Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ковалентная связь

Длина связи или расстояние между атомами определяется в первую очередь размерами атомов, соединенных связью. Вообще, чем больше атомы, тем больше длина связи. Для настоящей цели кажущийся радиус может быть принят для отдельного атома таким, чтобы сумма кажущихся радиусов атомов была равна длине связи. На длину связи в некоторой степени также влияет прочность связи чем прочнее связь, тем короче длина. Поэтому кажущийся атомный радиус будет изменяться с типом связи например, кажущийся атомный радиус углерода для одинарной ковалентной связи равен 0,77 А, для двойной связи он понижается до 0,67 А и для тройной связи до 0,60 А.  [c.137]


Валентные силы индивидуальных атомов строго направлены в пространстве, и угол между двумя ковалентными связями атома является прежде всего свойством атома общая молекулярная структура только незначительно влияет на него. Обобщенные данные по длинам и углам связей суммированы в табл. 6.  [c.137]

Для всех неметаллов характерна ионная или ковалентная связь. Эти виды связи жесткие, обусловленные электростатическим притяжением двух разнородно заряженных ионов.  [c.60]

Возможно, что присутствие алюминия в стали, кроме нитридов перечисленных элементов, вызывает образование нитрида AIN, ковалентные связи в котором обусловливают очень высокую его термическую устойчивость.  [c.332]

Рис. 3. Твердое тело с ковалентными связями. Решетка алмаза Рис. 3. <a href="/info/8211">Твердое тело</a> с ковалентными связями. Решетка алмаза
Для твердых тел чаще более характерны смешанные виды связи. Известно, что ионная и ковалентная связи, а также ковалентная и металлическая не имеют резкого разграничения и может наблюдаться переход от одного вида связи к другому. Так, упрочнение металла в результате пластической деформации и легирования объясняется превращением металлической связи в ковалентную. При деформации в металлах появляются области высокой прочности и малой пластичности, приближающиеся по своим свойствам к типичным веществам, обладающим ковалентной связью (алмазу).  [c.10]

Ковалентная связь может снова превратиться в исходную металлическую. Так, в результате длительных выдержек карбидов при высокой температуре происходит их распад, сопровождающийся образованием металла.  [c.11]

В качестве примера смешанной формы связей (металлической и ковалентной) можно указать на графит атом углерода в решетке графита связан с тремя соседними ковалентной связью, а четвертый электрон каждого атома является общим для всего атомного слоя, обусловливая электропроводность графита. Смешанные связи встречаются также в мышьяке, висмуте, селене и других простых веществах. Чисто металлическая связь характерна только для некоторых металлических монокристаллов.  [c.11]

При температурах, близких к абсолютному нулю, в идеальном кристалле 5 или Ое ковалентные связи полностью заполнены и все электроны связаны с атомами, вследствие чего электропроводность отсутствует. При нагревании или освещении кристалла происходит освобождение электронов от ковалентной связи, возникает электропроводность — переход электронов из валентной зоны в зону проводимости. При этом на месте ушедшего электрона образуется незаполненная связь (дырка), которая может быть занята электроном из другой какой-нибудь связи. Одновременно незаполненная связь (дырка) может перемещаться по кристаллу.  [c.387]


С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в d-оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида.  [c.81]

Сильная ковалентная связь с энергией порядка 10 Дж/моль определяет высокую температуру плавления и прочность кристаллов. Ковалентной связью обусловлены структуры так называемых атомных кристаллов — алмаза, кремния, германия, серого олова и др.  [c.9]

Число образуемых атомом ковалентных связей в первом приближении может служить количественной мерой валентности.  [c.9]

Каждая ковалентная связь между атомами образуется при спаривании их валентных электронов (с противоположными спинами). Поскольку валентные возможности атомов ограничены, важнейшее свойство ковалентной связи — насыщаемость химических сил сродства.  [c.9]

Рассмотрим случай ковалентной связи. Вокруг ядер по своим орбитам вращаются электроны, образуя электронное облако. Обозначим один атом через А, а второй через Б. Электроны в свою очередь делятся на две группы  [c.43]

Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. При температуре около 300 К средняя энергия теплового движения атомов в полупроводниковом кристалле составляет около 0,04 эВ. Это значительно меньше энергии, необходимой для отрыва валентного электрона, на-  [c.154]

Донорные и акцепторные примеси. Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов — донорные и акцепторные. Если, например, в кристалле кремния имеется примесь атомов мышьяка, то эти атомы замещают в узлах кристаллической решетки атомы кремния. Пятивалентный атом мышьяка вступает в ковалентные связи с четырьмя атомами кремния, а его пятый электрон оказывается незанятым в связях (рис. 155).  [c.155]

Если относительная ионность равна 1, т. е. составляет 100%, то связь между атомами чисто ионная если же она равна О, то связь чисто ковалентная. В промежутке между О и 1 имеем ковалентную связь с частично ионным характером. Чем больше разность электроотрицательностей, т. е. чем дальше отстоят два элемента один от другого в ряду электроотрицательности, тем отчетливее проявляется ионный характер связи.  [c.59]

Ниже, при оценке энергии сцепления металлов, мы ограничимся лишь грубо приближенной ионной моделью металла, а для понимания особенностей ковалентной связи ограничимся рассмотрением задачи об образовании молекулы водорода при взаимодействии двух атомов водорода.  [c.64]

К ковалентным кристаллам относят твердые тела, кристаллическая структура которых образована за счет ковалентной связи. Типичными представителями кристаллов с чисто ковалентной связью являются алмаз, кремний, германий, серое олово, которые построены по типу структуры алмаза (см. рис. 1.28).  [c.75]

Существует большой класс алмазоподобных соединений А В , А В " со структурой типа сфалерита н вюрцита (см. рис. 1.26 и 1.27), при образовании которых наряду с ковалентной связью всегда возникает дополнительная ионная компонента связи, которая увеличивается при переходе от соединений к соеди-  [c.75]


Для понимания существа ковалентной связи мы ограничимся рассмотрением механизма образования молекулы водорода Нг при взаимодействии двух атомов водорода.  [c.76]

Переходя от молекулы водорода к кристаллам, отметим основной характерной особенностью ковалентных кристаллов является то, что количество ковалентных связей, образуемых каждым атомом со своими соседями, равно количеству неспаренных внешних электронов атома в свободном состоянии или в возбужденном валентном состоянии. В этом смысле ковалентная связь является насыщенной.  [c.81]

В заключение подчеркнем, что наиболее характерная черта ковалентной связи—ее сильная направленность в пространстве, т. е. она образуется в тех направлениях, в которых локализуется электронная плотность. Вследствие направленности связи ковалентные кристаллы обладают высокой твердостью и хрупкостью.  [c.81]

Образование точечных дефектов требует значительных затрат энергии. Эта энергия находится в прямой зависимости от прочности химических связей и пропорциональна энергии связи в кристалле. Так, чтобы создать вакансию в кристалле германия или кремния, надо разорвать четыре ковалентные связи. Вычисления показывают, что энергия образования вакансии в германии равна примерно 3,2-10-- 9 Дж (2 эВ), а в кремнии 3,7-Ю- Дж (2,3 эВ). Однако несмотря на это, при относительно высоких температурах существование дефектов является энергетически выгодным. Дело в том, что введение дефектов не только увеличивает внутреннюю энергию кристалла, но и увеличивает его энтропию. Таким образом, для заданной термодинамической температуры Т свободная энергия F—E—TS минимальна при некоторой концентрации дефектов. Последняя определяется балансом энергетической и энтропийной составляющих F.  [c.88]

Найдем, в качестве примера, положение локальных разрешенных уровней примесных атомов V группы таблицы Менделеева в элементарных полупроводниках IV группы. Предположим, например, что в одном из узлов кристалла германия находится атом мышьяка, имеющий пять электронов в валентной оболочке. Четыре валентных электрона участвуют в образовании ковалентных связей с четырьмя соседними атомами германия.- Поскольку ковалентная связь является насыщенной, пятый электрон новой связи образовать не может. Находясь в кристалле, он сравнительно слабо взаимодействует с большим числом окружающих мышьяк атомов германия. Вследствие этого его связь с атомом As уменьшается и он движется по орбите большого радиуса. Его поведение подобно поведению электрона в атоме водорода. Таким образом, задача сводится к отысканию уровней энергии водородоподобного атома. При ее решении необходимо учесть следующие обстоятельства. Поскольку электрон движется не только в кулоновском поле иона мышьяка, но и в периодическом поле решетки, ему необходимо приписать эффективную массу т. Кроме того, взаимодействие электрона с атомным остатком As+, имеющим заряд Ze, происходит в твердом теле, обладающем диэлектрической проницаемостью г. С учетом этого потенциальная энергия электрона примесного атома  [c.237]

Отметим, что локализованные магнитные моменты могут быть связаны не только с магнитными атомами. Так, А. Ф. Хохлов и П. В. Павлов наблюдали возникновение ферромагнитного упорядочения в аморфном кремнии. Здесь нет атомов с недостроенными внутренними оболочками, однако имеются оборванные ковалентные связи. На каждой такой связи локализован неспаренный электрон. В обычных условиях концентрация оборванных связей в аморфном кремнии невелика ( --10 —lO s см- ), поэтому взаимодействия между локализованными на связях магнитными моментами нет. Такое вещество представляет собой парамагнетик. Однако при высокой плотности оборванных связей, которую можно создать, облучая аморфный кремний ускоренными ионами инертных газов, возникает обменное взаимодействие, приводящее к ферромагнетизму.  [c.340]

Влияние примесей на электрические свойства аморфных полупроводников. Долгое время считалось, что аморфные полупроводники в отличие от кристаллических нечувствительны к введению в них примесей. Попытки легирования их атомами, которые в кристаллических полупроводниках являются донорами или акцепторами, не приводили к успеху. Одно из объяснений такого поведения было дано Губановым и несколько позднее Моттом. Оно сводится к тому, что в аморфных веществах может осуществляться такая перестройка связей, что все валентные электроны примесного атома будут участвовать в связях. Так, например, в кристаллическом кремнии атом фосфора образует четыре ковалентные связи. Пятый валентный электрон примесного атома в образовании связей не участвует. Предполагается, что в аморфном кремнии (или германии) атом фосфора окружен пятью атомами кремния (рис. 11.10). Если это так, то в аморфных полупроводниках не должны образовываться примесные уровни.  [c.364]

Ковалентная связь — связь в твердом теле, обусловленная обобществлением валентных электронов ближайших соседних атомов характеризуется выраженной направленностью.  [c.282]

Линейные макромолекулы (рис. 8.5, а) имеют форму цепей, в которых атомы соединены между собой ковалентными связями. Отдельные цепи связаны межмолекулярными силами, в значительион степени определяющими свойства полимера. Наличие в цепях разветвлений (рис. 8.5, б) приводит к ослаблению межмолекулярных сил и тем самым к снижению температуры размягчения полимера. Пространственные структуры (рис. 8.5, й) получаются в результате химической связи (сшивки) отдельных цепей полимеров либо в результате поликонденсации или полимеризации. Большое значение для свойств сшитого полимера имеет частота поперечных связей. Если эти связи располагаются сравнительно редко, то образуется полимер с сетчатой структурой.  [c.427]


Ковалентная связь образуется в кристаллах некоторых простых веществ (алмаз, кремний) или в кристаллах сое-днпсний двух элементов, если они близки между собой по элект-роотрпцателыюсти (некоторые карбиды, нитриды и др.). В качестве идеального примера кристалла с ковалентной связью  [c.8]

МОЖНО привести алмаз, в котором каждый атом углерода связан с четырьмя другими атомами углерода в направлении от центра тетраэдра к его вершинам (рис. 3). Таким образом создастся устойчивая восьмиэлектронная орбита около каждого атома углерода и вместе с тем каждый атом углерода приобретает по четыре ковалентных связи. Обилием ковалентных связей и высокой степенью симметрии решетки алмаза объясняется его исключительно высокая твердость.  [c.9]

В ковалентных керамиках электронный газ отсутствует (рис. 4,6), а ковалентные связи затрудняют относительное перемещение атомов под действием нагрузок. Благодаря сильному сопротивлению со стороны соседних атомов в перемещении учаотвует меньшее количество атомов, т.е. диояокаций образуются более узкими по сравнению с металлами.  [c.10]

В связи с затруднонвостью пластической деформации предел текучести у керамик фактически соответствует раэрушахщему напряжению. Пээ"ому керамики о ковалентной связью хрупки как в виде монокристаллов, так и в поликриоталличеокон состоянии.  [c.10]

В ионных керамиках, в отлвчие от ковалентных, связи не направлены, Они определяются оу>шарныи влектростатичаским взаимодействием чередующихся цепочкой положительных и отрицательных ионов (рис. 4, в).  [c.10]

Противополоокным предельным структурным типом являются полимеры с заглкнутой пространственной сетчатой структурой, где макромолекулы образованы мономерами, имеющими более двух активных связей, в результате чего получается двух- или трехмерная молекула. Основные ковалентные связи соединяют все звенья структуры, поэтОцу данные материалы лишь незначительно размягчаются при нагреве и разлагаются перед расплавлением. Такие полимеры являются основой термо-  [c.18]

К полупроводниковым материалам относятся большинство минералов, неметаллические элементы IV, V и VI групп периодической системы Менделеева, неорганические соединения (оксиды, сульфиды), некоторые сплавы металлов. Наибольшее применение получили элементы IV группы — Ое и 51, обладающие тетрагональной кристаллической решеткой типа алмаза. В вершинах тетраэдра раеположены четыре атома, окружающие атом, находящийся в центре. Каждый атом связан с четырьмя ближайшими атомами силами ковалентной связи, поскольку все они обладают четырьмя внешними валентными электронами.  [c.387]

Для разрыва ковалентных связей при весьма низких температурах необходима энергия около 0,1922 айж для 51 и около 0,1201 аджАля Ое. Идеальные кристаллы с одинаковым количеством электронов и дырок  [c.387]

Металлическая связь по своей природе имеет значительное сходство с ковалентной связью. В обоих случаях электронные орбиты сливаются, но в металле происходит обобщение не отдельных, а всех валентных электронных орбит. При этом устанавливаются общие уровни энергии во всем объеме кристалла. Число уровней будет одного порядка с числом атомов в данном )бъеме металла. Уровни весьма близки между собой и образуют нергетические полосы или зоны, которые иногда рассматривают как расщепление валентных уровней (орбит) отдельных атомов.  [c.10]

Например, при контакте полиамидного клея со сталью возникают химические соединения, где атом азота (полиамида) делит свои два электрона с атомами железа (стали). Одновременно между атомами кетогруппы С=0 и атомом кислорода в оксиде железа возникает дополнительная ионная связь. Таким образом, возникает так называемое хелатное соединение. Другие клеи (на основе толуилендиизоцианитов) при взаимодействии с атомами кремния (стекла) образуют ковалентные связи.  [c.16]

Энергия взаимодействия двух парамагШггных молекул оценивается в 400-4000 кДж/моль, что сравнимо с энергией ковалентной связи, поэтому именно свободные парамагнитные радикалы будут образовывать ядро ССЕ, ассоциируя вокруг себя сольватные слои, состоящие, в основном, из диамагнитных соединений нафтено-<фоматического строения. Такое ассоциирование осуществляется за счет резонансного взаимодействия свободных радикалов с диамагнитными молекулами и мультипопь-мультипольного взаимодействия диамагнитных молекул между собой.  [c.154]

Один из основных вкладов в Е(г) вносит первый член, соответствующий взаимодействию двух свободных радикалов, образующих ковалентную связь. Знак " -" в формуле (3.15) определяет притяжение свободных радикалов в случае отсутствия стерических затруднений. Для нейтральных молекул, в которых отсутствуют ыеспаренные электроны, первый член определяет энергию отталкивания, возникающую вследствие заполненности орбиталей атомов соседних молекул.  [c.160]

Долю частично ионного характера (степень ионности или ионность) ковалентной связи можно оценить, если известны элекгроотрицательности взаимодействующих атомов А и В. Заметим, что при анализе характера связи обычно прннято рассматривать не сами электроотрицательности, а разность электроотрицательностей взаимодействующих атомов.  [c.59]

Ковалентная связь имеет то же происхождение, что и связь в гамополярных молекулах (Нг, СЬ, Ь,.- ), она обусловлена обменным электронным взаимодействием между атомами. В молекулярных кристаллах (Нг, СЬ, Ь,---) ковалентная связь локализована между ядрами в молекуле, молекулы удерживаются вместе слабыми силами Ван-дер-Ваальса. Однако в случае алмаза или графита несколько валентных электронов являются общими для атома и ряда его соседей, и поэтому невозможно выделить какую-либо группу атомов, которую можно рассматривать как химически насыщенную (рис. 2.7). С этой точки зрения кристалл алмаза представляет собой огромную молекулу.  [c.75]

Названные специфические свойства, по-существу, обусловлены наличием в металлах свободных электронов. Металлическая связь возникает при взаимодействии атомов электрополоэ/сительных элементов, внешние валентные электроны которых связаны с ядром относительно слабо. При образовании твердого состояния в результате перекрытия волновых функций металлических атомов (например, атомов Na) движение электронов, как и в случае ковалентной связи, претерпевает радикальное изменение, и электроны обобществляются. При этом каждая соседняя пара электронов предпочла бы образовать молекулу, с тем чтобы поделить себя между двумя атомами. Но у кал<дого атома Na в твердом состоянии имеется в среднем восемь соседей и только один валентный электрон,, который должен быть поделен с каждым из этих соседей. В отличие от случая ковалентной связи, когда пара электронов, в основном, курсирует между двумя соседними атомами, коллективизированному электрону в металле приходится совершать довольно сложный путь, посещая по очереди каждый атом (положительный ион) твердого тела. В описанной ситуации все ионы обладают всеми электронами вместе, а электроны могут свободно перемещаться от одного иона к- другому.  [c.82]

По возможности размещения междоузельных атомов структуры с ионной связью занимают промежуточное положение между плот-ноупакованными металлами и полупроводниками с ковалентной связью. Несмотря на то что геометрия решетки оставляет для них некоторое пространство, ионы часто сильно различаются по объему и в результате упаковка получается довольно-таки плотной. Поэтому вероятность появления междоузельных атомов в ионных соединениях сильно изменяется от одного веш,ества к другому.  [c.87]

Менделеева, например атомом бора. n=i Три валентных электрона атома бора образуют три ковалентные связи с соседними атомами германия, а четвертая связь otTaeT H незавершенной. — — =1  [c.239]

Клаузиуса — Мосоттн формула 294 Ковалентная связь 58, 75, 81 Ковалентные кристаллы 55 Колебания решетки 141, 158 Координационное число 31 Коэрцитивная сила 345 Коэффициент диффузии 201, 202,204  [c.383]


Смотреть страницы где упоминается термин Ковалентная связь : [c.346]    [c.3]    [c.6]    [c.59]   
Смотреть главы в:

Физическое металловедение Вып I  -> Ковалентная связь

Основы материаловедения и технологии полупроводников  -> Ковалентная связь


Физика твердого тела (1985) -- [ c.58 , c.75 , c.81 ]

Металловедение и термическая обработка Издание 6 (1965) -- [ c.16 ]

Металловедение и термическая обработка (1956) -- [ c.264 ]

Физика твердого тела Т.2 (0) -- [ c.11 , c.21 , c.177 ]

Основы материаловедения и технологии полупроводников (2002) -- [ c.11 , c.21 , c.24 , c.177 ]



ПОИСК



Возникновение кристаллической структуЭнергия взаимодействия атомов Ионная связь. Ковалентная связь. Водородная связь. Металлическая связь. Молекулярная связь Основные понятия зонной теории твердых тел

Значения энергии ковалентной связи для некоторых пар атомов

Ковалентная связь в металлах

Ковалентная связь гибридные орбитали

Ковалентная связь длина связи и углы между

Ковалентная связь направленность

Ковалентная связь насыщаемость

Ковалентная связь поляризуемость

Ковалентная связь правило Юм-Розери

Ковалентная связь связями

Ковалентная связь связями

Межатомная связь в молекулах (гомеополярная или ковалентная связь)

Молекулы с ковалентной химической связью

Основные свойства ковалентной связи

Связь гомеополярная (ковалентная)

Связь ионная, ковалентная

Связь межатомная (ионная, ковалентная

Связь межатомная (ионная, ковалентная металлическая)

Типы химической связи. Ковалентная связь. Ионная связь Ион молекулы водорода. Метод орбиталей

Химическая связь ковалентная связь



© 2025 Mash-xxl.info Реклама на сайте