Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энтальпия диаграммы

В самом деле, зная р и / , легко отыскать положение точки / в Л, s-диаграмме и найти энтальпию /i (см. рис. 6.10). Пересечение адиабаты, проведенной из точки J, с изобарой p.j определяет положение точки 2, т. е. энтальпию h2- Наконец, энтальпия hi воды, закипающей при давлении р>, зависит только от этого давления.  [c.64]

Если в теплообменнике происходят фазовые превращения, то разницу энтальпий следует рассчитывать по диаграммам состояния данного вещества, а не через теплоемкость Ср. Например, при конденсации пара температура не изменяется, а энтальпия каждого килограмма теплоносителя уменьшается на теплоту парообразования г.  [c.106]


ЭНТАЛЬПИЯ ПРОДУКТОВ СГОРАНИЯ, я,/-ДИАГРАММА  [c.128]

Рис. 35. Диаграмма энтальпия — температура для двуокиси углерода Рис. 35. Диаграмма энтальпия — температура для двуокиси углерода
На рис. 37 те же данные приведены в виде диаграммы Молье энтальпия — энтропия в зависимости от температуры и  [c.186]

Рис. 37, Диаграмма энтальпия — энтропия для двуокиси углерода. Рис. 37, Диаграмма энтальпия — энтропия для двуокиси углерода.
Изменение энтропии воды в изобарном процессе графически на Гх-диаграмме представится отрезком s (в процессе АВ) (рис. 11-6). Площадь под кривой процесса АВ будет в некотором масштабе определять с небольшим допущением энтальпию кипящей воды После подогрева воды до температуры кипения начинается процесс парообразования при постоянном давлении н неизменной температуре Т . Количество теплоты, подведенное при парообразовании и равное г, графически определяется площадью под кривой ВС (s" —  [c.183]

При построении г5-диаграммы по оси ординат откла/ ывается энтальпия пара, а по оси абсцисс — энтропия. За начало координат принято состояние воды в тройной точке, где so = О, /о = 0. По данным таблиц водяного пара на диаграмму прежде всего наносят нижнюю и верхнюю пограничные кривые, сходящиеся в критической точке К. Нижняя пограничная кривая выходит из начала координат, так как в этой точке энтальпию и энтропию принимают равной нулю (рис. 11-9). Состояние воды изображается точками па соответствующих изобарах, которые практически сливаются с нижней пограничной кривой. Линии изобар в области влажного пара являются прямыми наклонными линиями, расходящимися веером от нижней пограничной кривой. В изобарном процессе  [c.186]


Решение задач, связанных с термодинамическими процессами в области насыш,енных и перегретых паров, можно производить или с помощью таблиц воды и водяного пара, или с помощью -диаграммы. В этих задачах обычно определяются начальные и конечные параметры пара, изменения внутренней энергии, энтальпии и энтропии, степень сухости, работа и количество теплоты, участвующей в процессе.  [c.190]

Значения энтальпии ii и определяются по ts-диаграмме или по таблицам для данного вещества.  [c.200]

Процесс дросселирования является необратимым процессом, который сопровождается увеличением энтропии. Из предыдуш,их глав известно, что с ростом энтропии всегда понижается работоспособность газа или пара, что наглядно видно из диаграммы (рис. 14-3). Пусть водяной пар дросселируется от состояния а до с. От точки а до давления разность энтальпий выражается отрезком аЬ] от точки с разность энтальпий выражается отрезком d, который значительно меньше отрезка аЬ, т. е. работоспособность пара резко падает. Чем больше мятие пара, тем меньше его работоспособность.  [c.226]

На этой диаграмме по оси ординат откладываются величины энтальпии i в кдж/кг сухого воздуха, а по оси абсцисс — влаго-содержания d в г/кг. Для более удобного расположения различных линий на диаграмме координатные оси располагаются под углом, равным 135°, причем ось ординат проводится вертикально.  [c.241]

Таким образом, линии влагосодержания d будут вертикальными, а линии энтальпии i — наклонными прямыми. На диаграмме нанесены следующие линии линии постоянных энтальпий (прямые, наклонные к оси ординат под углом 45 ) линии постоянных влаго-содержаний (прямые, параллельные оси ординат) линии постоянных температур влажного воздуха линии относительной влажности воздуха.  [c.241]

На рис. 19-4 изображен идеальный цикл Ренкина в pv-ma-грамме. Точка 4 характеризует состояние кипящей воды в котле при давлении pi. Линия 4-5 изображает процесс парообразования в котле затем пар подсушивается в перегревателе — процесс 5-6, 6-1 — процесс перегрева пара в перегревателе при давлении pi. Полученный пар по адиабате 1-2 расширяется в цилиндре парового двигателя до давления р2 в конденсаторе. В процессе 2-2 пар полностью конденсируется до состояния кипящей жидкости np>i давлении р2, отдавая теплоту парообразования охлаждающей воде. Процесс сжатия воды 2 -3 осуществляется в насосе получающееся при этом повышение температуры воды ничтожно мало, и им в исследованиях при давлениях до 30—40 бар пренебрегают. Линия 3-4 изображает изменение объема воды при нагревании от температуры в конденсаторе до температуры кипения. Работа насоса изображается заштрихованной площадью 032 7. Энтальпия пара при выходе из перегревателя в точке 1 равна h и в Ts-диаграмме (рис. 19-5) изображается пл. 92 34617109. Энтальпия пара при входе в конденсатор в точке 2 равна jg и в Ts-диаграмме изображается пл. 92 27109. Энтальпия воды при выходе из конденсатора в точке 2  [c.298]

Термический к. п. д. цикла Ренкина равен отношению адиабатного теплопадения к энтальпии перегретого пара минус энтальпия кипящей воды при давлении в конденсаторе и вычисляется по таблицам или по r s-диаграмме водяного пара.  [c.300]

Значения энтальпий в уравнении (21-4) определяют по is-диаграмме или по таблицам для аммиака. Паровые холодильные установки имеют большое преимущество перед воздушными. Они компактны, дешевы и имеют более высокий холодильный коэффициент.  [c.337]

Диаграмма is имеет много ценных свойств она позволяет быстро определять параметры пара с достаточной для технических расчетов. точностью, дает возможность определять энтальпию водяного пара и разности энтальпий в виде отрезков, чрезвычайно наглядно изображает адиабатный процесс, имеющий большое значение при изучении паровых двигателей, и, наконец, позволяет быстро, наглядно и достаточно точно решать различные практические задачи.  [c.187]

Пользуясь диаграммой гх водяного пара, определить энтальпию пара а) сухого насыщенного при давле-  [c.192]

Пользуясь диаграммой 1з, определить энтальпию  [c.193]

Часть кинетической энергии в результате трения превращается в теплоту, которая при отсутствии теплообмена повышает энтальпию и энтропию рабочего тела, вытекающего из сопла. Поэтому состояние газа или пара в конце действительного процесса истечения в диаграмме 8 изображается точкой, всегда расположенной правее точки, характеризующей конечное состояние рабочего тела в идеальном процессе истечения.  [c.214]


По диаграмме is находим начальное состояние пара (см. рис. 80) н проводим через полученную точку линию постоянной энтальпии. В пересечении с изобарой р --  [c.227]

Величины, входящие в формулу (241), могут быть определены при помощи диаграммы 1з. Для перегретого пара начальное состояние находится в пересечении изобары н изотермы (рис. 86) для влажного — в пересечении изобары Ру и линии сухости Х1 для сухого насыщенного — в пересечении изобары ру и верхней пограничной кривой. Проектируя точку 1, изображающую начальное состояние пара, на ось ординат, находим энтальпию пара П. а проведя из нее адиабату расширения (прямую, параллельную оси ординат) до конечной изобары, получаем точку 2, характеризующую состояние отработавшего пара. По этой точке находим энтальпию пара в конечном состоянии /3. Отрезок 1—2 в определенном масштабе дает значение величины 1у — г  [c.232]

Проведя в диаграмме is линию постоянной энтальпии i = 2224 кДж/кг, находим в пересечении с изобарой Рз = 0,004 МПа точку 2д, для которой х = 0,865.  [c.245]

Применение (//—.Ч )-днаграммы Мо-пье . Для оценки величины холодильного коэффициента можно пользоваться одной из так называемых диаграмм Молье , которые дают зависимость между энтальпией Я и энтропией 5 ). На фиг. 20 схематически представлена такая диаграмма Молье. Сплошные  [c.26]

Индексы указывают, что значения энтальпии берутся в точках диаграммы, обозначенных теми же буквами.  [c.28]

При известных Т , и значения энтропии п энтальпии в различных точках можно определить из термодинамических диаграмм. Обычные значения температур в рассматриваемом процессе следующие rj = 80°K, Т2 = 293° К и Гз = 170° К, а значения давлений jo, = 1 атм я 200 атм. При таких температурах и давлениях расход энергии, требуемый для получения одного моля жидкого воздуха, равен  [c.56]

На диаграмму наносят изобары, изохоры и линии постоянной степени сухости, для чего каждую изобару а а" делят на одинаковое число частей и соединяют соответствующие точки линиями x = onst. Область диаграммы, лежащая ниже нулевой изотермы, отвечает различным состояниям смеси пар + лед, h, s-диаграмма водяного пара. Если за независимые параметры, определяющие состояние рабочего тела, принять энтропию S и энтальпию Л, то каждое состояние можно изобразить точкой на Л, 5-диаграмме.  [c.37]

Расчеты теплообменников удобно выполнять с помощью А/,/-диаграммы, предсгапляюнн й еобой ряд пний, дающих зависимость энтальпии продуктов сго()ания Н, от их температуры при разных значениях ав. Для примера на рис. 1G.1 построена Я,/ диаграмма для продуктов сгорания природного газа (газопровод Бухара - Урал).  [c.129]

Аав = 0,25). Энтальпия газов при этом практически не изменится, поскольку энтальпия подсасываемого холодного воздуха близка к Ь1улю. Следовательно, подмешивание (присос) холодного воздуха к продуктам сгорания изобразится в /У,/-диаграмме горизонтальной линией Я,=сопз1. В пашем примере газы охладятся за счет присосов (с 1 100 до 950 "С, линия ВС). Чем больше присосы, тем меньше окажется разность энтальпий при той же разности температур (сравните Н — Н и — на рис. 16.1), поэтому из-за присосов через неплотности в газоходах, когда газ движется под разрежением, экономичность теплообменника снижается так же, как и из-за утечек части горячего газа через те же неплотности, когда газ по газоходу движется под давлением.  [c.130]

Пример 11. Построить диаграмму Молье перегретого углекислого газа для температуры 25—150 С и давления 1— 1000 атм. За основу для вычислений принять, что энтальпия двуокиси углерода равна 8500 тл1моль, а энтропия равна 5,06 тл1 моль-°К) при 25 °С и 1 атм.  [c.184]

Использовать диаграмму обобщенного фактора сигимаемости для нахождения изменения энтальпии и энтропии пара между 1000 °F (537,8 С), 1000 фунт/дюйм (70,3 кПсм ) и 200 °F (93,3 °С), 20 фунт/дюйм (1,4 кПсм ). Сравнить полученные результаты с данными для пара в приложении 3.  [c.188]

Энтальпия больше внешней теплоты на величину работы vdp, которая на рц-диаграмме изображается элементарной площадкой aft d (рис. 5-11). Очевидно, вся пл. Л B D определяется выражением  [c.65]

Процесс конденсации можно условно считать проходящим по линии ф = 100%. Например, количество воды, образовавшейся в результате конденсации от точки О до точки s, на 1 кг сухого воздуха будет равно разности влагосодержаний di — d.2- Идеальный процесс насыщения воздуха влагой в условиях постоянного давления происходит при неизменной энтальпии влажного воздуха (t = onst) и изобразится на id-диаграмме отрезком МС. При этом под идеальным процессом подразумевается такой, в котором вся теплота идет только на испарение влаги, т. е. не учитываются потери теплоты в окружающую среду и расход теплоты на подогрев жидкости.  [c.243]

В id-диаграмме (см. рис. 15-2) на пересечении линий /i =-= 25° С и ф == 50 % находим точку, по которой определяем начальное влагосодержание dx = 10,0 г кг и энтальпию it = 50,0 кдж/кг. Так как нагревание воздуха совершается при неизменном влагосодержании d = onst, то на пересечении с изотермой 2 = 90° С находим точку, которая характеризует состояние нагретого воздуха по выходе из подогревателя. Из этой точки проводим линию при i = onst до пересечения с изотермой ts =-- 35° С, где определяем точку, которая характеризует состояние воздуха по выходе из сушилки. Для гой точки находим ds = 32,0 г/кг, == гз = 117,5 кдж/кг и фг == 90%. Следовательно, в процессе сушки 1 кг сухого воздуха испарилось влаги d — di = 32,0—10,0 = 22,0 г/кг. Поэтому для испарения 1 кг влаги потребуется 1000 22 = 45,5 кг сухого нагретого воздуха. Расход тепла на нагрев 1 кг воздуха в воздушном подогревателе составляет 12 — ii 117,5—50 = 67,5 кдж/кг. Расход тепла на 1 кг испаренной влаги составит q 67,5-45,5 = 3070 кдж/кг.  [c.244]

Па рис. 19-16 представлена Ts -диаграмма бинарного ртутно-водииого цт<ла. Так как энтальпия отработавшего ртутного пара в несколько раз меньше энтальпии водяного пара, то за одно и то же время через конденсатор-испаритель должно пройти ртутного пара в 10—12 раз больше, чем водяного. В связи с этим на 7 з-диаграмме цикл 1-2-,3-4-5- ] вычерчен для 1 кг водяного пара, а цикл 8-7-6-9-8 для т кг ртутного нара. Циклы располагают так, чтобы ироцесс адиабатного расширения ртути проходил над точкой 5 сухого насыщенного водяного пара.  [c.309]


Необратимый процесс расширения 1-6 может быть условно изображен на терлюдннамической диаграмме, если известны начальные и конечные его параметры. Полезная работа, совершаемая потоком в необратимом адиабаиюм процессе, не зависит от пути процесса и равна разности де11ствнтел1,ных энтальпий в начале и конце процесса  [c.312]

Так как площади диаграммы Ts, ограниченные кривой процесса, крайними ординатами и осью абсцисс, измеряют в определенном масштабе количества теплоты, подведенной к рабочему телу при постоянном давлении, то площадь OOiAiG соответствует энтальпии жидкости i, площадь A B FG — теплоте парообразования (г) и площадь парообразования B iDF — теплоте перегрева. Вся площадь ООуАуВ С Р соответствует энтальпии перегретого пара 1.  [c.186]

Задачи, связанные с дросселированием пара, обычно сводятся к определению параметров состояния пара после дросселирования. Проще всего они рщнагатся при помощи диаграммы is. Так как в начальном и конечном состояниях энтальпия пара одинакова, то конечное состояние пара определяется пересечением горизонтали, проходящей через начальную точку 1 (рис. 80), с изобарой конечного /ишлення р2- Точка 2 определяет все параметры после. фосселпрованн я.  [c.215]

В диаграмме 5теоретический процесс истечения изобра-жае1ся отрезком АВ (см. рис. 79). При этом энтальпия пара в начальном и конечном состояниях соответственно  [c.224]

Весьма удобной является также диаграмма ip (см. рис. 114). На ней по оси абсцисс отложены энтальпии, а по оси ординат — давления. Для лучшего использования площади диаграммы давления нанесены в логарифмической шкале (( — Ig р). На диаграмме нанесешл также пограничные кривые, кривые равной сухости пара, изотермы, изохоры и кривые постоянной энтропии.  [c.268]

Для вычисления теоретического холодильного коэффициента необходимо знать только и ибо значение энтальпий Н , и Н, можно взять непосредственно но диаграмме. Подставляя эти значения в формулу (8.3), получаем Более подробное изложение практического ярименения (/ —Я)-диаграмм можно найти в статье Офулса [50).  [c.30]


Смотреть страницы где упоминается термин Энтальпия диаграммы : [c.184]    [c.187]    [c.195]    [c.307]    [c.191]    [c.284]    [c.286]    [c.24]    [c.29]   
Свойства газов и жидкостей Издание 3 (1982) -- [ c.105 , c.117 ]



ПОИСК



Введение. Диаграмма энтальпия — состав. Учет давления при построении диаграммы. Движущие силы и тепловые потоки на диаграмме энтальпия — состав. Определение S-состояния при

Диаграмма «энтальпия—энтропия

Процессы парообразования и перегрева пара на диаграмме и — р. Сухость и влажность пара. Теплота, внутренняя энергия и энтальпия воды и пара

Энтальпия

Энтальпия продуктов сгорания. Н, -диаграмма



© 2025 Mash-xxl.info Реклама на сайте