифракции на трехмерной решетке имеет исключительно важное значение. Он осуществляется практически при дифракции рентгеновских лучей на естественных кристаллах. Лучи Рентгена представляют собой электромагнитные волны, длина которых в тысячи раз меньше длин волн обычного света. Поэтому устройство для рентгеновских лучей искусственных дифракционных решеток сопряжено с огромными трудностями. Мы видели, что трудность эта может быть обойдена путем применения лучей, падающих на решетку под углом, близким к ЭО". Однако дифракция рентгеновских лучей была осуществлена задолго до опытов с наклонными лучами на штрихованных отражательных решетках. По мысли Лауэ (1913 г.), в качестве дифракционной решетки для рентгеновских лучей была использована естественная пространственная решетка, которую представляют собой кристаллы. Атомы и молекулы в кристалле расположены в виде правильной трехмерной решетки, причем периоды таких решеток сравнимы с длиной волны рентгеновских лучей. Если на такой кристалл направить пучок рентгеновских лучей, то каждый атом или молекулярная группа, из которых состоит кристаллическая решетка, вызывает дифракцию рентгеновских лучей. Мы имеем случай дифракции на трехмерной решетке, рассмотренный выше. Действительно, наблюдаемые дифракционные картины соответствуют характерным особенностям дифракции на пространственной решетке.  [c.231]

Заканчивая изложение физических принципов голографии, сформулируем еще раз Соображения, лежащие в основе этого способа регистрации информации об объекте наблюдения, переносимой электромагнитным полем. Нас интересует информация, заключающаяся в распределении амплитуд и фаз в этом поле. Фотографирование распределения интенсивности в специально созданной интерференционной картине, возникшей при суперпозиции волнового поля объекта и когерентной ему опорной волны, дает возможность регистрации полной информации, переносимой изучаемым волновым полем. Последующая дифракция света на распределении почернений в фотослое голограммы восстанавливает волновое поле объекта и допускает изучение этого поля а отсутствие объекта наблюдения. Рассмотрим теперь некоторые практические применения голографии.  [c.266]


Среди различных действий света на вещество давление света играет весьма видную роль. Оно имело большое значение в развитии электромагнитной теории света, оно представляет значительный интерес с общефилософской точки зрения на природу света и имеет важные космические применения.  [c.660]

Первоначально с помощью ЭВМ в электромеханике решались только отдельные трудоемкие расчетные задачи как исследовательского, так и проектного характера. Это прежде всего задачи анализа переходных и установившихся физических процессов, характеризующих преобразование энергии в ЭМУ. Применение ЭВМ позволило увеличить количество учитываемых факторов, использовать более точные (и, как правило, более сложные) расчетные зависимости и математические модели, повысить точность расчетов и, как следствие, степень адекватности результатов анализа. При этом многократно сократилось время решения задач в сравнении с неавтоматизированным выполнением расчетов. Так, например, поверочный электромагнитный расчет  [c.9]

Связи конструирования с другими этапами проектирования могут различаться в зависимости от особенностей класса объектов. Так, например, конструкции АД общепромышленного применения отрабатывались в течение длительного времени. Поэтому, зная из предварительно выполненных расчетов основные размеры активной части машины и пользуясь графоаналитической моделью-двигателя, конструктор может получить требуемые рабочие чертежи отдельных узлов и конструкции в целом. В данном случае электромагнитные расчеты предваряют и определяют разработку конструкции.  [c.176]

Поскольку найденные аналоги не в полной мере отвечают требованиям ТЗ, в дальнейшем путем целенаправленного изменения ряда параметров они приводятся в соответствие с заданием. При этом в зависимости от особенностей назначения ЭМУ и характера ТЗ порядок действий проектировщика может меняться. Например, для ЭМ общепромышленного применения первоначально проводится электромагнитный расчет, па основании которого может потребоваться уточнение конструктивного облика объекта. Для ЭМ специального назначения проработка эскиза конструкции с целью обеспечения заданных габаритных размеров, массы, прочности может предшествовать электромагнитным расчетам.  [c.199]

Закон Бугера — Ламберта—Бера в принципе применим для всего диапазона электромагнитных излучений — видимого света, инфракрасных и ультрафиолетовых лучей, радиоволн, рентгеновских и у-лучей. Однако при его практическом применении он имеет по ряду причин лишь приближенный характер.  [c.100]

Основные физические закономерности, свойственные звуку, полностью применимы и для ультразвуковых волн. Наряду с этим малая длина ультразвуковых волн обусловливает и некоторые особые явления, несвойственные волнам звукового диапазона. Направленность излучения звука зависит от соотношения между размерами излучателя и длиной волны (см. 62). Чем меньше длина волны по сравнению с размерами излучателя, тем больше направленность излучения звука. С уменьшением длины волны, кроме того уменьшается также и роль дифракции в процессе распространения волн (см. 57). Поэтому ультразвуковые волны, имеющие сравнительно малую длину волны, могут быть получены в виде узких направленных пучков. В воздухе ультразвуковые волны весьма сильно затухают. Вода по своим акустическим свойствам резко отличается от воздуха. Акустическое сопротивление воды почти в 3500 раз больше, чем воздуха. Следовательно, при одинаковом звуковом давлении скорость колебания частиц воздуха в 3500 раз больше, чем частиц воды. Кинематическая вязкость воды значительно меньше, чем воздуха. Поэтому ультразвуковые волны в воде поглощаются примерно в 1000 раз слабее, чем в воздухе. Этим и объясняется то, что направленные пучки ультразвуковых волн находят широкое применение в гидроакустике для целей сигнализации и гидролокации под водой. Отметим, что использовать для этой же цели электромагнитные волны невозможно, так как их поглощение в воде очень велико. Таким образом, ультразвуковые волны являются, по-существу, единственным видом волнового процесса, который может распространяться с относительно малым поглощением в водной среде.  [c.243]

Понятие единичная струйка в магнитной гидрогазодинамике не имеет такого универсального применения, как в обычной газовой динамике, ибо лишь в немногих случаях можно считать неизменными в поперечном сечении струйки величины и направления векторов электрической напряженности и магнитной индукции, а вместе с ними и векторов плотности тока и электромагнитной силы.  [c.223]

Классическая электромагнитная теория света не может объяснить многих явлений при взаимодействии света с веществом. В частности, она дает неправильное соотношение интенсивностей между красными и фиолетовыми сателлитами в спектре комбинационного рассеяния. Элементарные акты взаимодействия света с веществом носят квантовый характер, и поэтому многие спектральные закономерности могут быть поняты лишь на основе применения квантовой теории.  [c.102]

Уравнение Гельмгольца успешно описывает волны разнообразной природы. Оно было успешно применено для анализа явлений дифракции электромагнитных волн. Это делает вероятным успешность применения уравнения Гельмгольца для описания волн де Бройля.  [c.65]

Электромагнитная гидродинамика, зародившаяся как наука о движении проводящих сред космического пространства, сейчас получает все большее применение в различных областях техники.  [c.389]

Под гравитационным будем понимать движение, вызываемое лишь силой тяжести при отсутствии продувки слоя и каких-либо дополнительных побудителей движения (вибрации, ультразвука, переталкивателей, электромагнитных полей и пр.). Применение подобного слоя в качестве теплоносителя потребовало изучения ряда вопросов движения слоя в узких и оребренных каналах, перехода в падающий слой, распределения по параллельным каналам и пр. Именно эти вопросы в основном определяют содержание ряда последующих разделов данной главы.  [c.287]


Для общемашиностроительного применения основное значение имеют активные электромагнитные подшинники. В них ось нала стабильно поддерживается в пространстве электромагнитными силами, управление которых производится по сигналам от индуктивных датчиков, контро лирующих положение вала.  [c.399]

Маррей [564] подробно исследовал различные аспекты неустойчивости в псевдоожиженных слоях, включая распространение малых возмущений, распространение поверхностной волны, горячив слои (сжимаемая жидкость), центробежные слои и электромагнитные эффекты. Рассмотрим метод, примененный им при исследовании распространения малых возмущений в двумерных (координаты X, у Т1 единичные векторы 1, несжимаемых слоях для случая рр/р 1, и учтем только влияние силы тяжести. Устойчивое состояние можно описать выражениями  [c.411]

В качестве моментных загружателей применяют фрикционные или норсликовые электромагнитные муфты и электрогидравличе-ские загружатели. При применении фрикционных электромагнитных муфт одна из половин муфты неподвижна, другая связана с валом оператора. При отсутствии нагрузки и соответствующего сигнала управления половинки муфт свободно скользят друг относительно друга и оператор не ощущает нагрузки на своем валу. При подаче сигнала с измерителя (датчика) моментов на обмотки управления одной из половинок муфты в ее магнитной цепи создается магнитный поток, который охватывает подвижную половинку муфты и прижимает ее к неподвижной. Чем больше сигнал, тем больщий момент ощущает оператор.  [c.334]

При использовании ультразвука и электромагнитного излучения оптического, инфракрасного и радиоволнового диапазонов для реконструкции изображений необходимо решение обратных задач с интегралами не вдоль прямолинейных траекторий, а вдоль криволинейных, что значительно усложняет процессы вычислений, но устраняет необходимость применения для диагностирования опасных для человека ра-диационньгх излучений и соответствующей защиты от них. Переход к типовым модульным сканерным системам, более широкому использованию спецпроцессоров и замена Минина мшсроЭВМ, позволит создать транспортабельные и переносные ВТ, построенные на различных физических принципах для разных условий эксплуатации машин.  [c.228]

Поверхности вращения и отраничиваемые ими тела имеют щирокое применение во многих областях техники баллон электронно-лучевой трубки (рис. 8.11, а), центр токарного станка (рис. 8.11, б), объемный сверхвысокочастотный резонатор электромагнитных колебаний (рис. 8.11, в), сосуд Дьюара для хранения жидкого воздуха (рис. 8.11, г), коллектор электронов мощного электронно-лучевого прибора (рис. 8.11, й) и т. д.  [c.100]

Изобретение радно. Возможность практического применения электромагнитных волн для установления связи без проводов продемонстрировал 7 мая 1895 г. знаменитый русский физик Александр Степанович Попов (1859—1906). Этот день считается днем рождения радио.  [c.251]

Дальнейшее продвижение по шкале в сторону еще более коротких электромагнитных волн представляется ненужным в рамках нашего курса. Но если даже ограничить шкалу электромагнитных волн, с одной стороны, УКВ, а с другой — рентгеновским излучением, то нужно считаться с тем, что у читателя неизбежно возникает вопрос, можно ли в рамках единой теории как-то связать эти разнородные процессы. Из дальнейшего мы увидим, сколь законны такие опасения, но следует еше раз указать, что классическая электромагнитная теория света — это феноменологическая теория, описываюгцая распространение электромагнитных волн в различных средах без детального анализа микропроцессов, что, конечно, ограничивает объем получаемой информации, но вместе с тем облегчает применение теории к описанию распространения радиации самых различных типов. Для получения необходимых сведений в некоторых случаях придется дополнять теорию соображениями о движении электронов в поле световой волны, обрыве их колебаний и другими предположениями электронной теории, конкретизирующими физическую картину рассматриваемых явлений, как это впервые сделал Лоренц в начале XX в.  [c.14]

Современный этап развития оптики, начало которого можно датировать 1960 г., характеризуется новыми, весьма своеобразными чертами. Фундаментальные свойства света — волновые, квантовые, его электромагнитная природа — находят все более разнообразные и глубокие подтверждения и применения, продолжая служить основой для понимания всей совокупности оптических явлений. Однако круг этих явлений неизмеримо расширился. В начале 60-х годов были созданы источники с высокой степенью монохроматичности и направленности излучаемого ими света — так называемые оптические квантовые генераторы или лазеры. Распространение лазерного излучения и его взаимодействие с веществом во многих случаях протекает в существенно иных условиях, чем в случае излучения обычных, нелазерных источников, и конкретные явления приобретают совершенно новые, неизвестные ранее черты. Сказанное относится к отражению, преломлению, дифракции, рассеянию, поглощению и к другим основным оптическим явлениям (см. ГЛ. ХЬ, ХЫ).  [c.25]

Трудности, связанные с этим, состояли в том, что поперечные колебания и волны не могут иметь места в жидкостях и газах. Упругие же колебания в твердых телах еще не были исследованы к тому времени. Учение Френеля о поперечных световых волнах дало толчок к исследованию свойств упругих твердых тел. Применение полученггых знаний к оптике повело к ряду принципиальных затруднен1 й, связанных с несовместимостью механических законов колебаний упругой среды и наблюдае.мых на опыте законов оптических явлений. Эти затруднения были устранены только с появлением электромагнитной теории света. Однако для интересующего нас вопроса о поперечности световых волн механические теории света дали очень много, и плодотворность их для того времени стоит вне сомнения.  [c.372]

Необходимость изучения процессов различной физической природы и последующего совместного применения их результатов заставляет искать и единую методическую основу для анализа и построения частных моделей ЭМУ. Такая возможность основывается на формальной аналогии математического описания явлений, отличных по своей физической сущности. Математический изоморфизм различных физических систем позволяет, кроме того, одни явления изучать с помощью других. При использовании аналогии с процессами в электрических системах (электроаналогии) удается, как показано далее, положить в основу всех интересуемых исследов ший хорошо разработанные, удобные и наглядные методы анализа электротехнических задач — аппарат теории электрических цепей. Это и позволяет создать однотипный и универсальный инструмент исследования электромагнитных, тепловых, магнитных и деформационных процессов в ЭМУ.  [c.98]

Перюпективным направлением совершенствования математических моделей ЭМУ, применяемых в автоматизированном проектировании, все в большей мере становится направление, связанное с представлением взаимосвязей входных параметров и рабочих показателей объектов в терминах теории поля. При этом частные модели электромагнитных, тепловых, механических процессов объединяются в комплексную модель, позволяющую оценить рабочие свойства объекта как в установившихся, так и в переходных режимах с большей точностью. В качестве метода анализа преимущественное распространение, наряду с традиционными, уже сейчас получает метод конечных элементов, допускающий четкую физическую интерпретацию математических зависимостей, автоматизацию подготовки данных и дающий возможность детального представления протекающих процессов. Получат более широкое применение не только детерминированные, но и вероятностные математические модели объектов, позволяющие имитировать большой спектр воздействия на объект в процессе производства и эксплуатации.  [c.291]


Неприменимость принципа относительности Галилея к электромагнитным явлениям Д0Л1 ое время являлась загадкой физики. Для ее решения предлагались различные, но недолговечные теории. Можно было попытаться ограничить применение принципа — он пригоден для механики и непригоден для электродинамики. Физика разделялась как бы на две области, в каждой из которых действуют свои законы. Это означало бы, что мь смирились с существованием внутренних противоречий в науке о явлениях природы, что не согласовывалось с представлениями о ее единстве. Была и другая точка зрения на разрешеше возникших противоречий. Поскольку уравнения Максвелла (б9)—(72) не инвариантны по отношению к преобразованиям Г алилея, естественным казался вывод о том, что в найденной Максвеллом форме они не являются окончательными, что следует искать такую их запись, которая будет инвариантна по отношению к преобразованиям (82). Но эти попытки были безуспешны. Г. Лоренц показал, что уравнения Максвелла (69)—(72) инвариа-  [c.133]

Вихретоковые (электромагнитные) методы дают удовлетворительную информация в основном о поверхностных дефектах, главным образом о мельчайших трещинах, расположенных па г.оверххюсти металлов. Ихглавным np Hivty-ществом является компактность оборудования, простота применения, возможность контроля немагнитных материалов и большая оперативность.  [c.219]

Оптические квантовые генераторы (ОКГ), или лазеры, дают мощное когерентное излучение, которое невозможно получить при использовании обычных источников света. Если раньше когерентное электромагнитное излучение получалось и широко использовалось только в радиодиапазо не, то с появлением лазеров сфера его применения распространилась и на оптический диапазон спектра. Действие ОКГ основано на явлении вынужденного излучения, которое было открыто Эйнштейном в 1917 г. Идея использования этого явления для усиления света в среде с инверсной населенностью энергетических уровней принадлежит В. А. Фабриканту (1939). Первые квантовые генераторы были созданы в 1954 г. Н. Г. Басовым и А. М. Прохоровым в СССР и Ч. Таунсом в США. В них использовалось вынужденное излучение возбужденных молекул аммиака на длине волны А,= 1,27 см. В 1960 г. был создан лазер на кристалле рубина, работающий в видимой области спектра (А = 694,3 нм), а в 1961 г. — лазер на смеси газов гелия и неона. В настоящее время имеются самые разнообразные типы лазеров, использующие в качестве рабочих сред газы, жидкости и твердые тела. Мощное и высококогерентное излучение ОКГ находит широкое применение в различных областях науки и техники.  [c.278]

Для измерения расходов жидкостей применяют расходомеры — устройства, состоящие из преобразователя расхода, непосредственно воспринимающего скорость или расход потока и преобразующего их в другую величину, удобную для измерения измерительного прибора и соединительного устройства, передающего выходной сигнал преобразователя прибору. Преобразователи скорости и расхода (а следовательно, и расходомеры) основаны на самых разных принципах переменного перепада давления, перемеппого уровня, обтекания, тахометри-ческом, силовом, тепловом, электромагнитном, оптическом, ультразвуковом и др. Ниже рассмотрены только некоторые виды этих расходомеров, имеющих широкое применение в производственных и лабораторных условиях.  [c.137]

Скалярное описание электромагнитного поля нашло широкое применение при использовании скалярной теории дифракции, не учитьшающей, однако, поляризационные свойства света. Лобая скалярная составляющая стационарного электромагнитного поля npej вставляется в виде  [c.39]

Несовместимость закономерностей излучения с к [ассическими представлениями. Исходя из классических представлений непонятен факт устойчивого существования материальных тел. Многочисленными экспериментами было установлено, что в атомы материальных тел входят положительные и отрицательные заряды. Известно было также, что они заключены в конечном объеме, определяемом размерами атома. По теореме Ирншоу, между зарядами возможно лишь динамическое равновесие. Следовательно, необходимо считать, что положительные и отр1Ицательные заряды в атоме находятся в относительном движении, точный закон которого для данного рассуждения несуществен. Но если заряд находится в постоянном движении в пределах конечного объема, он должен двигаться с ускорением. Классическая электродинамика утверждает, что ускоренно движущийся заряд излучает электромагнитные волны, с которыми уносится соответствующая энергия. Следовательно, заряды в атоме должны постоянно терять энергию в виде электромагнитного излучения. Это означает, что стационарное состояние атомов невозможно, т. е. невозможно устойчивое существование материальных тел. Поэтому классическая электродинамика в применении к атомным явлениям находится в глубоком противоречии с экспериментом.  [c.80]


Смотреть страницы где упоминается термин Электромагнитный Применение : [c.492]    [c.120]    [c.206]    [c.277]    [c.402]    [c.784]    [c.199]    [c.124]    [c.326]    [c.32]   
Приборы для неразрушающего контроля материалов и изделий (1976) -- [ c.2 , c.91 , c.92 ]



ПОИСК



316, 317 — Характеристики электромагнитный — Применение

Д-р техн. наук В. В. Власов, Ю. С. Субботин. О применении магнитографии к скоростной электромагнитной дефектоскопии железнодорожных рельсов

Литье с применением электрического и электромагнитного воздействий Полищук, М. Р. Цин)

Машины непрерывного литья заготовок горизонтальные режим работы 196, 197 - Назначение 191 - Применение электромагнитного перемешивания металла 195 Проектировочные параметры машин 199, 200 - Системы управления: общие принципы построения

Особенности применения электромагнитной энергии при отверждении реактолластов

Структуроскопы скоростные — Принцип электромагнитные — Применение

Электромагнитные



© 2025 Mash-xxl.info Реклама на сайте