Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тензор неоднородности

Е, F, G, Н — тензоры упругости, зависящие от а р, Ъа , и v, а и fff-ta — тензоры неоднородности, зависящие от сил, приложенных к лицевым поверхностям.  [c.85]

Переменные тензоры. В общем случае поле тензоров неоднородно и нестационарно Г (г,г). Однако, в этом разделе будем рассматривать только неоднородные стационарные тензорные поля  [c.70]

Во многих случаях напряженное состояние меняется при переходе от одной точки к другой. Это неоднородное напряженное состояние. Следует различать напряженное состояние точки (задается тензором напряжений) и напряженное состояние тела (определяется тензорным полем). Тензорное поле отличается от скалярного и векторного полей. Пример скалярного поля — распределение температуры в теле, а векторного поля — распределение сил инерции в теле и скоростей движущейся жидкости. Поле напряжений не может быть скалярным или векторным, оно может быть тензорным. При изгибе балки напряжение в сечении меняется в зависимости от длины и расположения точки от нейтральной оси.  [c.8]


Решение такой нелинейной задачи строится по методу последовательных приближений. В начальном приближении принимаются равными Е, л и из решения задачи линейной теории упругости находятся е ° у%,. . е, . Из зависимости Ф (е ) находится величина а затем < >, G . Далее решается задача линейной неоднородной теории упругости. По найденным из нее компонентам деформированного состояния определяются ei, ali Е ( Как и в рассмотренном примере для одноосного напряженного состояния, процесс последовательных приближений продолжается до тех пор, пока значения компонент тензоров напряжений или деформаций в двух соседних приближениях не будут отличаться друг от друга на величину, меньшую величины допустимой погрешности.  [c.316]

В трехмерном случае можно ввести вектора смещения и, а если они будут зависеть от координат, то поле векторов смещения и х, у, г) (это соответствует неоднородной деформации). Производные смещения Ui по координатам Xj определяют девять компонент тензора  [c.191]

В работе 10 содержится вывод выражений для упругих констант в случае плоской задачи для малых искривлений арматуры. За основной прием при решении задачи принято усреднение тензора податливости неоднородного материала по углу, характеризующему поворот площадки при движении точки по линии искривления волокон. Сложные интегралы для вычисления коэффициентов матрицы податливости представлены разложениями в ряды. Выражение для модуля упругости при удержании первого члена в ряду соответствует (3.14). При этом погрешность вследствие неучета остальных членов ряда не превышает 9 % при ф 0,5. В этом же диапазоне параметра ф расчетные значения модуля упругости [по (3.13)1 удовлетворительно согласуются со значениями, вычисленными по формуле  [c.64]

Теперь обсудим решение краевой задачи теории упругости неоднородных тел, которое приводит к определению эффективных модулей материала. Рассматриваемое тело представляет собой прямоугольную призму (см. рис. , а). Основные уравнения для компонент тензоров напряжений и деформаций — это уравнения (1), в которых коэффициенты жесткости удовлетворяют условиям (2), а также обычные уравнения равновесия в напряжениях и уравнения совместности деформаций теории упругости однородных изотропных тел. Последние соотношения здесь не приводятся, поскольку их можно найти в любом курсе теории упругости. Достаточно указать, что переменные поля (напряжений), имеющие вид  [c.42]


Рассмотрим теперь случай когда неоднородная среда в дополнение к нагрузкам а и ( сг ) испытывает равномерное повышение температуры Т, и попытаемся определить эффективные коэффициенты теплового расширения. Пусть локальные коэффициенты теплового расширения обозначаются через а — = ti( ) заметим, что в анизотропном материале наиболее общего вида изменение температуры вызывает Появление всех шести компонент тензора деформаций. Таким образом, при равномерном изменении температуры Т однородное анизотропное тело при отсутствии поверхностных нагрузок находится в деформированном состоянии е,- = а,Т. Обозначим эти деформации свободного расширения ) через е,, так что  [c.45]

В теории эффективных модулей механическое поведение композита моделируется поведением некоторой однородной, но анизотропной среды. Детальное обсуждение положений этой теории, развитой в настоящее время до уровня количественного анализа, имеется во многих работах. Поэтому здесь мы ограничимся замечанием о том, что в данной теории осредненные по объему элемента неоднородности компоненты тензора напряжений (обозначаемые через fjj) связаны с осредненными тем же способом компонентами тензора деформаций (обозначаемыми через см. приложение Б) так же, как и в общей линейной теории анизотропных сред  [c.358]

На первом этапе поликристаллический материал с микродефектами моделируется при помощи некоторой сплошной, но регулярно неоднородной среды, например i), при помош,и однородной упругой изотропной среды со сферическими анизотропными включениями. Таким образом, модель первого этапа —это композитный материал. Далее выделяется так называемый характерный объем ). Это минимальный объем, содержаш,ий такое число включений, которое позволяет считать, что тело в рассматриваемом объеме макроскопически однородно. Последнее понятие трактуется так. Если на поверхности макроскопически однородного тела в рассматриваемом объеме задать нагрузки, которые в абсолютно однородном теле вызвали бы однородное напряженное состояние, то длина волны флуктуаций полей тензоров напряжений и деформаций должна быть пренебрежимо мала по сравнению с линейными размерами тела, имеющего обсуждаемый объем.  [c.594]

Упругим однородным будем называть тело, в котором инварианты тензора упругих модулей не зависят от координат рассматриваемой точки. Соответственно упругим неоднородным будет тело с тензорным полем модулей, инварианты которого являются функциями координат рассматриваемой точки.  [c.11]

Сформулируем следующую задачу экспериментально-теоретического исследования термоупругого напряженного состояния тела. Пусть в теле, занимающем область У, имеется стационарное неоднородное температурное тюле и соответствующее ему поле термоупругих напряжений. В результате измерений на части поверхности S температура T(s) и тензор термоупругих напряжений a/J(s) считаются известными. При этих условиях требуется определить температуру Т(х) поверхности/,.  [c.84]

При идентификации модели определению по данным испытаний подлежат две фундаментальные функции материала функция неоднородности и реологическая функция, интерпретируемая в общем случае напряженного состояния как зависимость интенсивности скорости установившейся ползучести от интенсивности напряжения при данной температуре. Первая из указанных функций определяется по кривой деформирования г = г (е) (где г, е — соответствующие скалярные меры) при заданном значении интенсивности тензора скоростей деформирования ё — Ь. Напомним, что речь идет о стабилизированной диаграмме, получаемой после снятия анизотропии (см. 13). Обычно удобно использовать диаграмму (е )  [c.107]

Подобно тензору деформации в каждой точке тела поворотом системы декартовых координат тензор напряжений также можно привести к главным осям. На гранях элементарного прямоугольного параллелепипеда, ребра которого параллельны этим осям, действуют только нормальные напряжения. В общем случае неоднородного напряженного состояния направление главных осей тензора напряжений в различных точках тела различно.  [c.12]


При неоднородном распределении температуры в кристаллическом теле возникает тепловой поток, вектор плотности которого согласно (1.98) связан с градиентом температуры тензором коэффициентов теплопроводности. Главные оси этого тензора также согласуются с осями симметрии кристаллической решетки. Для ГЦК и ОЦК кристаллов главные коэффициенты теплопроводности Я ==- Хг = Яз, т. е. кубические кристаллы обладают изотропной теплопроводностью. Для ГПУ кристаллов обычно Xf = Я.з,  [c.61]

Монография написана, на наш взгляд, методически чрезвычайно удачно, вполне строго и вместе с тем достаточно просто. На основе традиционных концепций однородного напряженно деформированного состояния выясняются наиболее существенные особенности механического поведения вязких, упругих и высокоэластичных сред и предлагается оригинальный, сравнительно несложный метод формулирования соответствующих уравнений реологического состояния. Автор обходится элементарным математическим аппаратом векторного исчисления и системами лагранжевых координат с подвижным локальным векторным базисом (так называемые конвективные системы координат). Тем самым он облегчает неподготовленному читателю усвоение материала, добиваясь в первую очередь физической ясности изложения. Математически строгая постановка и анализ исследуемых задач в случае неоднородных напряжений и деформаций даются лишь в главе 12, где с помощью тензоров кратко излагается теория конечных деформаций в вязко-эластичных средах. Правда, здесь изложение слишком уж конспективно, и многочисленные доказательства , как правило, сводятся к перечню  [c.7]

Для решения поставленной задачи будем использовать метод последовательных итераций [22]. Он заключается в следующем. В качестве начального приближения для ф и используем функции тока, являющиеся решением задачи об обтекании пузырька потоком жидкости при учете инерционных эффектов (см. разд. 2.3). С помощью этих выражений для функций тока можно определить нормальные компоненты тензора напряжений в обеих фа.чах. Тогда можно решить уравнение (2. 7. 9) и тем самым определить начальное значение функции С (т]). Далее для найденной формы пузырька нужно повторить решение уравнения Навье—Стокса при помощи метода сращиваемых асимптотических разложений (см. разд. 2.3) и т. д. Рассмотрим решение уравнения (2. 7. 9) в соответствии с [22], считая, что неоднородная его часть явля-  [c.66]

Мы рассмотрим здесь ангармонические эффекты третьего порядка, происходящие от кубических по деформации членов в упругой энергии. В общем виде соответствующие уравнения движения оказываются очень громоздкими. Выяснить же характер возникающих эффектов можно с помощью следующих рассуждений. Кубические члены в упругой энергии дают квадратичные члены в тензоре напряжений, а потому и в уравнениях движения. Представим себе, что в этих уравнениях все линейные члены перенесены в левые, а все квадратичные — в правые стороны равенств. Решая эти уравнения методом последовательных приближений, мы должны в первом приближении вовсе отбросить квадратичные члены. Тогда останутся обычные линейные уравнения, решение Uo которых может быть представлено в виде наложения монохроматических бегущих воли вида onst-е определенными соотношениями между (О и к. Переходя к следующему, вгорому, приближению, надо положить и = и,, + Uj, причем в правой стороне уравнений (в квадратичных членах) надо сохранить только члены с Uq. Поскольку Uq удовлетворяет, по определению, однородным линейным уравнениям без правых частей, то в левой стороне равенств члены с Uq взаимно сокращаются. В результате мы получим для компонент вектора Uj систему неоднородных линейных уравнений, в правой части которых стоят заданные функции координат и времени. Эти функции, получающиеся подстановкой Uq в правые стороны исходных уравнений, представляют собой сумму членов, каждый из которых пропорционален множителю вида [(к,-к,) г-(й)1-(о,)/] или где tt i, (02 и к , — частоты и волновые векторы каких-либо двух монохроматических волн первого приближения.  [c.145]

Материал, свойства которого одинаковы для образцов, вырезанных в любом направлении, называется изотропным. Более точно, это определение изотропии относится к весьма малым образцам, вырезанным в окрестности одной и Toii же точки. Изотропный материал может быть неоднородным, т. е. упругие свойства его могут меняться от точки к точке. Очевидно, что потенциал напряжений или упругая энергия изотропного тела не должен меняться при измененпи осей координат, поэтому он должен выражаться через инварианты тензора деформаций. Единственная однородная квадратичная форма, составленная из этих инвариантов, зависит от двух констант и выражается следующим образом  [c.239]

В этих уравнениях (i), вц (1) — девиаторы тензора напряжений и деформаций, Зе ( ) — объемная деформация, а ( ) — среднее напряжение в элементе с координатой х, О ( ) — упругомгновенный модуль сдвига, Е (t) — упругомгновенный модуль объемной деформации. Здесь и далее для сокращения письма явная зависимость напряжений и деформаций от аргумекта х иногда не указывается. Через Kl t, т) обозначено ядро сдвиговой деформации ползучести, (i, х) — ядро объемной деформации ползучести, X — радиус-вектор, р (х) — функция неоднородного старения, характеризующая закон изменения возраста элементов стареющего тела относительно элемента с координатами х = = 0,  [c.15]

Изучение механического поведения композиционных материалов включает аналитические исследования на двух уровнях абстрагирования. В общепринятой терминологии области этих исследований носят названия микромеханики и макромеханики. В микромеханике делается попытка распознать тонкие детали струк1уры материала, т. е. рассмотреть в действительности неоднородное тело, состоящее из включений — волокон, частиц или кристаллов — н матрицы, в которой размещены эти включения. Хотя термин композит объединяет широкое многообразие материалов, таких, как бетон, полукристаллические полимеры, бумага, кожа, кость и т. д., здесь будут обсуждаться главным образом материалы, армированные волокнами. Следует разъяснить, что термин микромеханика обычно не подразумевает исследований на атомном уровне или использования тензоров напряжений высших порядков, подобных фигурирующим в теориях моментных напряжений или теориях градиентов деформаций, хотя имеются и работы такого типа (см., например, Садовский и др. [16], а также Кох [8]).  [c.14]


Приведенные выше определения мало помогают при фактическом вычислении эффективных модулей, хотя они и полезны для нахождения их верхних и нижних границ (см., например, Хашин и Розен [6]). Несколько иное определение (Адамс и До-нер [1]) можно дать следующим образом. Предположим, что распределение деформаций и напряжений одинаково во всех ТИ1ТИЧНЫХ геометрических элементах неоднородной среды. Далее, предположим, что на поверхностях раздела между смежными элементами удовлетворяются условия непрерывности поверхностных сил и перемещений. Тогда эффективные модули определяются равенствами (5), где усреднение можно, очевидно, проводить по объему типичного элемента. В качестве примера рассмотрим граничные условия для типичного элемента в виде квадрата, удобные для вычисления эффективных модулей растяжения, связывающих усредненные по объему нормальные напряжения и деформации. Для этой цели достаточно рассмотреть класс граничных задач о так называемом обобщенном плоском деформированном состоянии, при котором компоненты тензоров напряжений и деформаций являются функциями только Xi и Х2, а S33 постоянна. Задаются следующие граничные условия (см. рис. 2)  [c.19]

Величина наклепа является суммарным результатом пластических тяикродеформаций, вызванных тепловым и силовым воздействием в зоне резания. Неоднородность распределения остаточных деформаций по глубине образца приводит к появлению остаточных тангенциальных напряжений. По данным рис. 84, глубина наклепа совпадает с зоной растягивающих напряжений. Это означает, что остаточные микродеформации служат первопричиной появления остаточных напряжений. Нижележащая зона остаточных сжимающих напряжений уравновешивает растягивающие напряжения и, хотя она не содержит наклепанных участков, должна испытывать влияние наклепа, создавшего напряженное состояние, определяющее, в частности, микроэлектро-химическую гетерогенность. Величина сдвига электродного потенциала может быть связана с величиной остаточных тангенциальных напряжений по-разному в зависимости от характера сложно-напряженного состояния объемов металла в приповерхностном слое, так как шаровая часть тензора напряжений, обусловливающая изменение потенциала, может иметь различные значения при одинаковой величине тангенциального напряжения. Поэтому характеристики наклепа в локальных объемах могут быть более определяющими факторами для электродного потенциала, чем отдельные составляющие макронапряжений. Данные рис. 86 подтверждают зависимость между электродным потенциалом и степенью наклепа для различных режимов резания.  [c.192]

Изложенный метод является эффективным алгебраическим методом исследования и синтеза пространственных механизмов, основанным на использовании однородных координат, которые дают возможность объединить сложное преобразование поступательного и вращательного относительных движений в одной матрице 4-го порядка, представляющей соответствующий тензор второго ранга. Применением однородных координат, а также введением фиктивных звеньев можно уменьшить количество вводимых координатных систем по сравнению с методами, в которых используются неоднородные координаты (С. Г. Кислицына, Г. С. Калицына и др.), и тем самым уменьшить количество вычислительных операций при составлении расчетных уравнений для определения искомых параметров. В этом методе преобразование координат и геометрические связи между звеньями полностью отображаются тензорным или эквивалентным ему матричным уравнением замкнутости механизма, которое распадается на двенадцать уравнений относительно искомых и известных параметров. Из этого числа могут быть отобраны в общем случае шесть наиболее простых уравнений, а остальные уравнения использованы для контроля правильрюстн определения параметров.  [c.167]

Как видке, знание возмущенных перемещений б дг (Го), б , (Го), г (го) и частных производных от них [см. 4.72)] позволяет при подстановке в (4.73) и (4.74) найти все возмущенные компоненты тензора упругих напряжений. Таким образом, полученные формулы теории возмущений для линейного функционала вектора перемещений и компонент напряжений позволяют определить изменение этих величин в произвольной точке упругого тела под влиянием изменений механических свойств или условий нагружения в любой точке исследуемой неоднородной среды.  [c.128]

Дифференциальная количественная оценка парциальной погрешности степени влияния весьма затруднительна по ряду причин. Во-первых, большинство влияющих факторов являются сложными неоднородными и нестационарными физическими полями. Во-вторых, действие влияющих величин на средство измерений выражается сложными тензорами влияния с неопределенными коэффициентами и граничными условиями. В-третьих, в реальных условиях на средство измерения воздействует некоторый комплекс частично взаимнокоррелированных влияющих величин. В-четвертых, функции влияния могут быть многомерными и неоднозначными.  [c.9]

Окончательная система уравнений неоднородной турбулентности содержит дифференциальные уравнения для следующих характеристик первых, вторых и третьих центральных моментов поля скорости (pi uiuj, uiujuh), вторых и третьих смешанных моментов скорости и давления (щр, щщр), тензора второго ранга микромасштабов турбулентности /у. Эта система замкнута с точностью до двух однородных статистических коэффициентов, которые при изотропии переходят в известные статистические коэ ициенты.  [c.71]

Анизотропные свойства сплошной среды описывают тензорными величинами в неоднородной А. с, они меняются от точки к точке. Среды, анизотропные для одного класса явлений, могут вести себя как изотропные по отношению к др, классу. Так, механич. свойства кристаллич, поваренной соли Na l анизотропны (её упругость различна вдоль рёбер и диагоналей кубической решётки), тогда как тепловые и оптич. свойства изотропны с высокой степенью точности. В изотропной среде соответствующие тензоры сводятся к единичным.  [c.84]

Простейшие модели сред характеризуются пост, значениями е И р. В случае вакуума 8 = р = 1, х =р = = 0. Классификация разл. сред обычно основывается на материальных ур-ниях типа (10) и их обобщениях. Если проницаемости е и р не зависят от полей, то М. у. (1) — (4) вместе с материальными ур-ниямн (10) остаются линейными, поэтому о таких средах говорят как о линейных средах. При наличии зависимостей Е = в(Е,В), р = р(-В,В) среды наз. нелинейными решения М. у. в нелинейных средах не удовлетворяют принципу суперпозиции. Если проницаемости зависят от координат е = е(г), р = р(г), то говорят о неоднородных средах, при зависимости от времени е = е(г), р = p(i) — о н е-стац попарных средах (иногда такие эл.-динамич. системы наз. параметрическими). Для анизотропных сред скаляры е, р в (10) за.моняются на тензоры О а = = Рар /3. а, р = 1, 2, 3  [c.35]

В гидродиеамич. приближении, когда смещения частиц между столкновениями (в отсутствие магн. поля — длина свободного пробега к) меньше характерных масштабов неоднородности плазмы L, а характерные частоты не превосходят частот столкновений v, классические (столкновительные) П. п. описываются матрицей коэф. переноса. Она линейно связывает потоки частиц, импульса и энергии с факторами, нарушающими термодинамич. равновесие,— градиентами парциальных концентраций и темп-р, неоднородностью скорости, электржч, полем (см. Переноса явления). Вследствие большого различия между массами электронов и тяжёлых частиц (ионов и нейтральных молекул) гемп-ры их, вообще говоря, различны, поэтому перенос энергии лёгкой и тяжёлой компонентой рассматривают отдельно. Напр., в отсутствие магн. поля В поток тепла q обусловленный температурным градиентом к.-л. компоненты а, есть тензор плотности потока импульса n = —где тензор скорости сдвигов  [c.569]


При этом даже в однородной изотропной немагнитной среде без пространственной дисперсии, когда />о = е" (ш)Яо, на единицу объёма среды действуют не только сила Лоренца со стороны внеш. зарядов и токов и по-ндеромоторная сила, связанная с пространственной неоднородностью полей, но ещё и т. н. сила Абрагама (см. также Максвелла тензор натяжений), обусловленная не-стационарностью полей.  [c.529]

Вопрос о том, как в процессе нагружения должны возрастать внешние силы, чтобы при любом неоднородном напряженном состоянии направляющий тензор оставался постоянным, в общем виде не решен. А. А. Ильюшиным дано только частное решение этой задачи, называемой теоремой о простом нагружении. Им доказано для того чтобы направляюи ий тензор напряжений во всех точках тела оставался постоянным в процессе простого нагружения, достаточно, чтобы зависимость (П.11) была степенной функцией вида  [c.224]

В теории вязкопластичности эволюция поверхностей, ограничивающих область упругости в пространстве напряжений, может быть представлена сочетанием расширения (сужения), вращения, переноса и дисторсии поверхности текучести и поверхностей равных потенциалов - правилом кинематического и изотропного упрочнения. Введение тензора внутренних напряжений (тензора микронапряжений) ру как реального центра поверхности течения связано с наличием остаточньк напряжений на уровне микроструктуры и микронапряжений, связанных с разнообразными неоднородностями в структурных составляющих на мезоуровне. Дальнейшие упрощения заключаются в ведении дополнительных гипотез  [c.372]

Следствием микроскопической неоднородности напряженно-деформированного состояния отдельных микрообъемов материала является эффект Баушингера. В первом приближении он может быть описан теорией пластичности, учитывающей влияние микронапряжений на микроскопические деформации (11, 51]. В большинстве случаев тензор микронапряжений Зи, характеризующий аффект Баушингера, может быть выражен через макропластиче-скую деформацию Вц в виде [И, 51 ]J  [c.57]


Смотреть страницы где упоминается термин Тензор неоднородности : [c.53]    [c.66]    [c.38]    [c.41]    [c.30]    [c.54]    [c.513]    [c.300]    [c.148]    [c.161]    [c.225]    [c.309]    [c.528]    [c.107]    [c.10]    [c.103]    [c.51]   
Теория упругих тонких оболочек (1976) -- [ c.85 ]



ПОИСК



Мера однородности поля в данном направлении и в данной точке. Градиент скалярного поля и дифференциальный тензор векторного поля как меры неоднородности поля

Неоднородность



© 2025 Mash-xxl.info Реклама на сайте