Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пристеночный слой

Толщина пристеночного слоя, подверженного структурному изменению, зависит в основном от конфигурации бокового отражателя, соотношения коэффициентов трения шаровой насадки и шара по плоскости и количества перегрузок активной зоны. Следовательно, если в начале эксплуатации бесканальной зоны объемная пористость пристеночного слоя больше средней объемной пористости, а скорость в нем выше средней по всему сечению, то при стабилизации структуры можно ожидать в пристеночном слое уменьшение скорости теплоносителя.  [c.87]


В первом случае Шст 1,27й , во втором случае (при уплотнении пристеночного слоя)  [c.87]

Изменение скорости и объемной пористости вызовет изменение среднего коэффициента теплоотдачи в пристеночном слое. Приняв одинаковыми в первом приближении плотность р,  [c.87]

Во втором случае (при уплотнении пристеночного слоя)  [c.88]

Таким образом, перераспределение скоростей газа в основном сечении и пристеночном слое практически не сказывается на изменении среднего коэффициента теплоотдачи шарового твэла.  [c.88]

Вследствие вязкости жидкости и ее прилипания к стенкам происходит резкое падение скорости до нуля в непосредственной близости к стенкам, т. е. образуется тонкий пограничный (пристеночный) слой, толщина которого возрастает с удалением от входного сечения (рис. 1.2, а—в). Так как количество протекающей жидкости остается неизменным, торможение потока в пограничном слое обусловливает соответствующее повышение  [c.18]

Реальная физическая задача об обтекании заданного тела, разумеется, однозначна. Дело в том, что в действительности не существует строго идеальных жидкостей всякая реальная жидкость обладает какой-то, хотя бы и малой, вязкостью. Эта вязкость может практически совсем не проявляться при движении жидкости почти во всем пространстве, но сколь бы она ни была мала, она будет играть существенную роль в тонком пристеночном слое жидкости. Именно свойства движения в этом (так называемом пограничном) слое и определят в действительности выбор одного из бесчисленного множества решений уравнений движения идеальной жидкости. При этом оказывается, что Е общем случае обтекания тел произвольной формы отбираются именно решения с отрывом струй (что фактически приводит к возникновению турбулентности).  [c.34]

Поскольку пристеночный слой тонкий, то при решении ураВ нений (24,12] с целью определения движения в основной массе жидкости следовало бы взять в качестве граничных условий те условия, которые должны выполняться на поверхности тела, т. е. равенство скорости жидкости скорости тела. Однако решения уравнений движения идеальной жидкости не могут удовлетворить этим условиям. Мол<но потребовать лишь выполнения этого условия для нормальной к поверхности компоненты скорости жидкости.  [c.126]

Решение. Основная диссипация энергии будет происходить в пристеночном слое жидкости, где скорость меняется от нуля на самой стенке до значения о = которое она имеет в волне Средняя диссипация энер-  [c.135]

От линии отрыва отходит, как мы знаем, уходящая в глубь жидкости поверхность, ограничивающая область турбулентного движения. Движение во всей турбулентной области является вихревым, между тем как при отсутствии отрыва оно было бы вихревым лишь в пограничном слое, где существенна вязкость жидкости, а в основном потоке ротор скорости отсутствовал бы. Поэтому можно сказать, что при отрыве происходит проникновение ротора скорости из пограничного слоя в глубь жидкости. Но в силу закона сохранения циркуляции скорости такое проникновение может произойти только путем непосредственного перемещения движущейся вблизи поверхности тела (в пограничном слое) жидкости в глубь основного потока. Другими словами, должен произойти как бы отрыв течения в пограничном слое от поверхности тела, в результате чего линии тока выходят из пристеночного слоя в глубь жидкости. (Поэтому и называют это явление отрывом или отрывом пограничного слоя.)  [c.231]


Такое рассмотрение, однако, опять будет неприменимо в пристеночном слое жидкости, поскольку при нем не будут выполняться на поверхности тела ни граничное условие прилипания, ни условие одинаковости температур жидкости и тела. В результате в пограничном слое происходит наряду с быстрым падением скорости также и быстрое изменение температуры жидкости до значения, равного температуре поверхности твердого тела. Пограничный слой характеризуется наличием в нем больших градиентов как скорости, так и температуры.  [c.296]

В пристеночном слое жидкость перегревается ее температура выше температуры насыщенного пара. Перегрев жидкости вблизи стенки оказывается возможным потому, что здесь нет постоянной поверхности раздела жидкости и пара, а процесс парообразования может происходить только после возникновения паровых пузырьков. Такие пузырьки возникают в центрах парообразования.  [c.405]

В общем случае нельзя отождествлять температуру охладителя на выходе и температуру пристеночного слоя газа. Охладитель, выходящий из пор под углом к основному потоку газа, взаимодействует с пограничным слоем этого потока, получая от него теплоту и частично перемешиваясь с ним. Поэтому пристеночный слой газа имеет  [c.474]

Как отмечалось выше, при заградительном охлаждении температура теплоизолированной стенки с небольшим коэффициентом теплопроводности практически совпадает с температурой пристеночного слоя газа. В этом случае объективной характеристикой качества системы заградительного охлаждения является ее эффективность, которая определяется выражением  [c.482]

Аналогичное решение с использованием опытной закономерности изменения скорости в пристеночном слое по длине стенки при  [c.484]

Анализ профилей скоростей и распределения касательных напряжений в турбулентном пограничном слое со вдувом позволил выявить закономерности течения в пристеночном слое. Линейная зависимость касательного напряжения от скорости справедлива лишь в тонкой пристеночной области, толщина которой примерно такая же, как и вязкого подслоя. В турбулентном ядре такая зависимость нарушается, а во внешней части, составляющей примерно 90% пограничного слоя, распределение касательных напряжений носит универсальный характер независимо от интенсивности вдува. Такое свойство консервативности касательных напряжений во внешней части пограничного слоя обусловливает подобие профилей скоростей.  [c.462]

Слой жидкости вблизи стенки, где распределение продольных пульсаций и произведение продольных и поперечных пульсаций резко отличается от движения в основном потоке, можно назвать пристеночным. Внешняя граница пристеночного слоя четко определяется указанным изломом. Грубо его толщина бпр может быть найдена по профилю осредненных скоростей, где прямолинейный участок вблизи стенки переходит в криволинейный (рис. 96, а). При малой шероховатости турбулентная вязкость е, определяемая по формуле (189), в пристеночном слое близка к молекулярной вязкости ц при большой шероховатости числовое значение е увеличивается, что и определяет квадратичный закон сопротивления. В промежуточной области имеют значение оба фактора вязкостное трение и трение, обусловленное турбулентными пульсациями. Схематически течение вблизи стенки по И. К. Никитину при малой и большой  [c.166]

Рассмотрим течение на плавном закруглении трубопровода (рис. 107). Центробежные силы, действующие от центра к периферии, оттесняют поток от выпуклой стенки трубы к вогнутой. Однако в пристеночном слое, где скорости малы, центробежные силы, пропорциональные квадрату скорости, практически отсутствуют. Таким образом, возникают условия для движения по поверхностям живых сечений в направлениях, показанных стрелками на рис. 107 справа. Эта поперечная циркуляция, складываясь с основным потоком, образует винтовое движение, которое вследствие вязкости затухает на некотором расстоянии от поворота.  [c.184]

В заключение следует подчеркнуть, что нельзя смешивать понятие пограничного слоя и пристеночного слоя, о котором речь шла в 39, когда рассматривалось явление вблизи стенок трубы. Там по всей толщине потока течение формируется по законам турбулентности, свойственной внутренней задаче, а граница пристеночного слоя определяется особенностями распределения продольных пульса-  [c.301]


Понятие о пристеночном слое и ядре течения  [c.56]

Изучение турбулентного течения показало, что к стенке русла (трубы) примыкает заторможенный ею весьма тонкий слой жидкости, называемый пристеночным слоем.  [c.56]

Образование пристеночного слоя связано со свойством жидкости прилипать к стенкам русла (например, при течении в трубах — к стенкам трубы). Скорость на стенке равна нулю. В пристеночном слое вязкость жидкости оказывает влияние на размер местных скоростей. Толщина пристеночного слоя б, согласно гипотезе проф. Н. Е. Жуковского, зависит от вязкости жидкости v и от скорости V.  [c.57]

Таким образом, толщина пристеночного слоя б уменьшается с увеличением Re.  [c.58]

Немецкий ученый Теодор Карман полагает, что толщина пристеночного слоя б зависит не от v, а от ц. Тогда, применив метод размерностей, найдем  [c.58]

Понятие о толщине пристеночного слоя является условным, так как не существует определенной границы, после которой силы вязкости были бы равны нулю поэтому имеет смысл говорить лишь о порядке толщины пристеночного слоя. По исследованию А. В. Теплова [19] б i 300 v/o.  [c.58]

В последнее время было обнаружено, что в процессе многократной перегрузки топлива активной зоны с течением времени происходит переукладка шаровых элементов в пристеночном слое толщиной несколько диаметров шаров на гладких боковых стенках активной зоны, в результате чего происходит уплотнение слоя и уменьшение его объемной пористости [6]. -  [c.51]

Для бесканальной цилиндрической активной зоны с плоскими подом и поверхностью засыпки при условии одинакового распределения тепловыделения скорость газа в поперечном сечении активной зоны не будет одинаковой, поскольку объемная пористость в шаровой засыпке различна. В пристеночном слое толщиной в один диаметр шара при беспорядочной шаровой засыпке объемная пористость т 0,45 при среднем значении т = 0,4 (при N>10). При переукладке пристеночного слоя в процессе многократной перегрузки шаровых твэлов объемная пористость в этом случае может измениться и, по оценкам, может достичь 0,325. Таким образом, при указанных выше условиях в процессе эксплуатации реактора по принципу одноразового прохождения активной зоны возможно перераспределение скоростей газа в пристеночном слое [6].  [c.87]

Изменения объемной пористости и скорости в пристеночном слое по-разному скажутся на среднем коэффициенте теплоотдачи шаров, расположенных около стенки. Для активной зоны в виде цилиндра с плоским подом и v = onst можно принять, что поля полного и статического давления в поперечном сечении будут одинаковыми, и тогда можно считать, что onst для любой струйки, протекающей параллельно оси активной зоны. Приняв, что плотность газа, коэффициент гидродинамического сопротивления, диаметр твэла и высота активной зоны одинаковы для всех коаксиальных струек газа, можно найти зависимость для определения скорости газа в пристеночном слое  [c.87]

Декеном с сотрудниками [39] была проведена экспериментальная работа по определению среднего коэффициента теплоотдачи в сечении при N 20 методом, основанным на аналогии тепло- и массообмена при испарении нафталиновых шаров диаметром 30 мм. Нафталиновые шары закладывались в слой керамических шаров в трубе диаметром 600 мм (объемная пористость т = 0,40). Расположение шаров в слое было различным в разных сериях опытов, часть опытов была проведена для определения интенсивности массообмена в пристеночном слое при Re = 3-10 . Эксперименты показали, что испарение шаров у стенки происходит на 7% быстрее, чем шаров, расположенных в центре слоя.  [c.88]

В работе Дентона и др. (33] изучалось распределение среднего коэффициента теплоотдачи от электрокалориметров, расположенных в разных точках шаровой укладки, в том числе вплотную к стенкам трубы, а также изменение этого коэффициента в процессе многократной перегрузки. Отклонение коэффициента теплоотдачи от среднего значения а во всех случаях не превышало 10% для заданного режима течения. Авторы определили объемную пористость в пристеночном слое и в объеме насадки после многократной перегрузки она оказалась равной соответственно 0,45 и 0,37.  [c.88]

Отсюда следует, что и Ду = О, а потому ура]знение Навье Стокса переходит в уравнение Эйлера. Таким образом, везде, кроме пристеночного слоя, жидкость движется как идеальная.  [c.126]

Хотя уравнения (24,12) и неприменимы в пристеночном слое жидкости, но поскольку получающееся в результате их решения распределение скоростей уже удовлетворяет необходимым граничным условиям для нормальной компоненты скорости, то истинный ход этой компоненты вблизи поверхности не обнаружит каких-либо существенных особенностей. Что же касается т <асательной компоненты, то, решая уравнения (24,12), мы получили бы для нее некоторое значение, отличное от соответствующей компоненты скорости тела, между тем как эти скорости тоже должны быть равными. Поэтому в тонком пристеночном слое должно происходить быстрое изменение касательной компоненты скорости.  [c.126]

Отсюда можно сделать вывод, что при больших числах Рейнольдса падение скорости до нуля будет происходить почти полностью в тонком пристеночном слое жидкости. Этот слой носит название пограиичиого и характеризуется, следовательно, наличием в нем значительных градиентов скорости. Движение в пограничном слое может быть как ламинарным, так и турбулентным, Здесь мы рассмотрим свойства ламинарного пограиичиого слоя. Граница этого слоя не является, конечно, резкой, и переход между ламинарным движением в нем и в основном потоке жидкости происходит непрерывным образом.  [c.223]

Толш,ина пограничного слоя растет вниз по течению вдоль обтекаемой поверхности (закон этого возрастания будет найден ниже). Это объясняет, почему при течении по трубе логарифмический профиль имеет место вдоль всего сечения трубы. Тол-ш,ина пограничного слоя у стенки трубы растет, начиная от входа в трубу. Уже на некотором конечном расстоянии от входа пограничный слой как бы заполняет собой все сече]1ие трубы. Поэтому если рассматривать трубу как достаточно длинную и не интересоваться ее начальным участком, то течение во всем ее объеме будет того же типа, как н в турбулентном пограничном слое. Напомним, что аналогичное положение имеет место и для ламинарного течения по трубе. Оно всегда описывается формулой (17,9) роль вязкости в нем проявляется на всех расстояниях от стенки и никогда не бывает ограничена тонким пристеночным слоем жидкости.  [c.252]


В звуковой волне наряду с плотностью и давлением испытывает периодические колебания около своего среднего значения также и температура. Поэтому вблизи твердой стенки имеется периодически меняющаяся по величине разность температур между жидкостью и стенкой, даже если средняя температура жидкости равна температуре стенки. Между тем на сймой поверхности температуры соприкасающихся жидкости и стеики должны быть одинаковыми. В результате в топком пристеночном слое жидкости возникает большой градиент температуры температура быстро меняется от своего значения в звуковой волне до температуры стенки. Наличие же больших градиеЕнов температуры приводит к большой диссипацнп энергии путем теплопроводности. По аналогичной причине к большому поглощению звука приводит при наклонном падении волны также li вязкость жидкости. При таком падении скорость жидкости в волне (по направлению распространения волны) имеет отличную от нуля компоненту, касательную к поверхности стенки. Между тем на самой поверхности жидкость должна полностью при.г и-пать к стенке. Поэтому в пристеночном слое жидкости возникает большой градиент касательной составляющей скорости. ), что и приводит к большой вязкой диссипации энергии (см. задачу 1).  [c.426]

Одно из самых интересных проявлений влияиня вязкости на звуковые волны состоит в возникновении стационарных вихревых течений в стоячем звуковом поле при наличии твердых препятствий или ограничивающих его твердых стенок. Это движение (его называют акустическим течением) появляется во втором приближении по амплитуде волны его характерная особенность состоит в том, что скорость движения в нем (в пространстве вне тонкого пристеночного слоя) оказывается не зависящей от вязкости, — хотя самим своим возникновением оно обя-зано именно вязкости Rayleigh, 1883).  [c.430]

Дифференциальное уравнение теплоотдачи выводится на основе анализа явления теплообмена в месте соприкосновения теплоноси-геля со стенкой. Тепловой поток через элементарную площадку поверхности твердой стенки dF можно выразить по закону Фурье через температурный градиент в пристеночном слое жидкости и коэффициент теплопроводности жидкости X  [c.260]

При кипении недогретой жидкости критическая тепловая нагрузка больше, чем при кипении жидкости, имеюш,ей температуру насыщения. Это обусловлено тем, что поступление недогретой жидкости из ядра в пристеночный слой способствует разрушению паровой пленки.  [c.412]

Рис. 97. Схема течения турбулентного потока вблизи стенки по И. К. Никитину а — толщина пристеночного слоя больше выступов шероховатости б — толщина пристеночного слоя примерно равна выступам шероховатосги. Рис. 97. Схема <a href="/info/2643">течения турбулентного</a> потока вблизи стенки по И. К. Никитину а — толщина пристеночного слоя больше выступов шероховатости б — толщина пристеночного слоя примерно равна выступам шероховатосги.
По М. Д. Миллионщикову [22] при малых значениях а изменение Я определяется только величиной Д и не зависит от значения Re (искусственная шероховатость). При большой дисперсии значение X зависит не только от величины Д, но и от значения Re. Отсюда следует, что для технических трубопроводов, где значение а велико,эквивалентная шероховатость 3 больше физической. Этим же объясняется плавный рост X с уменьшением Re при увеличении толщины пристеночного слоя (рис. 100, в). Наоборот, для искусственной шероховатости, где о мало, увеличение толш,ины пристеночного слоя с уменьшением Re резко проявляется на характере вихреобразований и, следовательно, на X (рис. 100, а).  [c.173]

Толщина пристеночного слоя б очень мала. Так, при = 1 мм 1секи V = 1000 жлг/се/с толщина б = 300-1 1000 = = 0,3 мм.  [c.58]


Смотреть страницы где упоминается термин Пристеночный слой : [c.51]    [c.88]    [c.11]    [c.126]    [c.127]    [c.129]    [c.718]    [c.228]    [c.248]    [c.302]   
Деформация и течение Введение в реологию (1963) -- [ c.317 ]



ПОИСК



Глава двенадцатая. Пристеночная турбулентность Течение в пограничном слое

Коэффициент турбулентной вязкости в пристеночной части слоя

О поведении функций течения в пристеночной части невозмущенного пограничного слоя на пластине в сжимаемом потоке

Обтекание коротких неровностей, погруженных в пристеночную часть невозмущенного пограничного слоя

Понятие о пристеночном слое и ядре течения

Пристеночный слой эффект

Простое бингамово тело с пристеночным слоем

Распределение скорости в пристеночной части турбулентного пограничного слоя

Слой пограничный, пристеночный

Смазывающие и тормозящие пристеночные слои

Универсальный закон пристеночного течения в пограничном слое с теплообменом



© 2025 Mash-xxl.info Реклама на сайте