Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения. Интеграл Якоби

Уравнения движения. Интеграл Якоби. Предположим, что Солнце 5 и Юпитер J вращаются вокруг общего центра масс по круговым орбитам. Единицы длины, времени и массы  [c.82]

Пользуясь результатами, полученными при решении предыдущей задачи, и свойствами полного интеграла уравнения Якоби — Гамильтона, найти первые интегралы уравнений движения точки.  [c.376]


Гамильтон показал, что если известен общий интеграл уравнений движения, представленных в канонической форме, то из него можно вывести полный интеграл этого уравнения с частными производными. Якоби дополнил эту теорему, доказав, что, обратно, если известен какой-нибудь полный интеграл этого уравнения с частными производными, то из него можно получить общий интеграл уравнений, движения. Как мы только что говорили, это уравнение с частными производными, которое мы будем называть уравнением Як оби. подобрано таким образом, что уравнения движения (6) являются для него дифференциальными уравнениями характеристик согласно известному методу интегрирования уравнений с частными производными первого порядка. Мы не будем, однако, пользоваться этим методом.  [c.473]

Таким образом, теорема Якоби доказана. Интегрирование уравнений движения сведено, следовательно, к нахождению полного интеграла уравнения (4). Наоборот, если бы мы пожелали классическими методами проинтегрировать уравнение Якоби, то нам пришлось бы сначала проинтегрировать канонические уравнения. Можно, сказать, что две задачи анализа интегрирование канонических уравнений и нахождение полного интеграла уравнения (4) — эквивалентны в том смысле, что решение одной задачи влечет за собой и решение другой.  [c.476]

Уравнения движения планеты в форме Якоби. Возьмем начало координат в Солнце, плоскость траектории примем за плоскость ху и обозначим через г расстояние Л10 от планеты до Солнца (рис. 177). Весь вопрос сводится к нахождению полного интеграла уравнения  [c.485]

Теорема Якоби — Пуассона. Если f и g — интегралы уравнений движения, то (Jg) — также интеграл этих уравнений.  [c.100]

Теперь мы можем сформулировать доказанную теорему. Теорема Якоби. Если S(t, qi, а.-) — некоторый полный интеграл уравнения Гамильтона — Якоби (6), то конечные уравнения движения голономной системы с данной функцией Н могут быть записаны в виде )  [c.156]

Заслуга Якоби заключается в том, что, продолжив исследования Гамильтона, он разорвал этот порочный круг. Он показал, что конечные уравнения движения могут быть написаны в виде (9) при помощи произвольного полного интеграла S t, qi, а,) уравнения Гамильтона — Якоби.  [c.159]

Резюме. При параметрическом задании движения время является дополнительной координатой, которая может принять участие в процессе варьирования. Импульс, соответствующий временной координате, является полной энергией, взятой с обратным знаком. Для склерономных систем время становится циклической координатой, а соответствующий импульс — константой. Это приводит к теореме сохранения энергии для консервативных систем. Исключение времени как циклической координаты позволяет сформулировать новый принцип, определяющий лишь путь механической системы, а не ее движение во времени. Это — принцип Якоби, аналогичный принципу Ферма в оптике. Этот же принцип может быть сформулирован как принцип наименьшего действия . В последнем случае интеграл по времени от удвоенной кинетической энергии минимизируется с дополнительным условием, что при движении и вдоль истинного, и вдоль проварьированного пути должна выполняться теорема о сохранении энергии. Если этот принцип рассматривать с помощью метода неопределенных множителей, то в качестве результирующих уравнений получаются уравнения движения Лагранжа.  [c.165]


Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]

Из уравнений (8.3.6) видно, что для систем с разделяющими переменными полный интеграл уравнения в частных производных Гамильтона — Якоби можно получить в квадратурах. Возникает такая необычная ситуация, что сопряженные переменные qk,Pk в каждой паре связаны непосредственно друг с другом без участия остальных переменных. Механическая система с п степенями свободы может рассматриваться как суперпозиция п систем с одной степенью свободы. Однако истинные уравнения движения такие  [c.278]

С этим согласуется положение, заключающееся в том, что, найдя полный интеграл уравнения Гамильтона—Якоби, соответствующий динамической задаче (консервативной), можно найти общее решение уравнений движения Лагранжа из равенств  [c.302]

Чаплыгин С. А. 171 Чаплыгина случай частной интегрируемости уравнений движения 171 Частный интеграл уравнений Гамильтона — Якоби, вывод инвариантных соотношений 307  [c.551]

Уравнения Уиттекера и Якоби. Пусть движение системы описывается каноническими уравнениями (12). Если функция Гамильтона не зависит явно от времени, то существует обобщенный интеграл энергии  [c.289]

Уравнения движения точки Р могут быть записаны в форме канонических уравнений Гамильтона. Функция Гамильтона явно от времени не зависит, поэтому существует обобщенный интеграл энергии — интеграл Якоби  [c.326]

Итак, с помощью любого полного интеграла дифференциального уравнения Гамильтона в частных производных можно получить полное решение задачи Гамильтона, т. е. интегралы гамильтоновых уравнений движения. Дифференциальное уравнение для функции S впервые было получено Гамильтоном в 1834 г., а доказательство всей теоремы было дано Якоби в 1837 г. ).  [c.286]

Замечания по теореме Гамильтона — Якоби. Эта изящная теорема, доказанная в 16.2 и 16.4, имеет фундаментальное значение как для теории, так и для приложений. До сих пор, исследуя динамическую систему какого-либо частного вида, мы составляли уравнения движения, после чего задача сводилась к интегрированию этих уравнений. Совершенно иначе обстоит дело в методе Гамильтона — Якоби. Как только найден один полный интеграл уравнения Гамильтона в частных производных, сразу могут быть написаны интегралы уравнений движения. Вопрос заключается лишь в том, насколько просто может быть найден полный интеграл. Однако, как будет показано, для большей части задач классической механики нахождение полного интеграла не вызывает каких-либо затруднений.  [c.290]

Эти уравнения показывают, что движение происходит так же, как движение частицы единичной массы в поле консервативных сил с потенциалом —yU при наложенных гироскопических силах. Из интеграла Якоби  [c.564]


Цля решения задачи о движении достаточно найти полный интеграл уравнения Г амильтона—Якоби  [c.493]

В главе 6 рассматривается влияние гравитационных возмущений. С помощью интеграла Якоби исследуются для круговой орбиты области возможных движений оси динамически симметричного спутника. Показано, в частности, что ось динамически вытянутого спутника может совершать ограниченные колебания в окрестности радиуса-вектора орбиты, а ось динамически сжатого спутника — в окрестности нормали к плоскости орбиты. Если же составляющая абсолютной угловой скорости по оси симметрии все время остается равной нулю, то ось динамически сжатого спутника может совершать ограниченные колебания в окрестности касательной к орбите. Если кинетическая энергия относительного вращения спутника достаточно велика, то областью возможных движений становится вся единичная сфера и движение можно рассматривать как ротационное. Для такого движения исследуются вековые гравитационные возмущения и общие особенности движения на круговой и эллиптических орбитах для круговой орбиты, согласно общей теории главы 5, построено решение во втором приближении в эллиптических функциях аналогичное приближенное решение получено для эллиптической орбиты. Сравнение с численным интегрированием точных уравнений показывает, что решение второго приближения обладает очень высокой точностью.  [c.13]

ТО ИЗ соотношения (34) мы получаем первый интеграл уравнений движения, который носит название интеграла Якоби  [c.230]

При таком выборе переменных уравнения движения, когда активные силы потенциальны, записываются в весьма симметричной и компактной форме, называемой канонической это облегчает исследование общих свойств движения и допускает сведение задачи интегрирования канонических уравнений к разысканию полного интеграла некоторого уравнения в частных производных первого порядка (теорема Якоби). Переменные являются независимыми и симметрично входят  [c.503]

Пайти полный интеграл уравнения Гамильтона-Якоби и решение уравнений движения.  [c.386]

Ограниченная круговая задача трех тел. В 1834 г. немецкому математику К.Г. Якоби удалось получить первый интеграл уравнения движения. Пусть вектор описывает окружность радиусом I, вращаясь с угловой скоростью О. Перейдем в систему отсчета К, вращаюшу-юся с угловой скоростью О. Ось г направим по вектору О, а ось х  [c.88]

Составить уравнение Гамильтона-Якоби, найти полный интеграл и получить из него уравнения движения.  [c.264]

Задача о движении спутника около центра масс обычно рассматривается в ограниченной постановке считается, что движение около центра масс не влияет на орбиту спутника. В ограниченной задаче уравнения движения спутника в гравитационном поле допускают первый интеграл — интеграл типа Якоби, который существует только на круговой орбите и может быть записан в следуюш ем виде (В. В Белецкий, 1959)  [c.289]

Глава VII посвящена актуальной для космонавтики ограниченной задаче трех тел (уравнения движения, интеграл Якоби, точки либрации, линии Хилла). Рассказано  [c.10]

В частном случае обобщенно консервативной системы гамильтониан Н является интегралом уравнений движения поэтому если некоторая функция f(q, р, 4 —интеграл уравнений движения, то ее первая, вторая и т. д. частные производные по времени также являются интегралами этих уравнений. Действительно, для таких систем в силу теоремы Якоби — Пуассона (/, Я) = = onst и из условия (30) следует, что  [c.269]

По-,мое.му, подобные волновые группы можно построить, причем таким же способом, каким Дебай ) и фон Лауз ) решили задачу обычной оптики о нахождении точного аналитического представления для светового конуса или светового пучка. При этом появляется еще крайне интересная связь с не рассмотренной в 1 частью теории Якоби—Гамильтона, а именно с из-вестны.м способом получения интегралов уравнений движения посредством дифференцирования полного интеграла уравнения Гамильтона по постоян-ны.м интегрирования. Как мы сейчас увидим, упомянутый только что метод получения интегралов движения Якоби равносилен в нашем случае следующему положению изображающая механическую систему точка совпадает длительный период с той точкой, где встречается определенный континуум волн в равной фазе.  [c.686]

Итак, основные этапы развития аналитической динамики таковы первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжев метод вариации произвольных постоянных и аналогичная теория Пуассона и связанные с нею проблемы интегрирования затем Гамильтон представил интегральные уравнения посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или из того условия, что она должна одновременно удовлетворять двум дифференциальным уравнениям в частных производных Гамильтон же нашел новую форму уравнений движения Якоби свел интегрирование дифференциальных уравнений динамики к нахождению полного интеграла единственного дифференциального уравнения в частных производных он же развил теорию последнего множителя системы дифференциальных уравнений движения Остроградский рассмотрел проблему интегрирования уравнений динамики Раус нашел новую форму дифференциальных уравнений движений Пуанкаре развил теорию интегральных инвариантов наконец,  [c.848]


Можно сделать попытку обозреть основные этапы развития аналитической динамики до середины XIX в. Первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжева теория вариации произвольных постоянных, а также теория Пуассона. Следующим этапом явились во-первых, представление Гамильтоном интегральных уравнений посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или посредством условия, что она одновременно удовлетворяет двум дифференциальным уравнениям в частных производных, и, во-вторых, установление канонических уравнений движения. Вслед за тем Якоби свел интегрирование дифференциальных уравнений к проблеме нахождения полного интеграла единственного уравнения в частных производных и дал общую теорию связи интегрирования систем обыкновенных дифференциальных уравнений и уравнения в частных производных первого порядка. Наконец, была разработана теория систем канонических интегралов.  [c.910]

В дальнейшем Якоби находит много различных случаев получения интегралов уравнений движения. Например, рассматривая системы с силовой функцией, Якоби показывает, что в случае, когда можно выбрать такие обобщенные координаты qi, что силовая функ р1я не зависит от координаты qs-, а живая сила завис1 т от нее, можно получить интеграл данно системы уравнений в виде Ps = onst (при этом говорят, что координата qs — циклическая).  [c.212]

Гамильтон считал, что главная функция S должна удовлетворять двум уравнениям в частных производных первого порядка (17) и (18). Это обстоятельство уменьшало, видимо, возможности применения метода к частным задачам механики, Якоби показал, что необходимость соблюдения уравнения (18) совершенно излипшя чтобы иметь возможность проинтегрировать уравнения движения по формулам (16), достаточно найти интеграл лишь одного уравнения (17), содержащий надлежаш ее число параметров. Вместе с тем Якоби показал, что этими параметрами могут и не быть начальные значения координат q. Это существенное улучшение результатов Гамильтона имеет особое значение для применения рассматриваемого метода интегрирования канонических уравнений.  [c.20]

Тем более подобные ситуации возможны при распространении метода Гамильтона — Якоби на системы с неголономными связями. Мы проиллюстрировали предложенный нами описанный способ применения метода Гамильтона — Якоби к неголономным системам на примере частного случая задачи Каратеодори — Чаплыгина, а также на примере движения без скольжения однородного шара по горизонтальной плоскости. Для данной задачи уравнение Гамильтона — Якоби было составлено в нормальных неголономных координатах, полный интеграл был найден и с его помощью выявлен один первый интеграл уравнений движения — неизменность проекции угловой скорости шара на вертикаль. Этого было достаточно для решения всей задачи в силу наличия двух дифференциальных уравнений связей, интеграла энергии и вытекавшей из элементарных соображений общей механики прямолинейности движения центра тяжести шара. Наши работы по данному вопросу получили в дальнейшем отклик. В конце сороковых годов итальянский механик Пиньедоли опубликовал статью по данному вопросу с той же методикой. В настоящее время данной проблемой занимались в своих кандидатских диссертациях молодые научные работники (Назнев X. А., Титкова С. И.).  [c.8]

Однако в результате возникает порочный круг для написания конечных уравнений движения (закона движения) нужна функция ] , а для составления этой функции нужно знать конечные уравнения движения. Определение полного интеграла в виде главной функции Гамильтона для нахождения закона движения непредикативно по отношению к решению с заданными начальными условиями, которое находится с помощью полного интеграла в виде главной функции Гамильтона. Этот порочный круг разорвал Якоби, показавший, что конечные уравнения могут быть написаны при помощи произвольного полного интеграла 5 уравнения Гамильтона-Якоби (приём расширения множества, в которое включено одно из понятий, участвовавших в непредикативном определении).  [c.220]

Проблема точного интегрирования уравнений динамики — одна из самых популярных тем исследования, начиная со знаменитых Математических начал натуральной философии Ньютона. Руководящей идеей в этом круге вопросов является общая идея симметрии. При решении задачи о центральном движении Ньютон уже использовал соображения симметрии факторизуя орбиты группы вращений, он свел эту задачу к изучению движения по прямой в потенциальном поле. Впоследствии Лагранж и Якоби заметили, что классические интегралы задачи многих гравитирующих тел связаны с инвариантностью уравнений движения относительно группы преобразований Галилея. Это фундаментальное наблюдение обобщено Эмми Нётер каждой группе преобразований, сохраняющих действие по Гамильтону, отвечает интеграл уравнений движения. Верно и обратное фазовый поток уравнений Гамильтона, в которых гамильтонианом служит известный интеграл, переводит решения исходных уравнений движения в решения тех же уравнений. На этой идее основано доказательство известной теоремы Лиувилля о полной интегрируемости уравнений Гамильтона фазовые потоки инволютивных интегралов попарно коммутируют и порождают абелеву группу симметрий максимально возможной размерности на многообразиях их совместных уровней.  [c.6]

Кроме дополнительного интеграла С. В. Ковалевская нашла замечательные переменные, преобразующие уравнения движения (1.1) к форме Абеля -Якоби (см. 7, гл. 1). При наличие такой формы дальнейшее интегрирование в тэта-функциях (двух переменных) может быть выполнено по некоторой общей схеме (см. [86]). Здесь мы приведем только соответствующую замену. Переменные Ковалевской в1, в2 определяются по формулам  [c.112]


Смотреть страницы где упоминается термин Уравнения движения. Интеграл Якоби : [c.546]    [c.460]    [c.473]    [c.427]    [c.163]    [c.566]    [c.97]    [c.355]    [c.488]    [c.31]   
Смотреть главы в:

Динамические системы-3  -> Уравнения движения. Интеграл Якоби



ПОИСК



Гам??л?.то??а Якоби уравнение интеграл

Гам??л?.то??а Якоби уравнение уравнению

Дифференциальные уравнения движения. Интеграл Якоби

Интеграл Якоби

Интеграл движения

Интеграл уравнений

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Интегралы уравнений движения

Уравнения Якоби

Уравнения движения спутника относительно центра масс в ограниченной задаче. Интеграл типа Якоби Устойчивое положение относительного равновесия

Якоби

Якоби Якоби

Якоби движения



© 2025 Mash-xxl.info Реклама на сайте