Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процессы коррозии

Не вдаваясь в подробности явлений, связанных с процессами коррозии и коррозионным разрушением, укажем, что введение в сталь >12% Сг делает ее коррозионностойкой в атмосфере и во многих других промышленных средах. Сплавы, содержащие меньше 12% Сг, практически в столь же большой  [c.479]

Принципиальная возможность или невозможность самопроизвольного протекания химического процесса определяется знаком изменения термодинамического потенциала. В качестве критерия равновесия и самопроизвольности процессов коррозии металлов  [c.17]


Процессы коррозии металлов, в которых катодная деполяризация осуществляется растворенным в электролите кислородом по реакции (342), называют процессами коррозии металлов с кислородной деполяризацией.  [c.230]

Согласно уравнению (331), самопроизвольное протекание процесса коррозии металла с кислородной деполяризацией возможно  [c.231]

Для процессов коррозии металлов с кислородной деполяризацией весьма характерна замедленность переноса кислорода к катодным участкам поверхности корродирующего металла. Это обусловлено малой концентрацией кислорода в электролитах вследствие плохой его растворимости в воде (рис. 161) и в водных растворах (рис. 162), медленностью диффузии кислорода через слой электролита, прилегающий к поверхности корродирующего металла, дополнительным затруднением диффузии кислорода часто образующейся на поверхности корродирующего металла пленкой вторичных труднорастворимых продуктов коррозии.  [c.235]

Таким образом, в условиях контроля процесса коррозии металлов диффузией кислорода природа катодных и анодных участков и омическое сопротивление электролита не влияют существенно на скорость процесса.  [c.244]

Процессы коррозии металлов, у которых D = Н+, т. е. катодная деполяризация осуществляется водородными ионами по реакции (332) с выделением водорода, называют процессами коррозии металлов с водородной деполяризацией.  [c.248]

Согласно уравнению (331), протекание процесса коррозии металла с водородной деполяризацией возможно, если  [c.248]

Часто применяют объемные показатели электрохимической коррозии а) водородный показатель — объем выделившегося водорода в процессе коррозии металла, отнесенный к единице поверхности металла и единице времени /(объемн. н,, см /(см -ч) б) кислородный показатель коррозии — объем поглощенного кислорода в процессе коррозии металла, отнесенный к единице поверхности, металла и единице времени /(объемн о, см /(см -ч).  [c.267]

Контролирующим процессом называют процесс, кинетика которого определяет скорость коррозии, т. е. стадию процесса коррозии, которая имеет наибольшее сопротивление по сравнению с остальными стадиями и поэтому оказывающую основное влияние на скорость коррозии металла. Для определения контролирующего процесса нужно сравнить С , и или ДУ , АУ, и АУ .  [c.274]

Таким образом, для контролирующего процесса коррозии металла желательно установить его элементарную контролирующую стадию, т. е. электродную реакцию или диффузию на основании сопоставлений Рр и Рд.  [c.276]


По данным Н. Д. Томашова, в практических условиях встречаются шесть основных случаев контроля электрохимических процессов коррозии металлов, для которых на рис. 186 приведены поляризационные коррозионные диаграммы  [c.278]

Значение последнего позволяет рассчитать степень анодного и катодного контроля работы многоэлектродной системы, т. е. соответствующего суммарного процесса коррозии нескольких металлов в контакте друг с другом  [c.288]

По механизму тормозящего действия на электрохимический процесс коррозии ингибиторы подразделяют на анодные, катод-  [c.345]

Коррозия металла (который в простейшем случае является двухэлектродной системой) в электролитах представляет собой электрохимический процесс, скорость которого в значительной степени определяется поляризацией анодного и катодного электродных процессов, т. е. изменением их потенциалов под влиянием протекающего в данной гальванической системе тока, генерируемого в процессе коррозии.  [c.362]

Вычисленные из данных рис. 279 значения эффективной энергии активации процесса коррозии железа в различных водонасыщенных грунтах и почвах (6 ккал/моль для кислой почвы — гу-  [c.388]

Для коррозии в узких зазорах — щелях характерны пониженная концентрация в них окислителей (кислорода и других) по сравнению с концентрацией в объеме раствора вне щели (рис. 303) и затрудненность отвода продуктов коррозии, в результате накопления которых и их гидролиза возможно изменение pH раствора в щели и кинетики анодного и катодного процессов коррозии металла в щели.  [c.415]

Снижение поляризуемости анодного процесса может быть настолько сильным, что может начаться процесс коррозии с водородной деполяризацией, а это дополнительно увеличивает коррозионный ток.  [c.416]

Одной из основных задач, стоящих перед коррозионистами, является развитие научных исследований процессов коррозии и разработка на их основе более эффективных методов противокоррозионной защиты металлов. Для этого необходимо использование последних достижений в области экспериментальной физики, физической химии и металлографии, в частности более точных и удобных ускоренных методов определения коррозионной стойкости металлов, сплавов и их заменителей.  [c.426]

В случае смешанной кислородно-водородной деполяризации скорость коррозии металлов и соотношение между скоростями кислородной и водородной деполяризации определяют при помощи прибора Н. Д. Томашова и Т. В. Матвеевой (рис. 337). Наблюдаемое в результате процесса коррозии металлического образца изменение объема газовой фазы складывается из уменьшения  [c.448]

К электрохимической коррозии, являющейся гетерогенной электрохимической реакцией, относятся коррозионные процессы, протекающие в водных растворах электролитов, влажных газах, расплавленных солях и щелочах. При электрохимической коррозии процесс растворения металла сопровождается появлением электрического тока, т. е. упорядоченным передвижением электронов и ионов от одного участка металла к другому. При этом электрический ток возникает вследствие протекания процесса коррозии металла, а не за счет его подвода от внешнего источника.  [c.6]

Необходимым условием всякого электрохимического корро-знойного процесса является неравенство Ьа <. с т. е. различие потенциалов катодных и анодных процессов на поверхности металла. Основным условием возможности прохождения процесса коррозии металла с водородной деполяризацией с определенной скоростью является требование, чтобы электродный потенциал анода (металла) был более отрицателен, чем потенциал разряда водородных ионов с этой скоростью при данных условиях.  [c.42]

В нейтральных растворах с pH = 7 гальванические элементы, составленные из большинства имеющих техническое значение металлов, работают без выделения газообразного водорода, так как потенциал разряда ионов водорода отрицательнее, чем потенциал анода. Только начиная с определенного значения pH, при котором потенциал анода отрицательнее потенциала разряда водородных ионов, процесс коррозии может сопровождаться выделением водорода. Металлы с очень электроотрицательным по-  [c.42]


Только в случае коррозионных пар, имеющих достаточную большую протяженность (например, почвенная коррозия трубопроводов, коррозия под действием контакта в трубе и т. п.), приходится наряду с поляризационными характеристиками катода и анода учитывать также и омический фактор. Зная величину омического сопротивления коррозионных элементов, можно решать количественные вопросы о соотношении между торможением процесса коррозии омическим фактором и ранее рассмотренным анодным и катодным торможением, т. е. о соотношении между омическим, анодным и катодным контролем процесса.  [c.53]

Процесс коррозии металла скорее возникает на поверхностях шероховатых участков, где могут скапливаться грязь, пыль и другие вещества, чем иа участках, которые хорошо обработаны. Это особенно характерно для производства удобрений, сажи и т. п., где металлическое оборудование и конструкции с шероховатой поверхностью легко покрываются веществами, которые впитывают и надолго сохраняют в себе влагу.  [c.84]

Одним из методов получения химически стойких сплавов, как известно, является легирование неустойчивого или малоустойчивого металла атомами более устойчивого металла, например легирование меди золотом или железа никелем и т. п. Рассмотрим процесс коррозии двойного сплава, являющегося гомогенным твердым раствором, в котором один из компонентов вполне стоек в данной агрессивной среде, а другой, наоборот, растворяется в ней.  [c.125]

Твердые составляющие почвы или грунта распределены неравномерно, в виде отдельных комочков различных размеров. Имеющиеся в почве гумус и известь, играющие роль цемента, связывают отдельные частицы твердых составляющих в комочки. Совокупность этих комочков и составляет структуру почвы или грунта, имеющую первостепенное значение для процессов коррозии. Структура почвы зависит от формы твердого скелета, который определяет содержание влаги и воздуха в почве.  [c.185]

Объемный показатель коррозии /Собъемн — объем поглощенного или выделившегося в процессе коррозии металла газа (например, кислорода) AV, приведенный к нормальным условиям (т. е. t == 0° Си Р = 1 атм) и отнесенный к единице поверхности металла и к единице времени [например, см /(см ч)]  [c.41]

Этот метод может быть использован для определения тока саморастворения (коррозии) металла и установления механизма процесса коррозии металла совпадение величины рассчитанного таким методом коррозионного тока /э = х со значением /опытн. полученным непосредственным определением коррозионных потерь металла (I из Ат), подтверждает электрохимический механизм процесса расхождение этих значений, когда /э = х < /опыта указывает на наличие растворения металла по неэлектрохимическому, т. е. химическому механизму.  [c.286]

Если условия контактной коррозии металлов таковы, что суммарная анодная кривая пересекается с суммарной катодной кривой ( к)обр кс в области значительной зависимости последней от перенапряжения катодного процесса (перенапряжения ионизации кислорода), например в точке 1, то нетрудно заметить, что величина суммарного коррозионного тока Г (который полностью или большая часть его приходится на основной металл) определяется ходом суммарных катодной (в основном) и анодной кривых. Суммарные же величины отличаются от кривых основного (анодного) металла на величину соответствующих токов металла катодного контакта, которые определяются ходом катодной (в основном) и анодной кривых этого металла. Ход катодной кривой металла катодного контакта определяется катодной поляризуемостью его катодных участков Рк, и величиной поверхности этих участков Skj, а ход анодной кривой этого металла — его обратимым электродным потенциалом в данных условиях (V a.)oep. анодной поляризуемостью его анодных участков Ра, и величиной поверхности этих участков Чем положительнее значения (УмеХбр> тем меньше его анодные функции при контакте с другим металлом и больше катодные функции. Таким образом, эффективность ускоряющего действия металла катодного контакта на коррозию основного металла зависит от природы металла катодного контакта [его обратимого электродного потенциала в данных условиях (Каг)обр. поляризуемости электродных процессов Ркг и Рзг и соотношения 5к. Sa J и его поверхности 5а. При этом в условиях преимущественного катодного контроля процесса коррозии главную роль будут играть (Ка обр. Skj и Рк2-  [c.360]

Катодные включения (например, Си, Pd) заметно повышают коррозионную стойкость железоуглеродистых сплавов в атмосфере даже при незначительном их содержании (десятые доли процента меди — рис. 272). В процессе коррозии медистой стали в электролит (увлажненные продукты коррозии) переходит и железо, и медь, но ионы последней, являясь по отношению к железу катодным деполяризатором, разряжаются и выделяются на его поверхность в виде мелкодисперсной меди. Медь является весьма эффективным катодом и при определенных условиях, например, при повышенной концентрации окислителя — кислорода у поверхности металла, что имеет место при влажной атмосферной коррозии, и отсутствии депассивирующих ионов, способствует пассивированию железа  [c.381]

Не полностью используемый бактериями на окислительные процессы кислород обеспечивает протекание катодной деполяриза-ционной реакции грунтовой коррозии стали в анаэробных условиях. Сероводород уменьшает перенапряжение водорода в кислых и слабокислых грунтах, облегчая протекание катодного процесса в этих условиях. Сульфид-ионы, действуя как депассиваторы, а также связывая железо в труднорастворимые и малозащитные сульфиды, растормаживают анодный процесс коррозии стали. По данным некоторых исследователей, скорость коррозионного разрушения стали при воздействии этих бактерий может возрастать в 20 раз.  [c.388]

Морская коррозия металлов протекает по электрохимическому механизму преимущественно с кислородной деполяризацией. При коррозии в морской воде имеет место смешанный диффузионнокинетический катодный контроль (рис. 283), который в зависимости от условий может переходить в преимущественно диффузионный (неподвижная морская вода, наличие на металле большого количества вторичных продуктов коррозии) или преимущественно кинетический (при быстром движении морской воды или судка). Катодный процесс коррозии при этом идет на поверхности  [c.398]


Межкристаллитная коррозия дюралюминия (около 4—5% Си 0,5—1,75% Mg, по 0,5% Si, Мп и Fe, ост. AI), согласно работам А. И. Голубева, связана с разрушением образующегося при распаде твердого раствора (в виде более или менее непрерывной цепочки на границах зерен) интерметаллического соединения uAla в тех случаях, когда процесс коррозии сопровождается выделением водорода. В этих случаях на включениях uAla и зернах твердого раствора не образуется кроющая пленка продуктов коррозии, которая обычно (при кислородной деполяризации) препятствует коррозии включений uAla, а следовательно, и развитию межкристаллитной коррозии. Первоначальными очагами выделения водорода и возникновения межкристаллитной коррозии являются, по данным С. Е. Павлова и С. М. Амбарцумяна, межкристаллитные микропоры на поверхности сплава. Поэтому в качестве одного из наиболее эффективных путей борьбы с межкристаллитной коррозией алюминиевых сплавов, содержащих медь, рекомендуется уплотнение структуры металла.  [c.420]

Наряду с разрушением металлических конструкций, вызываемых указанными выше причинами, нередко наблюдается износ металлических изделий из-за постепенного их истирания. Такое разрушение металлической поверхности называют эрозией металлов. Не всегда удается разделить явления коррозии и эрозии металлов. В особенности это трудно сделать в условиях эксплуа-тацу.я машин и аппаратов в химической промышленности, когда процессы коррозии и эрозии часто протекают совместно, например при работе мешалок, насосов, трубопроводов и др. Поэтому предметом научной дисциплины разрушение металлов является изучение комплекса вопросов физико-химического и механического разрушения металлической поверхности.  [c.7]

Гидратация ионов играет большую роль в процессах коррозии, так как при соприкосновении металлической поверхности с раствором элсктролига возможно взаимодействие между электрически заряженными частицами раствора и иои-атомами металла, которое может привести к переходу последних в раствор в виде гидратировагшых ионов. Кроме диполей воды, ион может быть окружен и оболочкой из других диполей. В общем случае это явление носит название солтжатации.  [c.13]

В частности, все процессы коррозии технических конструкционных металлов, как в нейтральных растворах электролитов, так и в атмосферных условиях, а также многие процессы растноре-иия металлов в слабокислых растворах в присутствии кислорода идут главным образом за счет катодного процесса ионизации 1 ис.,юрода.  [c.38]

Из всего многообразия факторов, влияющих на электрохимический процесс коррозии, весьма важным является водородный показатель раствора электролита, т. е. характеристика активности в ием водородных ионов. Усиление или ослабление коррозионного процесса часто является функцией от активности ионов водорода в растворе. Уменьшение pH раствора, т. е. увеличение активности ионов Н+-приводит обычно к возрастанию скорости коррозии, так как потенциалы водородного и кислородного электродов делаются более иоложительиымл к катодные процессы водородной и кислородной деполяризации облегчаются. Примером такого влияния pH на скорость коррозии может СЛУЖИТЬ сильное ускорение растворения многих металлов (же-  [c.69]

Ранее было указано, что па скорость коррозии металлов оказывает влияние и характер обработки поверхности конструкции. Экспериментально было установлено, что гладкая поверхность металла по сравнению с rpy6oii, шероховатой, обладает большей стойкостью к коррозии. Гладкая поверхность металла имеет меньше различных дефектов в виде зазоров, царапин и т. д., которые могут явиться причиной образования очагов коррозии. Так, например, поверхности, грубо обработанные резцом,. могут подвергаться более сильной коррозии вследствие того, что к поверхности металла, лежащего в углублении рисок, будет поступать меньше кислорода, чем к участкам, лежащим на гребнях поэтому в случае 1ейтраль[юй или щелочной среды, когда процесс коррозии металла идет с кислородной деполяризацией, па участках с большей концентрацией кислорода (гребни) потенциал будет более положителен, чем на участках с меньшей концентрацией кислорода (углубление), и вследствие дифференциальной аэрации возникает коррозионный микроэлемент.  [c.84]

Напряжения оказывают определенное влияние на коррозию металлов и заслуживают особого внимания со стороны конструкторов. Эти вопросы подробно рассмотрены в гл. VII. Концентрация напряжений, возникающих при штамповке и сварке, так же как и сильные местные напряжения, возникающие в результате неправильного конструирования, могут ускорить процесс коррозии металлов. Имеется значительное количество данных, подтверждающих, что при наличии в металле остаточных напряжений или приложенных извне нагрузок могут образоваться локальные гальванические элементы. В результате на участках металла, подверженных действию наибольщих напряжений, появляются коррозионные поражения в виде трещин.  [c.88]

О влиянии химического состава грунта на коррозию существуют разноречивые указания, однако совершенно очевидно, что степень коррозионной акти1зности грунта зависит от характера и количества водорастворимой части грунта. Повышение ее количества связано с уменьшением омического сопротивления среды и, следовательно, способствует усилению коррозионного процесса. На рис, 139 показано изменение электросопротивления грунта по мере повышения концентрации хлористого натрия в растворе. Нерастворимая часть грунта в процессе коррозии непосредственно не участвует.  [c.185]


Смотреть страницы где упоминается термин Процессы коррозии : [c.34]    [c.298]    [c.361]    [c.383]    [c.7]    [c.73]    [c.80]    [c.109]    [c.173]    [c.190]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.11 ]



ПОИСК



Анодный процесс электрохимической коррозии металлов

Борьба с коррозией в процессе химических очисток и промывок

В КИСЛЫХ СРЕДАХ Закономерности элементарных процессов коррозии бетона

Влияние ингибиторов коррозии на технологический процесс добычи, подготовки и переработки нефти и газа

Влияние конструктивной формы металлоконструкций на развитие процесса коррозии

Влияние механических факторов на процесс коррозии

Влияние различных факторов на процесс газовой коррозии

Влияние температуры и давление на скорость коррозии металлов и электродных процессов

Влияние тепломассообмена на работоспособность оборудования АЭС и процессы коррозии в двух-фазных системах

Влияние характера анодного процесса на пассивируемость сплаСнижение коррозии пассивирующихся систем путем повышения эффективности катодного процесса

Вторичные процессы и продукты электрохимической коррозии металлов и их влияние на поляризацию

Газовая (химическая) коррозия металлов кинетика процесса

Главапервая Основы теории коррозии металлов Классификация коррозионных повреждений и коррозионных процессов

Диагностика процессов коррозии, старения и биоповреждений

Затухание процесса коррозии

Изучение методов защиты оборудования от коррозии при разработке новых процессов производства красителей и полупродуктов

Ингибирование процессов коррозии металлов в кислых средах

Ингибиторы коррозии в процессах кислотного травления металлов

Катодные процессы при электрохимической коррозии металлов

Кинетика парциальных процессов электрохимической коррозии. Закономерности анодного растворения металлов

Кинетика парциальных процессов электрохимической коррозии. Закономерности катодного выделения водорода

Кинетика парциальных процессов электрохимической коррозии. Закономерности электрохимического восстановления кислорода

Кинетика процессов газовой коррозии

Кинетические закономерности процесса водородной коррозии стали

Классификация процессов коррозии

Коррозия автомобилей в процессе эксплуатации. Методы защиты

Коррозия и защита оборудований в процессах выделения изобутилена

Коррозия и защита оборудования в процессах бронирования

Коррозия и защита оборудования в процессах восстановления нитросоединений

Коррозия и защита оборудования в процессах дегидрирования фракций углеводородов

Коррозия и защита оборудования в процессах декарбоксилироваСхема производства бензойной кислоты

Коррозия и защита оборудования в процессах диазотироаания и азссочетания

Коррозия и защита оборудования в процессах каталитического окисления

Коррозия и защита оборудования в процессах конденсации

Коррозия и защита оборудования в процессах нейтрализации раствора

Коррозия и защита оборудования в процессах нитрования

Коррозия и защита оборудования в процессах обмена хлора и аминирования

Коррозия и защита оборудования в процессах осернения

Коррозия и защита оборудования в процессах разделения фрак. ций углеводородов

Коррозия и защита оборудования в процессах сульфирования

Коррозия и защита оборудования в процессах хлорирования

Коррозия и защита оборудования в процессах щелочного плавления

Коррозия как сопряженный процесс окисления металла й восстановления

Коррозия материалов в процессах синтеза мономеров

Коррозия металлов анодный процесс

Коррозия моделирование процесса

Коррозия скорости процесса

Коррозия схема процесса

МЕЖОПЕРАЦИОННАЯ ЗАЩИТА ОТ КОРРОЗИИ ХИМИЧЕСКОГО ОБОРУДОВАНИЯ В ПРОЦЕССЕ ЕГО ИЗГОТОВЛЕНИЯ

Механизм и модели процесса коррозии

Михайловский. Применение импульсных методов поляризации для исследования процессов коррозии металлов

Моделирование процессов коррозии, старения и биоповреждений

О роли молекулярного водорода в процессе ингибирования кислотной коррозии

ОСНОВНЫЕ ПРЕДСТАВЛЕНИЯ О ПРОЦЕССАХ КОРРОЗИИ МЕТАЛЛОВ

ОСНОВЫ ТЕОРИИ КОРРОЗИИ МЕТАЛЛОВ Классификация и виды коррозионных процессов

Общие соображения о роли катодных процессов в явлениях электрохимической коррозии металлов

Определение количества выделившегося в процессе коррозии водорода или поглощенного кислорода (объемные методы)

Определение количества металла, перешедшего в раствор в процессе коррозии

Определение. Классификация. Особенности. Механизм коррозии. Факторы. Модели. Прогнозирование процесса

Основы теории коррозии металлов ГАЗОВАЯ КОРРОЗИЯ МЕТАЛЛОВ Общая характеристика процессов газовой коррозии

Основы термодинамики процессов коррозии металлов

Особенности атмосферной коррозии металлов и ее контролирующий процесс

Особенности моделирования процессов коррозии, старения и биоповреждений (А. А. Герасименко, Л. А. Михайлова)

Особенности процесса коррозии арматуры в ячеистых бетонах

Особенности процесса коррозии арматуры и ее защита в силикатных автоклавных бетонах

Особенности процесса коррозии в неводных средах

Особенности процесса коррозии в сыпучей среде

Особенности процесса подземной коррозии

ПОЧВЫ И ГРУНТЫ КАК КОРРОЗИОННАЯ СРЕДА КОРРОЗИОННЫЕ ИССЛЕДОВАНИЯ И ИЗМЕРЕНИЯ Влияние состава и свойств почв и грунтов на развитие процесса коррозии

Пассивность, электрохимическое поведение и коррозия металлов в растворах перевиси водорода Катодные и. анодные процессы на электроде из стали Х18НТ

Поверхностная протонизация и ее роль в процессах ингибирования кислотной коррозии металлов

Предотвращение коррозии паровых котлов в процессе их эксплуатации

Применение коррозионной диаграммы для анализа процессов коррозии

Пример использования математических методов при исследовании процесса коррозии нефтепромыслсвого оборудования

Процессы коррозии с водородной деполяризацией

Процессы коррозии с кислородной деполяризацией

Пути снижения коррозии пассивирующихся систем увеличением торможения анодного процесса

Развитие процесса атмосферной коррозии

Различные факторы, влияющие на процессы коррозии

Роль термодинамики при оценке процессов коррозии

Состояние вопроса и сущность процесса коррозии стали в бетоне Основные сведения из теории коррозии металлов

Сравнение цементационного процесса с некоторыми типами местной коррозии

Сущность процесса коррозии и условия его протекания

Сущность процессов коррозии, повреждения от коррозии и мероприятия по защите от коррозии

ТЯшина, В. П. Никифоров. Вакуумные микровесы для изучения процессов коррозии во фторе и его летучих соединениях

Термодинамика процессов коррозии

Термодинамический анализ процесса водородной коррозии стали

Факторы, определяющие развитие процесса коррозии металлоконструкций

Физико-химическая природа и кинетика процессов коррозии металлов

Физико-химические предпосылки селективной коррозии в S А А S в I S 8 - б Коррозионные процессы на сплавах

Характеристика процессов коррозии

Чуркин Ю. В., Исупова Н. Ф., Васильева Э. А. Научно-исследовательские работы по защите оборудования от коррозии в нефтехимических процессах

Электрохимические основы действия ингибиторов кислотной коррозии стали Кинетика коррозионных процессов в присутствии ингибиторов Дрожжин, А. М. Сухотин



© 2025 Mash-xxl.info Реклама на сайте