Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциал электрода

Схема компенсационной установки для измерения емкости двойного электрического слоя изображена на рис. 117. Метод состоит в сообщении поверхности металла и раствору некоторых малых количеств электричества AQ и —AQ и вычислении изменения потенциала электрода АУ и емкости. Чтобы электричество не тратилось на электрохимические реакции, при работе используется переменный ток высокой частоты.  [c.166]


При пересчете на водородную шкалу электродных потенциалов, измеренных по отношению к другим, перечисленным выше электродам сравнения, следует к значениям измеренных потенциалов Е прибавить значение потенциала электрода сравнения по водородной шкале (Кк)обр. т. е.  [c.175]

Для расплавленных солей электродные потенциалы, измеренные по отношению к различным электродам сравнения Е, пересчитывают на шкалу натриевого нулевого электрода сравнения прибавлением значения потенциала электрода сравнения по натриевой шкале (Уок-в)ыа, т. е.  [c.175]

Очень большая замедленность анодной реакции ионизации металла имеет место при возникновении анодной пассивности (см. с. 305). Анодная поляризация металлов в определенных условиях может облегчать переход металлов в пассивное состояние (образование на металле первичных фазовых или адсорбционных защитных пленок), что сопровождается резким торможением анодного процесса с соответствующим самопроизвольным падением плотности тока и значительным смещением потенциала электрода в положительную сторону (участок BE на рис. 137) до значений, достаточных для протекания нового анодного процесса, обычно выделения кислорода [участок EF кривой (Ко,)обр DEF на рис. 137]. Значение этого вида анодной поляризации рассчитать нельзя и его берут обычно из опытных данных.  [c.197]

Особенностью электрохимических гетерогенных реакций является зависимость их энергий активации Q, а следовательно, и скорости от потенциала электрода К или его поляризации АК, т. е.  [c.198]

Аналитическую зависимость эффективного потенциала электрода от плотности тока V = / (г) можно получить только для простых случаев коррозии, в то время как поляризационные кривые (графическое изображение этой зависимости) можно получить опытным путем даже для наиболее сложных случаев коррозии, соответствующих практическим условиям работы коррозионных элементов.  [c.270]

Очень ценные сведения о кинетике электродных реакций коррозионных процессов дают поляризационные кривые V = / (i) (см. с. ]94), которые получают, измеряя потенциал электрода из исследуемого металла при анодной и катодной поляризации его (пропускание тока возрастающей силы прямого и обратного направления) от внешнего источника постоянного электрического тока на установках, подобных изображенной на рис. 345.  [c.456]


Водородный электрод для измерения потенциала можно получить, погружая пластинку платинированной платины в раствор, насыщенный водородом при давлении 1 ат (рис. 3.2), или, что более удобно, измеряют потенциал с помощью стеклянного электрода, который также обратим по отношению к водородным ионам. Заметим, что потенциал электрода равен нулю, если и активность водородных ионов, и давление газообразного водорода (в атмосферах) равны единице. Это и есть стандартный водородный потенциал. Таким образом, потенциал полуэлемента для любого электрода равен э. д. с. элемента, где в качестве второго электрода использован стандартный водородный электрод. Потенциал полу-элемента для любого электрода, определенный таким образом, называется потенциалом по нормальному стандартному) водородному электроду или по водородной шкале и обозначается или н. в. а-  [c.34]

Когда в элементе течет ток, медь осаждается на электроде при этом поверхностная концентрация ионов меди, а следовательно, и их активность снижаются до (a u +)s- Теперь потенциал электрода становится  [c.51]

Метод оценки ингибиторов по качеству и скорости образования защитной пленки заключается в потенциостатическом определении изменения поляризующего тока при постоянном потенциале. Электрод с подготовленной поверхностью площадью 0,5 см помещается в ячейку с разделенными анодным и катодным пространствами. Потенциал электрода задается и поддерживается постоянным. После установления стационарного значения катодного (анодного) тока при заданном потенциале в коррозионно-активный раствор ячейки вводят ингибитор и при этом регистрируют изменение плотности поляризующего тока.  [c.178]

Опытным путем было определено, что в растворе, с содержанием 30 г/л Аи и 4,3 г/л K N (своб.) при отсутствии поляризации золотой электрод растворяется со скоростью 1-10 г/см причем концентрация цианистого калия не влияет на скорость растворения. Поляризационная кривая электроосаждения золота (рис. 7) имеет две площадки предельного тока, которые, как было выяснено, имеют диффузионный характер. Подтверждением этому служат результаты измерения стационарных потенциалов золотого электрода при различных содержаниях цианистого калия. Считая, что реакция, определяющая потенциал электрода, следующая  [c.33]

Платиновый высокотемпературный электрод ЭПВ-1 предназначен для измерения окислительного потенциала в окислительно-восстановительных средах при температуре анализируемой пробы в интервале от о до 150 °С. Нестабильность потенциала электрода за 8 ч работы не превышает 5 мВ. Средний ресурс работы составляет примерно 1000 ч.  [c.76]

Хлорсеребряный электрод ЭВЛ-1МЗ применяется для работы с измерительным электродом при потенциометрическом анализе водных растворов, температура которых может колебаться от 0 до +100 °С. Потенциал электрода относительно стандартного водородного при температуре 20 °С равен (201 3) мВ нестабильность потенциала за 8 ч работы не превышает 0,5 мВ средний ресурс работы - около 1000 ч.  [c.76]

При гальваническом методе образец поляризуется катодным или анодным током постоянной величины, его выдерживают некоторое время, после чего измеряют потенциал электрода. Благодаря наложению внешнего тока процесс сдвигается от равновесного и требуется длительное время установления постоянного его значения (сутки и более). Поэтому обычно ограничиваются одной выдержкой, составляющей 1-15 мин для всех плотностей тока. Принятое время выдержки следует всегда оговаривать для сопоставимости получаемых данных.  [c.138]

Для электрохимических измерений толщин пленок составляют обычно гальванический элемент (поляризованный элемент) с испытываемым электродом, имеющим поверхностную пленку, и вспомогательным электродом (платиновый электрод). Затем для измерения потенциала электрода с поверхностной пленкой вводят обратимый электрод (насыщенный каломельный электрод) и составляют элемент для измерения потенциала. Таким образом, измерения производят трехэлектродной системой, объединяющей два гальванических элемента.  [c.190]


Если применить выражение (2.25) к рассматриваемой реакции, например реакции (2.21), и к реакции, определяющей потенциал электрода сравнения, например (2.18), то из уравнения (2.1) может быть выведено уравнение Нернста для потенциала  [c.50]

Для практического применения используют различные электроды сравнения в зависимости от среды и функционального назначения. При этом необходимо учитывать в частности следующее 1) постоянство потенциала электрода сравнения во времени 2) сопротивление растеканию и допустимую токовую нагрузку 3) стойкость по отношению к компонентам коррозионной среды и атмосферным воздействиям, а также совместимость с системой, в которой должны проводиться измерения.  [c.85]

Основы измерения потенциала электродов, по которым протекает ток  [c.85]

Величину локального разблагораживания стандартного потенциала электрода находим подстановкой (94) в формулу (65)  [c.54]

Данные об этих реакциях, а также растворимости анионов и гидроокисей были представлены в виде равновесных диаграмм зависимости изменения потенциала электродов и растворимости твердых фаз от pH раствора для железа — Пурбе (1938 г.), а для меди — А. И. Шултиным (1941 г.). Пурбе и его школа собрали, оценили и сопоставили такие данные для многих металлов и составили соответствующие диаграммы — диаграммы Пурбе  [c.218]

На рис. 210 приведена стационарная анодная поляризационная кривая для железа в 1-н. H2SO4, измеренная при помощи по-тенциостатического метода, который обеспечивает такие условия опыта, когда потенциал электрода не меняется во времени в результате изменений состояния электрода и связанных с этим изменений силы тока.  [c.305]

Для изучения скорости и характера элсмстродных процессов электрод искусственно нагружают током определенной величины и измеряют при этом потенциал исследуемого электрода. Зависимость потенциала электрода от плотности проходящего через него тока, изображенная графически, называется поляризационной кривой.  [c.33]

Г]<)лярнзация катода, сопровождающаяся смещением значения потенциала электрода в отрицательную сторону, может быть вызвана следующими двумя основными причинами  [c.37]

Пересечение идеальных поляризационных кривых, построенных на основании реальных (экспериментальных) поляризационных кривых, определяет величину тока коррозии, обусловленную не наложением внешнего тока, а работой внутренних микрогальва-нических пар. Реальные поляризационные кривые получают путем смещения потенциала электрода от Екарр в анодную или катодную сторону за счет тока от внешнего источника. При малых внешних токах реальные и иде-  [c.55]

Вагнер [4] предложил уточнение первого определения металл является пассивным, если при возрастании потенциала электрода скорость анодного растворения в данной среде резко падает. Вариант металл является пассивным, если при возрастании концентрации окислителя в растворе или газовой фазе скорость окисления в отсутствие вг.ешнего тока становится меньше, чем при более низких концентрациях окислителя. Эти альтернативные определения равнозначны в тех условиях, где применима электрохимическая теория коррозии.  [c.71]

Определите, будет ли серебро, погруженное в 0,1т раствор u lj, корродировать с образованием твердого Ag l. Каков потенциал электрода  [c.387]

Потенциал медного электрода, на котором из 0,2т раствора uSOi разряжаются ионы составляет —0,180 В относительно 1н. каломельного электрода. Какова поляризация электрода в вольтах В какую сторону потенциал электрода смещен в результате поляризации в положительную или отрицательную  [c.389]

К анодным ингибиторам относится, например, класс окислителей типа МОу (хроматы, ванадаты, вольфраматы, молибдаты, нитриты, пере-кисные соединения), воздействие которых оказывает непосредственное влияние на анодный процесс не только за счет изменения потенциала электрода, но и через поверхностную концентрацию анодно-активных частиц, образующихся при восстановлении окислителя. Установлено [2], что функционировать в качестве эффективных ингибиторов могут окислители, потенциал восстановления которых больше яотенциала коррозии защищаемого металла. Отношение числа и образующихся при катодном акте анодно-активных частиц к числу т реализованных электронов для окислителей ингибиторного типа, исходя из уравнения, описывающего суммарный процесс установившегося режима коррозии,  [c.141]

Гальваностатические кривые (рис. 1, а), снятые с компенса дней тока сопротивления по мостовой схеме, характеризующие процесс установления стационарного потенциала титанового электрода в расплаве бесщелочного алюмоборосиликатного матричного стекла при 900° С относительно стационарного Pt-элeк-трода, и убывающие абсолютные значения потенциала свидетельствуют о зависимости процесса от уменьшения окислительного характера атмосферы. Анодную зависимость /=/ (С/) титанового электрода в расплаве стекла-матрицы в атмосфере На (рис. 1, б) определяли в потенциостатическом режиме по методике [2, 3] величину омического падения напряжения измеряли после выключения установившегося тока и вычитали из потенциала электрода. Анодная зависимость указывает на доминирующее течение реакции окисления металла за счет паров воды и газов расплава по сравнению с термодинамически разрешенным [41 восстановлением кремнезема расплава и образованием оксида и силицида титана. Состав окклюдированных газов по результатам исследования газовыделения при 7 =500° С и го-5оо°с=0.26х X10 л -мм рт. ст/см - см) СОа — 20%, На — 30%, 00+ N3 —44%, НаО — 6%. Приводимые нами данные находятся в хорошем соответствии с результатами работы [5].  [c.227]


Таким способом измеряют электродный потенциал, ток поляризации, количество проходящего через электрод электричества, полное сопротивление электрода и другие величины. Сила тока и количество электричества соответствуют скорости зарядки и разрядки электрода и скорости химической реакции электрода, а также химическому эквиваленту. Таким путем можно довольно хорошо представить себе физический смысл этих величин. И напротив, объяснить физический смысл потенциала электрода с пленкой во многих случаях бывает нелегко. То же самое можно сказать и о полном сопротивлении электрода. Обе эти величины в отдельных случаях обладают очень большой чувствительностъю к состоянию поверхностной пленки, а в других случаях совершенно нечувствительны к нему. Фактически при  [c.190]

Людеринг [40] внес вклад в потенциостатическое (электролитическое) травление, придавая особое значение кулонометрическому (вольтометрическому) определению глубины травления. Применяя неокисляющие растворы, при электролитическом травлении можно создать идентичные условия работы, как с обычными реактивами, а также путем подбора потенциала электрода добиться различного травления одним и тем же раствором. Установление нужного потенциала в подобранном электролите гарантирует растворение металла, не тормозящееся из-за побочных реакций, и вместе с тем позволяет измерять скорость травления в зависимости от силы тока.  [c.18]

Потенциостатирование уменьшает сдвиг потенциала электрода, который происходит из-за протекания различных реакций с обеднением электродного приграничного слоя, как это можно наблюдать при обычных способах травления в окислительных средах. Кроме того, потенциостатирование препятствует превышению потенциала пассивирования образца, которое может привести в галогенсодержащих растворах к избирательной питтинговой коррозии.  [c.18]

Здесь фв — электрический потенциал электрода сравнения, без указания которого потенциал U получается неопределенным. Целесообразно пересчитывать потенциалы на единое исходное значение, принимая единый электрод сравнения типа u/ uS04 (медносульфатный) для практики катодной защиты от коррозии или нормальный водородный электрод (НВЭ) для научных соо бщений. Дополнительные данные об электродах сравнения и о слагаемых пересчета представлены в разделе 3.2 соображения о практическом измерении потенциала, в том числе и при протекании тока, изложены в разделе 3.3.  [c.44]

Измерительные электроды для систем катодной защиты судов с защитными установками представляют собой прочные электроды сравнения (см. раздел 3.2 и табл. 3.1), постоянно находящиеся в морской воде при съеме небольших токов для целей регулирования они не должны подвергаться поляризации. Обычно применяемые в остальных случаях медносульфатные и каломелевые электроды сравнения могут быть использованы только для контрольных измерений. Никакие электроды сравнения с электролитом и диафрагмой (мембраной) непригодны для использования в качестве измерительных электродов длительного действия для защитных преобразователей с регулированием потенциала. Измерительными электродами могут быть только электроды типа металл — среда, имеющие достаточно стабильный потенциал. Электрод серебро — хлорид серебра имеет потенциал, зависящий от концентрации ионов хлора в воде [см. формулу (2.29)], что необходимо учитывать введением соответствующих поправок [4]. Наилучшим образом зарекомендовали себя цинковые электроды. Измерительные электроды похожи на протекторы, но меньше их по размерам. Они имеют постоянный стационарный потенциал, мало подвергаются поляризации, а в случае образования поверхностного слоя могут быть при необходимости регенерированы анодным толчком (импульсом) тока. Срок их службы составляет не менее пяти лет.  [c.366]

В то же время равновесие минерала с раствором существенно отличается от равновесия металлического электрода с собственными ионами в электролите в первом случае оно наступает только при насыщении раствора, а во, втором — при любом его недосы-щении с возникновением равновесного (обратимого) потенциала электрода. Поэтому влияние механических напряжений, будучи одинаковым по отношению к изменению химического потенциала этих тел, различным образом проявляется в их механохимиче-ском поведении если в случае металлического электрода механическое воздействие изменяет как равновесное состояние (стандартный обратимый потенциал), так и скорость растворения вдали от равновесия, то в случае минерала легко обнаруживается только влияние на скорость растворения вдали от равновесия, но гораздо труднее — на растворимость.  [c.35]

В нейтральных электролитах стационарный потенциал электрода из армко-железа весьма чувствителен к проявлению механохимического эффекта. На рис. 12 приведена зависимость раз-благораживания стационарного потенциала отожженного (при 920° С в вакууме) армко-железа электроннолучевого переплава от степени деформации (скорость деформации 0,002 с ). Потен- . .......  [c.71]


Смотреть страницы где упоминается термин Потенциал электрода : [c.33]    [c.36]    [c.48]    [c.28]    [c.330]    [c.63]    [c.77]    [c.60]    [c.35]    [c.52]    [c.53]    [c.53]    [c.387]    [c.110]   
Смотреть главы в:

Техника борьбы с коррозией  -> Потенциал электрода


Коррозия и борьба с ней (1989) -- [ c.35 ]



ПОИСК



Квазиравиовесие на границе электрод — раствор. Природа бестокового потенциала

Коррозия зависимость от потенциала электрода

Метод измерения Потенциала при зачистке электрода

Основы измерения потенциала электродов, по которым протекает ток

Перенапряжение Разность электрических потенциалов между металлическим электродом и раствором соли того же металла Обобщение уравнения Нернста

Потенциал водородного электрода

Потенциал кислородного электрод

Потенциал электрода сравнения

Приведенная, или (p-шкала потенциалов и ее применение к явлениям адсорбции на электродах

Равновесный потенциал металлического электрода в растворе собственных ионов и уравнение для тока обмена на равновесном электроде

Стационарные и равновесные потенциалы сурьмяного электрода

Электрод высокого потенциала

Электроды заземлителей, их стационарное сопротивление и распределение потенциала

Электроды распределение потенциала



© 2025 Mash-xxl.info Реклама на сайте