Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория совместности представлений

Теория совместности представлений  [c.325]

Длительное время теория совместного разряда ионов металлов базировалась на представлении, что закономерности восстановления ионов от потенциала электрода при совместном разряде не меняются по сравнению с раздельным восстановлением. При этом не учитывалось, что при совместном осаждении происходит изменение природы и состояния поверхности электрода, структуры и состава двойного электрического слоя, состояния ионов в растворе, т. е. взаимное влияние совместно восстанавливающихся ионов на скорость электродных процессов.  [c.110]


Таким образом, даже весьма приближенная оценка скоростей разряда ионов никеля и кобальта при их совместном осаждении, проведенная на основании представлений теории совместного разряда в реальных сопряженных системах, находится в полном соответствии с экспериментальными данными для низких и высоких температур.  [c.120]

В основе существующей теории совместного разряда ионов лежит представление, согласно которому при совместном разряде ионов металлов закономерность изменения скорости процесса восстановления ионов от потенциала электрода не изменяется по сравнению с раздельным восстановлением. Следовательно, в этом случае не учитывается влияние изменения природы и состояния поверхности электрода, изменения структуры и состава двойного электрического слоя, а также влияние изменения концентрации электролита и состояния ионов в растворе ма скорость электродных процессов.  [c.177]

Условия совместности Сен-Венана вытекают из постулирования евклидовых свойств пространства, связанного с деформированной средой. Сравнительно недавно такое постулирование внутренних свойств пространства с метрикой, изменяющейся при деформировании твердого тела, не вызывало сомнений. Лишь в пятидесятых годах, в связи с развитием континуальной теории дислокаций, было выяснено, что такое постулирование в ряде случаев должно быть заменено более общими представлениями о внутренних свойствах пространства. Здесь мы ограничимся классическим изложением. Возвратимся к равенствам (IV. 80) и вопросу о возможности преобразования метрики в деформированной среде к евклидовой метрике в эйлеровых переменных.  [c.509]

Во втором издании расширен материал по теории истечения, циклам теплосиловых установок и газотурбинным установкам. Введено представление об эксергии. Рассмотрен рабочий процесс совместно в ступенях паровой и газовой турбин.  [c.672]

В настоящей статье принято, что свет состоит по существу из световых квантов, каждый из которых обладает одной и той же чрезвычайно малой массой. Математически показано, что преобразование Лоренца—Эйнштейна совместно с квантовыми соотношениями приводит к необходимости связать движение тела и распространение волны и что это представление дает физическую интерпретацию аналитических условий устойчивости Бора. Дифракция является, по-видимому, совместимой с обобщением ньютоновской динамики. Далее, оказывается возможным сохранить как корпускулярный, так и волновой характер света и дать с помощью гипотез, подсказываемых электромагнитной теорией и принципом соответствия, правдоподобное объяснение когерентности и интерференционных полос. Наконец, показано, почему кванты должны входить в динамическую теорию газов и почему -закон Планка является предельной формой закона Максвелла для газа световых квантов.  [c.639]


Такие возможности, открываемые теорией подобия, позволяют трактовать ее как теорию обобщенных переменных. При такой трактовке следует, что множество связей не является собственным свойством задач, обусловленных их физической природой. В действительности влияние отдельных факторов, представленных различными величинами, проявляется не порознь, а совместно. Поэтому рассмотрение не отдельных величин, а их совокупности или комплексов, имеюш,их определенный физический смысл, вооружает нас более глубокими и обш,ими сведениями на основании сравнительно меньшего количества исследований. Это особенно важно при экспериментальных работах, когда, например, проводя испытания на газодинамическом стенде и изменяя только один параметр (скорость потока), можно судить о влиянии вязкости газа.  [c.143]

Наиболее распространенными причинами выхода из строя деталей и рабочих органов машин являются износ и повреждение нх поверхностей. Известно, что совместное действие механических, металлургических и коррозионных факторов ргз-ко повышает вероятность повреждений и внезапных отказов действующих технологических устройств. Обеспечение коррозионной устойчивости изделий из металлов и сплавов — залог надежности и долговечности машин, аппаратов и конструкций. Поэтому курс Коррозия и защита металлов несомненно должен занять соответствующее место в учебных планах всех технологических и машиностроительных вузов (объем курса и уточнение его названия зависят от специализации студентов). Основной задачей такого курса является ознакомление студентов с теорией и практикой различных процессов коррозии металлов и сплавов и способами защиты от коррозионного разрушения. Предполагается, что в первой части курса должны быть изложены основные вопросы теории науки о коррозии и защите металлов, даны общие представления о возможности прогноза процессов коррозии. Вторая часть курса должна быть специализирована с учетом профиля вуза.  [c.115]

Содержание остальной части главы. В 7-2 выводятся уравнения и предлагаются методы их решения в простых случаях. Обсуждаются также некоторые экспериментальные данные по характеристикам переноса насадочных аппаратов, достаточные для иллюстрации применимости предлагаемой теории. Уже из развитой прежде теории локального мас-сообмена читатель убедился в том, что задача с двумя сохраняемыми свойствами гораздо труднее задачи с одним сохраняемым свойством, даже если в последней и рассматриваются одновременно две фазы. Это было показано при сопоставлении 5-3 и гл. 6. Поэтому в 7-2 рассматриваются задачи с одним только сохраняемым свойством. Когда же при решении требуется учет двух сохраняемых свойств, то, как и в главе Совместный тепло- и массоперенос , оказывается удобным применять построения на диаграмме энтальпия — состав. Метод этот представлен в 7-3, а в 7-4 он используется для расчета градирен.  [c.282]

Теория сопротивления усталости подшипниковых сплавов разработана слабо. Высказываются сомнения в возможности усталостного разрушения при пульсирующем цикле сжатия, поскольку разрушение непосредственно под действием сжимающих напряжений противоречит нашим представлениям. Однако оно может быть обусловлено касательными напряжениями, относительным удлинением, сопровождающим приложение сжимающей силы, остаточными напряжениями растяжения, возникающими в сплаве в итоге накапливающейся микропластической деформации с увеличением числа циклов, либо совместным влиянием этих факторов. В реальном подшипнике напряженное состояние металла в слое определяется не только приложенной нагрузкой, но и характером деформации корпуса подшипника в целом. Это означает, что если в материале слоя на жестком основании возникали бы под действием радиального усилия только напряжения сжатия, то изгиб корпуса подшипника с переменой знака кривизны вызывал бы растягивающие напряжения.  [c.230]

Упражнения к этой главе затрагивают также две дополнительные темы. Первая из них связана с условиями совместности и функциями напряжений. В задачах 18 и 19 дан систематический метод получения функций напряжений в случае растяжения пластины, а также ее изгиба с использованием условий совместности. Вторая тема относится к теории изгиба пластины, представленной в криволинейных координатах. Задачи 20—23 посвящены теории изгиба в неортогональной системе координат, в косоугольной системе координат, в ортогональной криволинейной системе координат и в цилиндрической системе координат соответственно. В задаче 24 рассматривается теория изгиба пластины с учетом деформации поперечного сдвига в неортогональной криволинейной системе координат.  [c.248]


В современных вихревых теориях задачу определения индуктивных скоростей, нагрузок и аэродинамических характеристик несущего винта решают численно, используя сложные схемы следа. К таким схемам относятся представление следа дискретными концевыми вихрями и зачастую даже схемы, учитывающие деформацию свободных вихрей. Поэтому современные теории имеют практическое значение только при использовании быстродействующих цифровых ЭВМ. Хотя численные решения в принципе ближе к действительности, чем классические, попытки усовершенствовать на их основе расчет аэродинамических характеристик несущего винта на режиме висе-ния оказались нелегкими. Часто усовершенствование заключается лишь в небольшом, но важном уточнении, но чтобы его найти, нужно использовать более подробную схему течения, которая требует тщательного исследования. Однако многие сложные явления, связанные с аэродинамикой несущего винта, еще недостаточно выяснены, а другие явления трудно исследовать. Кроме того, усовершенствование расчетной схемы должно быть совместным, т. е. должно затрагивать одновременно аэродинамическую, динамическую и конструктивную схемы несущего винта. В методах расчета аэродинамических характеристик винта на висении был достигнут определенный прогресс, но и теперь эти методы имеют ряд недостатков. Подробное  [c.98]

В заключение следует отметить, что роль безмоментной теории в обш,ей теории оболочек может быть сравнена с ролью теории потенциального течения идеальной жидкости в гидромеханике. Потенциальный поток в точности неосуществим, однако, исходя из этого понятия, в гидромеханике было сделано много важных практических выводов. Комбинирование теории идеальной жидкости с теорией вязкой жидкости (путем использования представления о пограничном слое) имеет некоторое сходство как метод исследования с упомянутым выше совместным использованием безмоментной и моментной теорий.  [c.92]

В основу предыдущих работ одного из авторов [1-3] было положено предположение о том, что известные трудности нелокальной теории поля (НТП) не присущи ей органически, а являются результатом слишком прямолинейного обобщения аппарата обычной теории поля. Имеется в виду, в частности, недопустимое отождествление целого ряда понятий и величин — лагранжиана и гамильтониана (с обратным знаком), критериев причинности и совместности, функций Грина в гейзенберговском и 1п-представлениях и т. п., — совпадение которых имеет место лишь в локальной теории.  [c.143]

Возможна иная формулировка метода конечных элементов, следующая из представления о том, что для любого точного или приближенного метода решения задачи теории упругости должны быть удовлетворены уравнения равновесия и условия совместности. В изложенном выше методе перемещений распределение перемещений предполагается таким, что совместность их обеспечивается, поэтому при приближенном решении уравнения равновесия удовлетворяются неточно.  [c.140]

В этой теории на основании общих физических соображений доказывается, что множество связей не является собственным свойством исследуемых задач, обусловленным их физической природой. В действительности влияние отдельных факторов, представленных различными величинами, проявляется не порознь, а совместно. Поэтому надо рассматривать не эти отдельные величины, а их совокупности или комплексы, имеющие определенный физический смысл. Методы теории подобия позволяют на основе анализа дифференциальных уравнений и граничных условий находить эти комплексы, которые можно назвать обобщенными переменными.  [c.33]

Представленная в разд. 4.5 теорема единственности в теории упругости формально утверждает, что если вместе с объемными силами заданы либо поверхностные силы, либо перемещения на поверхности тела, то в теле существует только одно поле напряжений, или перемещений. Решение, удовлетворяющее всем условиям равновесия и совместности внутри тела и на его границе, единственно.  [c.121]

Применение классических теорий прочности совместно с условиями усталостного разрушения при несимметричных циклах линейных напряжений, представленными в табл. 4.2 на основании модифицированной  [c.276]

Некоторое упрощение в математическом представлении надежности организационных систем может быть принято на основании правил из теории вероятностей. Например, правило умножения вероятностей утверждает, что вероятность совместного наступления двух событий равно произведению вероятности первого события на условную вероятность второго при условии, что первое событие состоялось.  [c.37]

Влияние поверхностей раздела на прочность композита при внеосном нагружении пытались оценить лишь для случая поперечной ориентации (0=90°). Хотя этот случай и является простейшим, существующие теории еще не в состоянии учесть всю сложность реальных условий деформации и являются приближенными. Тем не менее важным шагом в решении проблемы оказывается оценка верхнего и нижнего предельных значений прочности при поперечном нагружении, которые, вероятно, могут быть распространены и на случаи нагружения под другими углами. Конечно, оценка верхнего предельного значения прочности основана на представлениях о прочной поверхности раздела. Однако мы обсудим здесь этот вопрос, поскольку верхнее и нижнее предельные значения рассматриваются совместно и поскольку данный вопрос является отправной точкой для дальнейшего развития теорий слабых поверхностей раздела.  [c.191]

Третье Всесоюзное совещание по основным проблемам теории машин и механизмов проводилось в Москве в июне 1961 г. В докладе Современное состояние динамики машин (представленном совместно с А. Е. Коб-ринским) Иван Иванович указал на необходимость более глубокого изучения динамических процессов, протекающих в механических сист х. 3н тмрил, что мето-  [c.18]


Настоящий обзор, написанный совместно с С. В. Фальковичем в 1947 г. и переведенный на английский язык в 1951 г. [1], имел целью дать представление о состоянии к тому времени раздела теории фильтрации, который можно назвать классическим. Эти исследования были направлены главным образом на поиски точных решений и методов их получения.  [c.333]

Влияние предварительного нагружения на динамические свойства материалов было показано на рис. 3.8. Во многих случаях, например для опор двигателя, этот эффект довольно важен, особенно когда требуется достичь хороших изолирующих характеристик при высоких частотах колебаний. Здесь также учитывается влияние температуры окружающей двигатель среды. Так, для того чтобы изготовить резиноподобные материалы с разнообразными изолирующими и демпфирующими характеристиками, необходимо изучить их свойства как функции динамических и статических деформаций. Однако, поскольку здесь возможно большое число комбинаций параметров, становится трудным организовать испытания материалов. С другой стороны, можно использовать подход, при котором влияние различных внешних условий можно разграничить так, что будет достаточно провести испытания заданного материала для определения как статических, так и динамических характеристик порознь, а затем воспользоваться аналитическими методами для оценки их совместного влияния. В работе [3.11] была предложена общая теория комбинированного линейного динамического и нелинейного статического поведения вязкоупругих материалов. Аналогичный подход, дающий более простые результаты и основанный на уравнении Муни — Ривлина [3.12, 3.13], обсуждается ниже. Сначала рассматривается нелинейное статическое представление на основе уравнения Муни — Ривлина, а затем оно распространяется на динамическое поведение  [c.124]

Рассматриваются различные представления о влиянии поверхности на пузырьковое кипение жидкостей. В результате проведенных теоретических и экспериментальных исследований о привлечением теории поверхностных явлений удается достигнуть определенного прогресса в изучении роли поверхности в процессе кипения. Особенно плодотворным оказывается анализ методами термодинамики различных стадий пузырькового кипения и особенно его первой стадии — возникновения зародышей паровых пузырьков. Такой анализ открывает новые широкие возможности дальнейшего изучения закономерностей влияния поверхности на кипение. В частности, совместное решение уравнений Лапласа—Гиббса и Клапейрона—Клаузиуса дает возможность определить размеры зародышей паровых пузырьков с учетом реальных размеров неровностей шероховатости поверхностп парогенерирующих элементов установок и тем самым априорно определить возможную плотность центров парообразования и другие характеристики кипения жидкости на рассматриваемой новеркности.  [c.289]

ФШДАМЕНТАЛЬНЫЕ ФИЗИЧЕСКИЕ КОНСТАНТЫ—постотные, входящие в ур-ния, описывающие фун-дам. законы природы и свойства материи. Ф. ф. к. определяют точность, полноту и единство наших представлений об окружающем мире, возникая в теоретич. моделях наблюдаемых явлений в виде универсальных коэф. в соответствующих матем. выражениях. Благодаря Ф. ф. к. возможны инвариантные соотношения между измеряемыми величинами. Т. о., Ф. ф. к. могут также характеризовать вепосредственно измеряемые свойства материи и фундам. л природы и совместно с теорией должны объяснять поведение любой физ. системы как на микроскопич., так и на макроскопич. уровне. Набор Ф. ф. к. не является фиксированным и тесно связан с выбором системы единиц (яз. величин, он может расшириться вследствие открытия вовых явлений и создания теорий, их объясняющих, и сократиться при построении более общих фундаментальных теорий.  [c.381]

Третье Всесоюзное совеш ание по основным проблемам теории машин и механизмов проводилось в Москве в июне 1961 г. В докладе Современное состояние динамики машин (представленном совместно с А. Е. Коб-ринским) Иван Иванович указал на необходимость более глубокого изучения динамических процессов, протекающих в механических системах. Он отметил, что методы динамики начали применять ко все более широкому кругу машин, и указал на необходимость изучения машин в рабочих условиях. На этом же совещании был зачитан доклад, представленный им совместно с А. П. Бессоновым, Некоторые особенности уравнения движения плоского механизма с переменной массой . Эта и последующие работы в этом направлении явились существенным вкладом в динамику машин многие машины в различных отраслях промышленности должны рассматриваться именно как механизмы, обладающие переменной массой.  [c.9]

С 1927 г. Юрий Борисович продолжает образование и работает в Германии. В 1929—1932 гг. он — ассистент Макса Борна в Гёттингене. Начало его научной деятельности совпало с годами становления квантовой механики. В эти годы он выполнил пионерские работы по применению методов квантовой механики и теории групп в химии (совместно с Г. Вейлем и молодыми тогда В. Гайтлером и Э. Теллером). Ученые показали, что при описании молекул со сложными связями (например, молекулы бензола) классические представления о валентности не работают, и в описание необходимо включать квантовую суперпозицию состояний. Ныне теорема и диаграммы Румера получили всеобщее признание и излагаются в учебниках по квантовой химии. Эти работы Юрий Борисович продолжал и по возвращении на родину. Они легли в основу новой отрасли науки — квантовой химии с ее наглядным упрощенным представлением — теорией резонанса , которая возникла как наглядная интерпретация работ Румера с соавторами. За развитие этой науки Л. Полинг получил в 1954 г. Нобелевскую премию, а в СССР в 1948 г. квантовая химия была разгромлена как лженаука .  [c.606]

Из теории деформации следует величины V X и V X характеризуют поведение элемента в целом. Значит, за них ответственны главные момент и вектор сил. Однако и дают представление и о состоянии в точке элемента. Поэтому правые части (33) описывают разницу в поведении элемента в целом и в окрестности некоторой его точки. Отсюда вытекает дефекты а" и 0" можно рассматривать как геометрически необходимые, поскольку они рписывают разницу между макро- и микроповедением, среды. Следовательно, уравнение совместности для дефектов отражает тот факт, что выделенный объем не испытывает поворотов и перемещений. Если выделенный объем не имеет структуры, то его деформацию должны описывать симметричные тен 5оры е и и (т. е. внутри структурного элемента).  [c.159]

Резюмируя изложенное, следует отметить, что поверхность является сложным трехмерным геометрическим объектом, одним из свойств которого является пространственная корреляция. Это позволяет выделить на ней ряд геометрических структур, находящихся в определенной иерархической сопод-чиненности. Задачи, связанные с изучением поверхностей, разработкой оценок топографических свойств, должны решаться с учетом этого иерархического строения и на основе операций, с помошью которых поверхность может быть синтезирована из совокупности элементов более простой природы, выделяемых на различных морфологических уровнях. Для более адекватной характеристики поверхностей необходимо совместное использование представлений о ее как метрических, так и топологических свойствах. Учитывая, что при изучении поверхностей и анализе изображений решаются во многом сходные задачи, связанные с исследованием структурированных объектов, и, кроме того, принимая во внимание, что изображения можно рассматривать как один из способов организации информации о шероховатости, представляется возможным использование для изучения микрогеометрии повер-хносгей аналитических средств теории обработки изображений. В соответствии с этим возникает необходимость использования и развития соответствующих инструментальных методик, сочетающих возможности получения изображений объекта и одновременного определения его шероховатости. Рассмотрение уже имеющихся лабораторных и инженерных методов, отвечающих этим требованиям, позволяет выделить из них прежде всего те, которые реализованы на базе ЭВМ.  [c.182]


Во втором издании (1-е изд. 1958 г.) расширен материал по теории истечения, циклам теплосиловых установок и газотурбинным установкам. Введено представление об эксергии. Рассмотрен совместно рабочий процесс в ступени паровой и газовой турбин. Весь материал переработан и представлен в двух системах единиц (СИ и МКГСС)  [c.2]

Здесь хотелось бы подчеркнуть, что теория аберраций третьего порядка, представленная в этой главе, ограничивается аксиально-симметричными полями. Аналогичная теория может быть развита для полей мультиполей, включая отклоняющие системы. Общая теория для любого типа симметрии [170], естественно, очень громоздка, но и очень полезна. В разд. 11.1.4 будет рассмотрен относительно простой, но всеобъемлющий способ рассмотрения совместного действия всех аберраций, включая аберрации отклонения. Необходимо также помнить, что для очень широких пучков (и/или для полностью скомпенсированных аберраций третьего порядка) следует учитывать аберрации высилих порядков [170а].  [c.337]

Близкие к этому идеи высказывал ранее Гюнтершульце [Л. 7]. Все они в той или иной степени представляют собой возврат к прежней термоэлектронной теории дуги, хотя и в новом ее понимании. В последнее время наблюдается тенденция синтеза термоэлектронной и автоэлектронной теории дуги (теория Т — F-дуги). Одна из попыток такого рода была предпринята Бауэром [Л. 118], рассматривавшим первоначально эмиссию из катода дуги как результат простого сложения термоэлектронного и автоэлектронного токов, вычисляемых раздельно с помощью известных соотношений. На недостаточность такого примитивного рассмотрения вопроса обратил внимание Ли [Л. 154]. Основанием для этой критики послужило более последовательное решение задачи об эмиссии электронов металлом под влиянием совместного действия электрического поля и температуры [Л. 119]. Важным результатом указанных работ является представление о существовании непрерывного перехода между термоионной и автоэлектронной дугами в зависимости от соотношения между температурой катода, напряженностью поля у ка-  [c.59]

Гамильтониан взаимодействия, отвечающий выражению (2), зависяш,ему фактически от высших производных поля <р, отнюдь не совпадает с (3), а представляется в виде бесконечного ряда по заряду g, члены к-рого имеют сложную операторную структуру и завпсят явным образом от пространственно-подоб-ной гиперповерхности о(х). Исходя из выражений (2) и (3), приходят, т. о., не к двум разным представлениям одной и той н е Н. к. т. п., а к двум существенно различным теориям. Это различие особенно ярко проявляется при рассмотрении условия математич. совместности теории. Условием существования решения бесконечно-временного уравнения Томонага — Швингера i6g(a)/6a(x)= Н(х/о) 8(0), где (0) — матрица рассеяния, является условие совместности Блоха  [c.412]

Запутанность квантовых состояний представляет собой центральное понятие, которое необходимо для того, чтобы разобраться в таких вопросах, как информационная открытость квантовых систем, коллапсы волновых функций, квантовые измерения. Но начинается глава с обсуждения более простых явлений и процессов. В разделах 21-23 обсуждается вопрос об информационном взаимодействии классической или квантовой частицы с классическим окружением. В разделе 24 обсуждается проблема квантовых измерений в том виде, в каком она изложена Швингером. И только затем кратко излагается знаменитая работа Эйнштейна-Подольского-Розена, которая и привела к понятию запутанности состояний (этот термин был предложен Шрёдингером). Как известно, Эйнштейн, Подольский и Розен высказывали сомнения в правильности квантовой теории на том основании, что она вступала в противоречие с более привычными понятиями "элементов реализма" — тех характеристик физических систем, которые должны были бы существовать перед измерениями. В ответе Н. Бора было показано, что квантовая теория должна сосуществовать с новыми представлениями о том, что измерения квантовых систем должны представлять собой совместный процесс в "приборе плюс системе". Фактически это был шаг к осознанию того, что квантовые процессы являются нелокальными. Однако еще многие годы не прекращались попытки построения квантовых теорий со скрытыми параметрами. Случайная эволюция таких параметров, по мнению авторов теорий, должна была бы приводить к случайности результатов измерений.  [c.80]

Первая классическая теория электропроводности была развита ДруДЬ. В ней предполагалось, что поведение всех электронов в электрическом поле одинаково. Взаимодействие с решеткой осуществляется процессами столкновений, при которых происходит обмен энергией и импульсом. Между двумя столкновениями электрон свободно ускоряется внешним иолем. Совместное действие ускорения и столкновений приводит к некоторой средней постоянной скорости, которая линейно изменяется с полем (закон Ома). Закон Видемана —Франца также легко следует из теории. Однако ничего нельзя сказать о температурной зависимости концентрации электронов. Также нельзя вывести температурную зависимость подвижности. При простых предположениях о температурной зависимости вошедших параметров температурная зависимость подвижности получается неправильной, ого не смогли изменить и дальнейшие улучшения теории, учет распределения скоростей электронов (Лорентц), привлечение статистики Ферми (Зоммерфельд). Несмотря на некоторые очевидные успехи теории Друде —Лорентца —Зоммерфельда, для решительного ее улучшения потребовалось заменить примитивное представление о соударении электронов с ионами решетки на электрон-фононное взаимодействие. Необходимую для этого технику мы уже приводили в предыдущих параграфах этой главы.  [c.232]

Так как оба базисных атома одинаковы, то ветви А и ТА, как, соответственно, и ветви 0 и ТО, должны быть вырождены в Г. Расщепление Лиддена —Закса—Теллера (см. (36.13)) на оптических ветвях осуществляется только у полярных кристаллов. Неприводимые представления для акустических и оптических фононов группы Г должны быть трехмерными неприводимыми пред ставлениямн группы Од. Все трехмерные неприводимые представления группы Од расщепляются вдоль осей Дна одно двухмерное и одно одномерное представление. Отсюда мы можем сделать вывод, что вдоль осей Д поперечные ветви (как Т А-ветвь,так к ГО-ветвь)должны быть вырождены по симметрии. Если перейти от осей к произвольной точке, то и это вырождение будет снято. Таблица совместности точечной группы Од, т. е. пространственной группы структуры алмаза, показывает, что обе продольные ветви в точках X должны быть вырождены, поперечные ветви вдоль осей Л вырождены попарно, однако вдоль осей 2 онн расщепляются. Существенные результаты, приведенные на рис. 48, могут быть Получены с помощью теории групп.  [c.382]

Поскольку в силу теоремы 4-5 поле ф неприводимо, условие (4-93) определяет оператор 0 с точностью до фазового множителя (доказательство см. в разделе 3-5). Если существует другое неприводимое поле ф, определенное в том же Ж т соответствующее тому же представлению 17 группы н. то у него будет свой оператор РСТ, скажем 0,) , тогда и только тогда, когда оно будет слабо локально. Итак, имеются два оператора РСТ, именно 0 и 0ф. Вопрос состоит в том, когда они будут совпадать Из теоремы реконструкции (теорема 3-7) и теоремы 4-7 следует, что если области определения двух полей ф и ф удовлетворяют некоторым условиям и если ф и ф совместно удовлетворяют условиям СЛК, то 0 = 0 . Мы охарактеризуем такую ситуацию утверждением, что эти поля слабо взаимно локальны друг относительно друга. В качестве примера теории поля с тремя неприводимыми полями, которые не являются слабо взаимно локальными, рассмотрим нетривиальную теорию зрмитова скалярного поля ф( ), которому соответствуют асимптотические свободные по.яя ср "(л ), ф " (х), п предположим, что в данной теории спра-  [c.240]

КОВАЛЕНТНАЯ СВЯЗЬ (от лат. со -совместно и valens — имеющий силу) (гомеополярная связь), химическая связь между двумя атомами, возникающая при обобществлении эл-нов, принадлежавших этим атомам. К. с. соединены атомы в молекулах простых газов (Hg, lg и т. п.) и соединений (HgO, NH3, H l), а также атомы мн. органич. молекул. Число обобществлённых электронных пар наз. кратностью К. с. См. Межатомное взаимодействие. КОВАРИАНТНОСТЬ (от лат. со -совместно и varians — изменяющийся), форма записи физ. величин и ур-ний, непосредственно отражающая хар-р их изменения (векторный, спинор-ный, тензорный и т. д.) при преобразованиях системы пространственно-временных координат. Примером может служить представление энергии ё и импульса р в относительности теории в виде четырёхмерного импульса р с компонентами рц, )а=0,  [c.291]


Смотреть страницы где упоминается термин Теория совместности представлений : [c.56]    [c.388]    [c.234]    [c.4]    [c.90]    [c.121]    [c.372]    [c.387]    [c.423]    [c.333]    [c.315]   
Смотреть главы в:

Пространственная симметрия и оптические свойства твёрдых тел Т.1  -> Теория совместности представлений



ПОИСК



261, совместных

Представления теория

Совместность



© 2025 Mash-xxl.info Реклама на сайте